

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx764f128lt-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nun	nber ⁽¹⁾			D "		
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP			Pin Type	Buffer Type	Description	
CN0	48	74	B11	B40	I	ST	Change notification inputs. Can be	
CN1	47	73	C10	A47	I	ST	software programmed for internal weak	
CN2	16	25	K2	B14	I	ST	pull-ups on all inputs.	
CN3	15	24	K1	A15	I	ST		
CN4	14	23	J2	B13	I	ST		
CN5	13	22	J1	A13	I	ST		
CN6	12	21	H2	B11	I	ST		
CN7	11	20	H1	A12	I	ST		
CN8	4	10	E3	A7	I	ST		
CN9	5	11	F4	B6	I	ST		
CN10	6	12	F2	A8	I	ST		
CN11	8	14	F3	A9	I	ST		
CN12	30	44	L8	A29	I	ST		
CN13	52	81	C8	B44	I	ST		
CN14	53	82	B8	A55	I	ST		
CN15	54	83	D7	B45	I	ST		
CN16	55	84	C7	A56	I	ST		
CN17	31	49	L10	B27	I	ST		
CN18	32	50	L11	A32	I	ST		
CN19	—	80	D8	A54	I	ST		
CN20	—	47	L9	B26	I	ST		
CN21	—	48	K9	A31	I	ST		
IC1	42	68	E9	B37	I	ST	Capture Inputs 1-5	
IC2	43	69	E10	A45	I	ST		
IC3	44	70	D11	B38	I	ST	-	
IC4	45	71	C11	A46	I	ST	-	
IC5	52	79	A9	A60	I	ST	-	
OCFA	17	26	L1	A20	I	ST	Output Compare Fault A Input	
OC1	46	72	D9	B39	0	_	Output Compare Output 1	
OC2	49	76	A11	A52	0		Output Compare Output 2	
OC3	50	77	A10	B42	0		Output Compare Output 3	
OC4	51	78	B9	A53	0	_	Output Compare Output 4	
OC5	52	81	C8	B44	0		Output Compare Output 5	
OCFB	30	44	L8	A29	I	ST	Output Compare Fault B Input	
INT0	46	72	D9	B39	I	ST	External Interrupt 0	
INT1	42	18	G1	A11	I	ST	External Interrupt 1	
INT2	43	19	G2	B10	I	ST	External Interrupt 2	
INT3	44	66	E11	B36	1	ST	External Interrupt 3	
INT4	45	67	E8	A44	1	ST	External Interrupt 4	
Legend: C S	MOS = CMO T = Schmitt T TL = TTL inp	S compatib rigger input	le input or c	output	A		Analog input P = Power	

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

3.2 Architecture Overview

The MIPS32 M4K processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e[®] Support
- Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS32 M4K processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bit-wise logical operations
- Shifter and store aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

MIPS32 M4K processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32 core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16 bit wide *rs*, 15 iterations are skipped and for a 24 bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

Opcode	Operand Size (mul rt) (div rs)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	1	1
MSUB/MSUBU	32 bits	2	2
MUL	16 bits	2	1
	32 bits	3	2
DIV/DIVU	8 bits	12	11
	16 bits	19	18
	24 bits	26	25
	32 bits	33	32

TABLE 3-1:MIPS32[®] M4K[®] CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT
LATENCIES AND REPEAT RATES

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	_	_	_	—	_	—	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	—	—	—	—	—	—	—	—				
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0				
15:8		BMXDUDBA<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
7:0				BMXDU	DBA<7:0>							

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: DRM User Data Base Address Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

6.1 Control Registers

TABLE 6-1: RESETS REGISTER MAP

ess	Bits											(2)							
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
Fc00	DCON	31:16	_	—	—	—	_	_	_	_	_	—	—	—	—	—	—	—	0000
F600	RCON	15:0		_	_	_	_	_	CMR	VREGS	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR	POR	0000
5040	RSWRST	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
F610	RSWRSI	15:0	—			_	_	—	_	—	—	_		_	_	_	_	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24		_	-	—	_	—		—
23:16	U-0	U-0						
23.10	_	_	_	—	_	—		—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0
15:8	—	_	—	—	_	—	CMR	VREGS
7.0	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
7:0	EXTR	SWR	_	WDTO	SLEEP	IDLE	BOR ⁽¹⁾	POR ⁽¹⁾

REGISTER 6-1: RCON: RESET CONTROL REGISTER

Legend:	HS = Set by hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-10	Unimplemented: Read as '0	n'
	eninplemented. Read as	

bit 9	CMR: Configuration Mismatch Reset Flag bit
	1 = Configuration mismatch Reset has occurred
	0 = Configuration mismatch Reset has not occurred
bit 8	VREGS: Voltage Regulator Standby Enable bit
	$\ensuremath{\mathtt{l}}$ = Regulator is enabled and is on during Sleep mode
	0 = Regulator is set to Stand-by Tracking mode
bit 7	EXTR: External Reset (MCLR) Pin Flag bit
	1 = Master Clear (pin) Reset has occurred
	0 = Master Clear (pin) Reset has not occurred
bit 6	SWR: Software Reset Flag bit
	1 = Software Reset was executed
	0 = Software Reset was not executed
bit 5	Unimplemented: Read as '0'
bit 4	WDTO: Watchdog Timer Time-out Flag bit
	1 = WDT Time-out has occurred
	0 = WDT Time-out has not occurred
bit 3	SLEEP: Wake From Sleep Flag bit
	1 = Device was in Sleep mode
	0 = Device was not in Sleep mode
bit 2	IDLE: Wake From Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit ⁽¹⁾
	1 = Brown-out Reset has occurred
	0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit ⁽¹⁾
	1 = Power-on Reset has occurred
	0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view the next detection.

Interrupt Source ⁽¹⁾	IRQ	Vector	Interrupt Bit Location					
Interrupt Source	Number	Number	Flag	Enable	Priority	Sub-Priority		
IC3E – Input Capture 3 Error	63	13	IFS1<31>	IEC1<31>	IPC3<12:10>	IPC3<9:8>		
IC4E – Input Capture 4 Error	64	17	IFS2<0>	IEC2<0>	IPC4<12:10>	IPC4<9:8>		
IC5E – Input Capture 5 Error	65	21	IFS2<1>	IEC2<1>	IPC5<12:10>	IPC5<9:8>		
PMPE – Parallel Master Port Error	66	28	IFS2<2>	IEC2<2>	IPC7<4:2>	IPC7<1:0>		
U4E – UART4 Error	67	49	IFS2<3>	IEC2<3>	IPC12<12:10>	IPC12<9:8>		
U4RX – UART4 Receiver	68	49	IFS2<4>	IEC2<4>	IPC12<12:10>	IPC12<9:8>		
U4TX – UART4 Transmitter	69	49	IFS2<5>	IEC2<5>	IPC12<12:10>	IPC12<9:8>		
U6E – UART6 Error	70	50	IFS2<6>	IEC2<6>	IPC12<20:18>	IPC12<17:16>		
U6RX – UART6 Receiver	71	50	IFS2<7>	IEC2<7>	IPC12<20:18>	IPC12<17:16>		
U6TX – UART6 Transmitter	72	50	IFS2<8>	IEC2<8>	IPC12<20:18>	IPC12<17:16>		
U5E – UART5 Error	73	51	IFS2<9>	IEC2<9>	IPC12<28:26>	IPC12<25:24>		
U5RX – UART5 Receiver	74	51	IFS2<10>	IEC2<10>	IPC12<28:26>	IPC12<25:24>		
U5TX – UART5 Transmitter	75	51	IFS2<11>	IEC2<11>	IPC12<28:26>	IPC12<25:24>		
(Reserved)	—	—	—	—	<u> </u>			
	Lowe	est Natural (Order Priority	/				

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX5XX USB and CAN Features", TABLE 2: "PIC32MX6XX USB and Ethernet Features" and TABLE 3: "PIC32MX7XX USB, Ethernet, and CAN Features" for the list of available peripherals.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
31:24				CHEW1<	:31:24>										
23:16	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
23:16	CHEW1<23:16>														
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
15:8	CHEW1<15:8>														
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
7:0	CHEW1<7:0>														

REGISTER 9-6: CHEW1: CACHE WORD 1

Legend:						
R = Readable bit	W = Writable bit	itable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0							
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
31:24				CHEW2<	:31:24>										
22.16	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
23:16	CHEW2<23:16>														
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
15:8	CHEW2<15:8>														
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x							
7:0	CHEW2<7:0>														

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	l bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

PIC32MX5XX/6XX/7XX

REGISTER 11-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_		_	—	—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10					—	_		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	—	—	_	—	—	-	—
7:0	R/WC-0, HS	U-0	R/WC-0, HS					
7.0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF		VBUSVDIF

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is un	nknown					

bit 31-8 Unimplemented: Read as '0'

- bit 7 IDIF: ID State Change Indicator bit
 - 1 = Change in ID state detected
 - 0 = No change in ID state detected

bit 6 T1MSECIF: 1 Millisecond Timer bit

- 1 = 1 millisecond timer has expired
- 0 = 1 millisecond timer has not expired
- bit 5 LSTATEIF: Line State Stable Indicator bit
 - 1 = USB line state has been stable for 1 ms, but different from last time
 - 0 = USB line state has not been stable for 1 ms

bit 4 ACTVIF: Bus Activity Indicator bit

- 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
- 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level

bit 2 SESENDIF: B-Device VBUS Change Indicator bit

- 1 = A change on the session end input was detected
- 0 = No change on the session end input was detected

bit 1 Unimplemented: Read as '0'

- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = Change on the session valid input detected
 - 0 = No change on the session valid input detected

PIC32MX5XX/6XX/7XX

REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0							
31.24	—	—	—	—	_	—	_	_	
22.16	U-0	U-0							
23:16	—	—	—	—	_	—	_	_	
15:8	U-0	U-0	U-0 U-0 U-0 U-0		U-0	U-0	U-0		
15.6	—	—	—	—	_	—	_	_	
	R/W-0	R/W-0							
7:0	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE ⁽¹⁾	URSTIE ⁽²⁾	
	STALLIE	ATTACHIE	RESUMEIE	IDLEIE		SOFIE	UERRIE'	DETACHIE ⁽³⁾	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-8 Unimplemented: Read as '0'

	•·····
bit 7	STALLIE: STALL Handshake Interrupt Enable bit
	1 = STALL interrupt is enabled
	0 = STALL interrupt is disabled
bit 6	ATTACHIE: ATTACH Interrupt Enable bit
	1 = ATTACH interrupt is enabled
	0 = ATTACH interrupt is disabled
bit 5	RESUMEIE: RESUME Interrupt Enable bit
	1 = RESUME interrupt is enabled
	0 = RESUME interrupt is disabled
bit 4	IDLEIE: Idle Detect Interrupt Enable bit
	1 = Idle interrupt is enabled
	0 = Idle interrupt is disabled
bit 3	TRNIE: Token Processing Complete Interrupt Enable bit
	1 = TRNIF interrupt is enabled
	0 = TRNIF interrupt is disabled
bit 2	SOFIE: SOF Token Interrupt Enable bit
	1 = SOFIF interrupt is enabled
	0 = SOFIF interrupt is disabled
bit 1	UERRIE: USB Error Interrupt Enable bit ⁽¹⁾
	1 = USB Error interrupt is enabled
	0 = USB Error interrupt is disabled
bit 0	URSTIE: USB Reset Interrupt Enable bit ⁽²⁾
	1 = URSTIF interrupt is enabled
	0 = URSTIF interrupt is disabled
	DETACHIE: USB Detach Interrupt Enable bit ⁽³⁾
	1 = DATTCHIF interrupt is enabled
	0 = DATTCHIF interrupt is disabled

Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

- 2: Device mode.
- 3: Host mode.

13.2 Control Registers

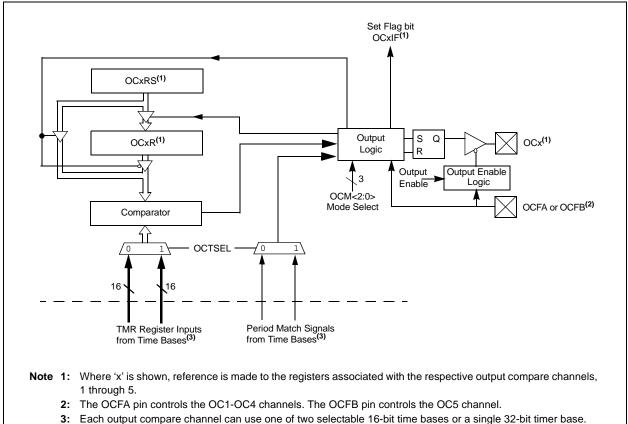
TABLE 13-1: TIMER1 REGISTER MAP

ess		â								В	its								6
Virtual Addre (BF80_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	TACON	31:16	—	_	-	_	_	—	_	—	_	—	_	—	—	_	—	_	0000
0600	T1CON	15:0	ON	_	SIDL	TWDIS	TWIP	—	_	_	TGATE	_	TCKP	S<1:0>	—	TSYNC	TCS	_	0000
0610	TMR1	31:16	_	Ι	_	_	_	_	-	_	_	_	-	_	—	-	_	_	0000
0610	I IVIR I	15:0	TMR1<15:0> 0000												0000				
0620	PR1	31:16	—	-				_	_	_	_		_	_	—	_	_	_	0000
0020	FRI	15:0	PR1<15:0>												FFFF				

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

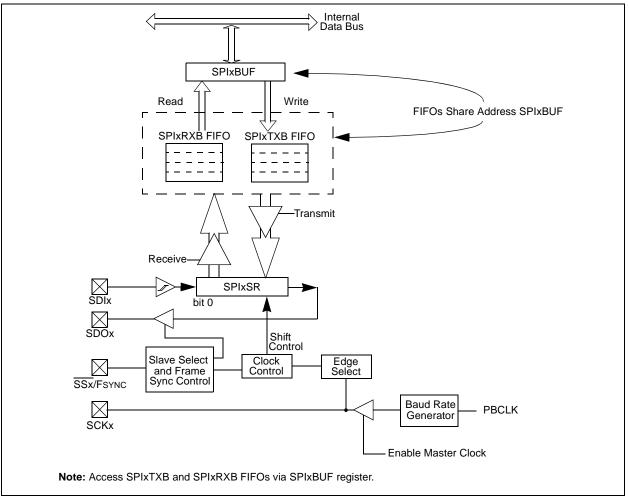
17.0 OUTPUT COMPARE


Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 16. "Output Compare"** (DS60001111) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32).

The Output Compare module is used to generate a single pulse or a series of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of the Output Compare module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base


18.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters, etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The following are some of the key features of the SPI module:

- Master mode and Slave mode support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs
- based on 32/16/8-bit data width
 Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

ess										В	its								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	RTCCON	31:16	_	_	—	—	_	_			CAL<9:0>						0000		
0200	RICCON	15:0	ON	_	SIDL	—	—	_			RTSECSEL	RTCCLKON			RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	_	_	_	—	—				—	_			—		_	—	0000
0210	RICALKI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASK<3:0>				ARPT<7:0>							0000
0220	RTCTIME	31:16		HR10	0<3:0>			HR01	<3:0>		MIN10<3:0>					MIN01<3:0>			
0220	RICTIVIE	15:0		SEC1	0<3:0>			SEC0 ²	<3:0>		_	_	-		-	-	_	—	xx00
0000	RTCDATE	31:16		YEAR'	10<3:0>			YEAR0	1<3:0>			MONTH1	0<3:0>			MONTH	01<3:0>		xxxx
0230	RICDATE	15:0		DAY1	0<3:0>			DAY01	l<3:0>		_	_	-			WDAYC)1<3:0>		xx00
0040		31:16		HR10)<3:0>			HR01	<3:0>			MIN10<	:3:0>			MIN01	<3:0>		xxxx
0240	ALRMTIME	15:0		SEC1	0<3:0>			SEC01<3:0>			_	_	_	—	_	—	_	_	xx00
0050		31:16	_		_	—	_	_	_	_		MONTH1	0<3:0>			MONTH	01<3:0>		00xx
0250	ALRMDATE	15:0		DAY1	0<3:0>		DAY01<3:0>			_	_	_	_		WDAYC)1<3:0>		xx0x	
l egen	، بام		n voluo on D	aaati u	unimplemented read as '0' Reset values are shown in hexadecimal														

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 24-1: CAN1 REGISTER SUMMARY FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX764F128L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES (CONTINUED)

<i>(</i> 0				-							,								T	
ess		-								Bits	5									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets	
DOEO	C1FLTCON3	31:16	FLTEN15	MSEL1	5<1:0>		FSEL15<4:0> FLTEN14							4 MSEL14<1:0> FSEL14<4:0				:0>		
DUFU	CIFLICONS	15:0	FLTEN13	MSEL1	3<1:0>		FSEL13<4:0> FLTEN12								F	SEL12<4:0>	>		0000	
P100	C1FLTCON4	31:16	FLTEN19	MSEL1	9<1:0>		FSEL19<4:0> FLTEN18 MSEL18<1:0>								F	SEL18<4:0>	>		0000	
ыю	CIFEICON4	15:0	FLTEN17	MSEL1	7<1:0>		FSEL17<4:0> FLTEN16 MSEL16<1:0>									SEL16<4:0>	>		0000	
B 110	C1FLTCON5	31:16	FLTEN23	MSEL2	3<1:0>			FSEL23<4:0	>		FLTEN22	MSEL2	2<1:0>		F	SEL22<4:0>	>		0000	
ыно	CIFLICONS	15:0	FLTEN21	MSEL2	1<1:0>		FSEL21<4:0> FLTEN20 MSEL20<1:0>								F	SEL20<4:0>	>		0000	
P120	C1FLTCON6	31:16	FLTEN27	MSEL2	7<1:0>			FSEL27<4:0	>		FLTEN26	MSEL26<1:0> FSEL26<4:0>				0000				
D120	CIFLICON	15:0	FLTEN25	MSEL2	5<1:0>			FSEL25<4:0	>		FLTEN24	MSEL2	24<1:0>		F	SEL24<4:0>	>		0000	
B130	C1FLTCON7		FLTEN31	MSEL3	1<1:0>			FSEL31<4:0	>		FLTEN30	MSEL3	80<1:0>		F	SEL30<4:0>	>		0000	
D130	CILECON	15:0	FLTEN29	MSEL2	9<1:0>			FSEL29<4:0	>		FLTEN28	MSEL2	8<1:0>	FSEL28<4:0>						
B140	0	31:16						SID<10:0>							EXID	—	EID<1	7:16>	xxxx	
DING		15:0								EID<1	5:0>								xxxx	
B340	C1FIFOBA	31:16 15:0								C1FIFOBA	<31:0>								0000	
	C1FIFOCONn	31:16		_	_		_	_	_	_	_	_	_			-SIZE<4:0>			0000	
B350	(n = 0-31)	15:0	_	FRESET	UINC	DONLY	_	_	_	_	TXEN	TXABAT	TXLARB	TXERR	TXREQ	RTREN	TXPRI	<1:0>	0000	
Dooo	C1FIFOINTn	31:16	_	_		_	_	TXNFULLIE	TXHALFIE	TXEMPTYIE	_	_	_	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXN EMPTYIE	0000	
B360	(n = 0-31)	15:0	_	_		_	_	TXNFULLIF	TXHALFIF	TXEMPTYIF	_	-	-	_	RXOVFLIF	RXFULLIF	RXHALFIF	RXN EMPTYIF	0000	
B370	C1FIFOUAn									C1FIFOUA	<31.0>						•		0000	
2010		15:0	0000											0000						
B380	C1FIFOCIn			—	—		_	—	—	—	-	—	—	—		—	—	—	0000	
		15:0		—	—	—	_	— es are showr	—	—		—	—		C,	FIFOCI<4:0)>		0000	

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

REGISTER 24-3: CIINT: CAN INTERRUPT REGISTER (CONTINUED)

- bit 14 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit 1 = A bus wake-up activity interrupt has occurred 0 = A bus wake-up activity interrupt has not occurred CERRIF: CAN Bus Error Interrupt Flag bit bit 13 1 = A CAN bus error has occurred 0 = A CAN bus error has not occurred bit 12 SERRIF: System Error Interrupt Flag bit 1 = A system error occurred (typically an illegal address was presented to the system bus) 0 = A system error has not occurred bit 11 **RBOVIF:** Receive Buffer Overflow Interrupt Flag bit 1 = A receive buffer overflow has occurred 0 = A receive buffer overflow has not occurred bit 10-4 Unimplemented: Read as '0' MODIF: CAN Mode Change Interrupt Flag bit bit 3 1 = A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP) 0 = A CAN module mode change has not occurred bit 2 CTMRIF: CAN Timer Overflow Interrupt Flag bit 1 = A CAN timer (CANTMR) overflow has occurred 0 = A CAN timer (CANTMR) overflow has not occurred bit 1 **RBIF:** Receive Buffer Interrupt Flag bit 1 = A receive buffer interrupt is pending 0 = A receive buffer interrupt is not pending bit 0 TBIF: Transmit Buffer Interrupt Flag bit 1 = A transmit buffer interrupt is pending
 - 1 = A transmit buffer interrupt is pending
 0 = A transmit buffer interrupt is not pending
- **Note 1:** This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31:24	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
23:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 24-7: CIRXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXOVF<31:0>: FIFOn Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 24-8: CITMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CANTS<15:8>							
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CANTS<7:0>							
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CANTSPRE<15:8>							
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CANTSPRE<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (CiCON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits

1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks
.

0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: CiTMR will be paused when CANCAP = 0.

2: The CiTMR prescaler count will be reset on any write to CiTMR (CANTSPRE will be unaffected).

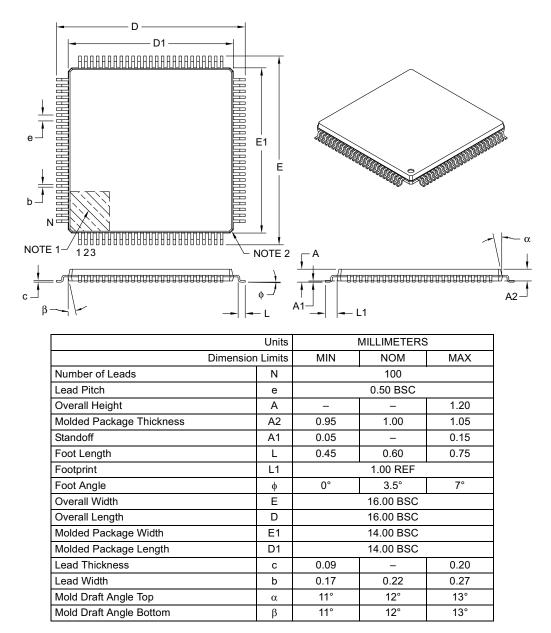
REGISTER 29-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 3 ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit
 - 1 = PGEC2/PGED2 pair is used
 - 0 = PGEC1/PGED1 pair is used
- bit 2 Reserved: Write '1'
- bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 11 = Debugger is disabled
 - 10 = Debugger is enabled
 - 01 = Reserved (same as '11' setting)
 - 00 = Reserved (same as '11' setting)

REGISTER 29-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider

TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)


DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Typical ⁽²⁾	Max.	Units	Conditions				
Power-Down Current (IPD) ⁽¹⁾ for PIC32MX575/675/695/775/795 Family Devices								
DC40	10	40		-40°C				
DC40a	36	100		+25°C	2.3V	Base Power-Down Current (Note 6)		
DC40b	400	720		+85°C		Base Power-Down Current (Note 6)		
DC40h	900	1800		+105°C				
DC40c	41	120	μA	+25°C	3.3V	Base Power-Down Current		
DC40d	22	80		-40°C	3.6V	Base Power-Down Current (Note 6)		
DC40e	42	120		+25°C				
DC40g	315	400 (5)		+70°C				
DC40f	410	800		+85°C				
DC40i	1000	2000	+105°C					
Module	Differential	Current fo	or PIC32N	IX575/675/	695/775/	795 Family Devices		
DC41		10		_	2.3V	Watchdog Timer Current: AIWDT (Notes 3,6)		
DC41a	5		μA		3.3V	Watchdog Timer Current: ∆IwDT (Note 3)		
DC41b	—	20			3.6V	Watchdog Timer Current: ∆IwDT (Note 3,6)		
DC42		40		_	2.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Notes 3,6)		
DC42a	23	_	μA		3.3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)		
DC42b	—	50			3.6V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3,6)		
DC43	—	1300		_	2.5V	ADC: ΔIADC (Notes 3,4,6)		
DC43a	1100		μA		3.3V	ADC: Aladc (Notes 3,4)		
DC43b	—	1300	1		3.6V	ADC: ΔIADC (Notes 3,4,6)		

Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}} = \text{VDD}$
- RTCC and JTAG are disabled
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: Data is characterized at +70°C and not tested. Parameter is for design guidance only.
- 6: This parameter is characterized, but not tested in manufacturing.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B