

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	-
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx775f256l-80v-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					USE	B and E	therne	t								
Device	Pins	Program Memory (KB)	Data Memory (KB)	USB	Ethernet	Timers/Capture/Compare	DMA Channels (Programmable/Dedicated)	UART ^(2,3)	SPI ⁽³⁾	I ² C ⁽³⁾	10-bit 1 Msps ADC (Channels)	Comparators	dSP/PMP	JTAG	Trace	Packages ⁽⁴⁾
PIC32MX664F064H	64	64 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX664F128H	64	128 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX675F256H	64	256 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX675F512H	64	512 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX695F512H	64	512 + 12 ⁽¹⁾	128	1	1	5/5/5	8/4	6	3	4	16	2	Yes	Yes	No	PT, MR
PIC32MX664F064L	100	64 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX664F128L	100	128 + 12 ⁽¹⁾	32	1	1	5/5/5	4/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX675F256L	100	256 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG
PIC32MX675F512L	100	512 + 12 ⁽¹⁾	64	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG, TL
PIC32MX695F512L	100	512 + 12 ⁽¹⁾	128	1	1	5/5/5	8/4	6	4	5	16	2	Yes	Yes	Yes	PT, PF, BG, TL
Legend: PF, PT =	TQFP	MR = QF	N		BG =	TFBGA	4	TL =	VTL/	ų(5)						

TABLE 2: PIC32MX6XX USB AND ETHERNET FEATURES

Legend: PF, PT = TQFP MR = QFN BG = Note 1: This device features 12 KB boot Flash memory.

2: CTS and RTS pins may not be available for all UART modules. Refer to the "Device Pin Tables" section for more information.

3: Some pins between the UART, SPI and I²C modules may be shared. Refer to the "Device Pin Tables" section for more information.

4: Refer to 34.0 "Packaging Information" for more information.

5: 100-pin devices other than those listed here are available in the VTLA package upon request. Please contact your local Microchip Sales Office for details.

TABLE 11: PIN NAMES FOR USB AND ETHERNET DEVICES (CONTINUED)

1	21-PIN TFBGA (BOTTOM VIEW	/)	L11	
	PIC32MX664F064L PIC32MX664F128L PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L			11
No	te: The TFBGA package skips from row	/ "H" to r	ow "J" and has no "I" row. A1	
Pin #	Full Pin Name	Pin #	Full Pin Name	
J3	PGED2/AN7/RB7	K8	VDD	
J4	AVdd	K9	AETXD1/SCK3/U4TX/U1RTS/CN21/RD15	
J5	AN11/ERXERR/AETXERR/PMA12/RB11	K10	USBID/RF3	
J6	TCK/RA1	K11	SDA3/SDI3/U1RX/RF2	
J7	AN12/ERXD0/AECRS/PMA11/RB12	L1	PGEC2/AN6/OCFA/RB6	
J8	No Connect (NC)	L2	VREF-/CVREF-/AERXD2/PMA7/RA9	
J9	No Connect (NC)	L3	AVss	
J10	SCL3/SDO3/U1TX/RF8	L4	AN9/C2OUT/RB9	
J11	D-/RG3	L5	AN10/CVREFOUT/PMA13/RB10	
K1	PGEC1/AN1/CN3/RB1	L6	SCK4/U5TX/U2RTS/RF13	
K2	PGED1/AN0/CN2/RB0	L7	AN13/ERXD1/AECOL/PMA10/RB13	
K3	VREF+/CVREF+/AERXD3/PMA6/RA10	L8	AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15	
K4	AN8/C1OUT/RB8	L9	AETXD0/SS3/U4RX/U1CTS/CN20/RD14	
K5	No Connect (NC)	L10	SDA5/SDI4/U2RX/PMA9/CN17/RF4	
K6	SS4/U5RX/U2CTS/RF12	L11	SCL5/SDO4/U2TX/PMA8/CN18/RF5	
K7	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14			

Note 1: Shaded pins are 5V tolerant.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

- Note 1: To access the documents listed below, browse to the documentation section of the PIC32MX795F512L product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list. In addition to parameters, features, and other documentation, the resulting page provides links to the related family
- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 4. "Prefetch Cache" (DS60001119)
- Section 3. "Memory Organization" (DS60001115)

reference manual sections.

- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Capture" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I2C)" (DS60001116)
- Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001154)
- Section 35. "Ethernet Controller" (DS60001155)

		Pin Nur	nber ⁽¹⁾		D '	D ((
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
AN0	16	25	K2	B14	I	Analog	Analog input channels
AN1	15	24	K1	A15	I	Analog	
AN2	14	23	J2	B13	I	Analog	
AN3	13	22	J1	A13	I	Analog	
AN4	12	21	H2	B11	I	Analog	
AN5	11	20	H1	A12	I	Analog	
AN6	17	26	L1	A20	I	Analog	
AN7	18	27	J3	B16	I	Analog	
AN8	21	32	K4	A23	I	Analog	
AN9	22	33	L4	B19	I	Analog	
AN10	23	34	L5	A24	I	Analog	
AN11	24	35	J5	B20	I	Analog	
AN12	27	41	J7	B23	I	Analog	
AN13	28	42	L7	A28	I	Analog	
AN14	29	43	K7	B24	I	Analog	
AN15	30	44	L8	A29	I	Analog	
CLKI	39	63	F9	B34	I	ST/ CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	40	64	F11	A42	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	39	63	F9	B34	I	ST/ CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	40	64	F11	A42	I/O		Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	73	C10	A47	I	ST/ CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise
SOSCO	48	74	B11	B40	0	_	32.768 kHz low-power oscillator crystal output

TABLE 1-1: PINOUT I/O DESCRIPTIONS

ST = Schmitt Trigger input with CMOS levels O = Output I = Input I = Input I = Input I = TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

11.1 **Control Registers**

TABLE 11-1: USB REGISTER MAP

Signature Signature 5040 U10TGIR ⁽²⁾ 5050 U10TGIR ⁽²⁾ 5060 U10TGSTAT 5070 U10TGCO 5080 U11PWRC 5200 U11R ⁽²⁾ 5210 U11EIR ⁽²⁾ 5220 U1EIR ⁽²⁾ 5220 U1EIR ⁽²⁾	2) 31: 15: 15: 15: 15: 15: 15: 15: 1	i:16 5:0 1:16 5:0 1:16 5:0 1:16 5:0 1:16	31/15 	30/14 	29/13 	28/12	27/11	26/10	25/9	24/8	Bits 23/7	22/6	04/5					r	Resets
5040 U10TGIR ⁽²⁾ 5050 U10TGIE 5060 U10TGSTAT 5070 U10TGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	2) 31: 15: 15: 15: 15: 15: 15: 15: 1	1:16 5:0 1:16 5:0 1:16 5:0 1:16		_ _		-			25/9	24/8	23/7	22/6	04/5			ļ			eset
5050 U10TGIE 5060 U10TGSTAT 5070 U10TGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	2) 15 31: 15 (3) 31: (3) 31: 15 15 31: 31: 31	5:0 1:16 5:0 1:16 5:0 1:16	— — — —	-	_		_					22/0	21/5	20/4	19/3	18/2	17/1	16/0	All Re
5050 U10TGIE 5060 U10TGSTAT 5070 U10TGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	15 31: 15 (3) 31: 15 31: Ν 31: 31:	1:16 5:0 1:16 5:0 1:16	- - -					—	-	_	_	—	_	—	_	—	—	—	0000
5060 U1OTGSTAT 5070 U1OTGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	15 (3) 31: 15: Ν 31: 15: 31: 31: 31: 31: 31: 31: 31: 31	5:0 1:16 5:0 1:16	-	—			-			—	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF	0000
5060 U1OTGSTAT 5070 U1OTGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	15: T ⁽³⁾ 31: 15: N 31: 15: 31: 31:	1:16 5:0 1:16	-	-	—		-			—	_	—	_	-	_	—	_	_	0000
5070 U1OTGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	N 15: 31: 31: 31:	5:0 1:16				_	_		_	_	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE	0000
5070 U1OTGCO 5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	N 31: 31: 31: 31:	1:16		-	_		-			—	_	—	_	-	—	—		—	0000
5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	N 15		_	-	_		-			—	ID	—	LSTATE	-	SESVD	SESEND		VBUSVD	0000
5080 U1PWRC 5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	31	E:0	_	_	_	_	—	_	_	_		_	—	—	—	—	—	—	0000
5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾	31:	5.0	_	_	_	_	—	_			DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
5200 U1IR ⁽²⁾ 5210 U1IE 5220 U1EIR ⁽²⁾		1:16	_	-	_		-			—	_	—	_	-	—	_		—	0000
5210 U1IE 5220 U1EIR ⁽²⁾	15	5:0	_	_	_	_	—	_	_	-	UACTPND ⁽⁴⁾	_	—	USLPGRD	USBBUSY	—	USUSPEND	USBPWR	0000
5210 U1IE 5220 U1EIR ⁽²⁾	31:	1:16	_	_	_	_	—	_				_	—	—	—	—	—	—	0000
5220 U1EIR ⁽²⁾	15	5:0	_	_	_		_			_	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
5220 U1EIR ⁽²⁾	_										-							DETACHIF	0000
5220 U1EIR ⁽²⁾	31:	1:16	_	_	—	—	—	—	—	_	—	—	—	—	—	—	—		0000
	15	5:0	_	_	_	_	_	_	_	_	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
																			0000
	31:	1:16	_	_	_	_	_	_	_	_	—		—	—	_		_	—	0000
5230 U1EIE	15	5:0	_	_	_	_	_	_	_	—	BTSEF	BMXEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF EOFEF	PIDEF	0000
5230 U1EIE	31.	1:16	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	0000
SZSO OTELE	51.	1.10															CRC5EE		0000
	15	5:0	—	—	—	—	—	—	—	—	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE	PIDEE	0000
(2)	、 31:	1:16	_	_	_	_	_		_	_	_	_	_	_	_		_	_	0000
5240 U1STAT ⁽³⁾	,	5:0	_	_	_	_	_	_	_	_		ENDPT	<3:0> ⁽⁴⁾		DIR	PPBI	_	_	0000
	-	1:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5250 U1CON											10TATE(4)	0.5 0(4)	PKTDIS					USBEN	0000
		5:0	—	_	_	—	—	—	—		JSTATE ⁽⁴⁾	SE0 ⁽⁴⁾	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	0000
5260 U1ADDR	15	1:16	_	_	_	_	_	_	_	_		—	_	_	—	—	_	—	0000
5200 UTADDR	31:	5:0	_	_	—	_	—	_	_	_	LSPDEN			DE	VADDR<6:0	1>			0000
5270 U1BDTP1	31:		_	_	—	_	—	_	_	_	_	_	—	_	_	—	_	—	0000
JZIU UIBDIPI	31: 15:	1:16		_	_	_	_	_		_			BD	TPTRL<7:1>					0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

All registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Registers" for Note 1: more information.

2:

This register does not have associated SET and INV registers. This register does not have associated CLR, SET and INV registers. 3:

4: Reset value for this bit is undefined.

19.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32). The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard. Figure 19-1 illustrates the l^2C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_		_			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	-	-	_	_	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	_	SIDL	ADRML	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<	1:0> ⁽²⁾	ALP ⁽²⁾	_	CS1P ⁽²⁾		WRSP	RDSP

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP is enabled
 - 0 = PMP is disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation when device enters Idle mode

bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits

- 11 = All 16 bits of address are multiplexed on PMD<15:0> pins
- 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
- 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
- 00 = Address and data appear on separate pins
- bit 10 **PMPTTL:** PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port is enabled
 - 0 = PMWR/PMENB port is disabled
- bit 8 **PTRDEN:** Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port is enabled
 - 0 = PMRD/PMWR port is disabled
- bit 7-6 CSF<1:0>: Chip Select Function bits⁽²⁾
 - 11 = Reserved
 - 10 = PMCS2 and PMCS1 function as Chip Select
 - 01 = PMCS2 functions as Chip Select, PMCS1 functions as address bit 14
 - 00 = PMCS2 and PMCS1 function as address bits 15 and $14^{(2)}$
- bit 5 ALP: Address Latch Polarity bit⁽²⁾
 - 1 = Active-high (PMALL and PMALH)
 - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
- bit 4 Unimplemented: Read as '0'
 - **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

ess										В	its								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	RTCCON	31:16				—						CAL<9:0>							0000
0200	RICCON	15:0	ON	-	SIDL	—	—	F				RTCCLKON	—		RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000
0210	RTCALRM	31:16	_	-	_	—	—	—		_	—	_	—		_	_	_	—	0000
0210	RICALKI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASK<3:0>						ARPT	<7:0>				0000
0220	RTCTIME	31:16		HR10	0<3:0>			HR01<3:0>				MIN10<	3:0>			MIN0 ²	<3:0>		xxxx
0220	RICTIVIE	15:0		SEC1	0<3:0>			SEC01<3:0>				_	—	-	_	—	—	—	xx00
0000	DTODATE	31:16		YEAR'	10<3:0>			YEAR0	1<3:0>		MONTH10<3:0>					MONTH	01<3:0>		xxxx
0230	RTCDATE	15:0		DAY1	0<3:0>			DAY01<3:0>				_	_	_		WDAY()1<3:0>		xx00
0040		31:16		HR10)<3:0>			HR01<3:0>				MIN10<	3:0>			MIN0 ²	<3:0>		xxxx
0240	ALRMTIME	15:0		SEC1	0<3:0>			SEC01<3:0>			_	—	_	_	_	_	_	_	xx00
0050		31:16	_	_	_	—	_					MONTH1)<3:0>		MONTH01<3:0>				00xx
0250	ALRMDATE	15:0		DAY1	0<3:0>			DAY01	<3:0>						WDAY01<3:0>				xx0x
	، بام	unknow	n voluo on D	aaati u	nimploment	0' ac hear ha	, Depet volu	an ara ahau	un in hoved	aimal									

PIC32MX5XX/6XX/7XX

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

REGISTER 22-1: RTCCON: RTC CONTROL REGISTER (CONTINUED)

- bit 3 RTCWREN: RTC Value Registers Write Enable bit⁽⁴⁾
 - 1 = RTC Value registers can be written to by the user
 - 0 = RTC Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: RTCC Value Registers Read Synchronization bit
 - 1 = RTC Value registers can change while reading, due to a rollover ripple that results in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid.
 - 0 = RTC Value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁵⁾
 - 1 = Second half period of a second
- 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
 - 1 = RTCC clock output is enabled (clock presented onto an I/O)
 - 0 = RTCC clock output is disabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **3:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 4: The RTCWREN bit can only be set when the write sequence is enabled.
 - 5: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is only reset on a Power-on Reset (POR).

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9120	ADC1BUFB	31:16 15:0		ADC Result Word B (ADC1BUFB<31:0>)															
9130	ADC1BUFC	31:16 15:0		ADC Result Word C (ADC1BUFC<31:0>)															
9140	ADC1BUFD	31:16 15:0		ADC Result Word D (ADC1BUED<31:0>)															
9150	ADC1BUFE	31:16 15:0		ADC Result Word E (ADC1BUFE<31:0>)															
9160	ADC1BUFF	31:16 15:0		ADC Result Word F (ADC1BUFF<31:0>)															

= unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend: x = unknown value on Reset

This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 24-7: CIRXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXOVF<31:0>: FIFOn Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 24-8: CITMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24				CANTS<	:15:8>			
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10				CANTS	<7:0>			
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.6	CANTSPRE<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CANTSPF	RE<7:0>			

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (CiCON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits

1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks
.

0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: CiTMR will be paused when CANCAP = 0.

2: The CiTMR prescaler count will be reset on any write to CiTMR (CANTSPRE will be unaffected).

PIC32MX5XX/6XX/7XX

REGISTER 25-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	_	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6				PMCS	<15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				PMCS	S<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits

bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
51.24	—	_	_	_	_	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0				PMO<	:15:8>			
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0				PMO	<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **PMO<15:0>:** Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 25-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER (CONTINUED) bit 7 **CRCERREN:** CRC Error Collection Enable bit 1 = The received packet CRC must be invalid for the packet to be accepted 0 = Disable CRC Error Collection filtering This bit allows the user to collect all packets that have an invalid CRC. CRCOKEN: CRC OK Enable bit bit 6 1 = The received packet CRC must be valid for the packet to be accepted 0 = Disable CRC filtering This bit allows the user to reject all packets that have an invalid CRC. RUNTERREN: Runt Error Collection Enable bit bit 5 1 = The received packet must be a runt packet for the packet to be accepted 0 = Disable Runt Error Collection filtering This bit allows the user to collect all packets that are runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes (when CRCOKEN = 0) or any packet with a size of less than 64 bytes that has a valid CRC (when CRCOKEN = 1). bit 4 RUNTEN: Runt Enable bit 1 = The received packet must not be a runt packet for the packet to be accepted 0 = Disable Runt filtering This bit allows the user to reject all runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes. bit 3 UCEN: Unicast Enable bit 1 = Enable Unicast Filtering 0 = Disable Unicast Filtering This bit allows the user to accept all unicast packets whose Destination Address matches the Station Address. bit 2 NOTMEEN: Not Me Unicast Enable bit 1 = Enable Not Me Unicast Filtering 0 = Disable Not Me Unicast Filtering This bit allows the user to accept all unicast packets whose Destination Address does not match the Station Address. bit 1 MCEN: Multicast Enable bit 1 = Enable Multicast Filtering 0 = Disable Multicast Filtering This bit allows the user to accept all Multicast Address packets.

bit 0 BCEN: Broadcast Enable bit

- 1 = Enable Broadcast Filtering
- 0 = Disable Broadcast Filtering

This bit allows the user to accept all Broadcast Address packets.

- **Note 1:** XOR = True when either one or the other conditions are true, but not both.
 - 2: This Hash Table Filter match is active regardless of the value of the HTEN bit.
 - 3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.

```
Note 1:
          This register is only used for RX operations.
      2:
          The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.
```

PIC32MX5XX/6XX/7XX

REGISTER 25-13: ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_		—	—		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	_	—	—	—	—
15:8	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	—	TXBUSEIE ⁽¹⁾	RXBUSEIE ⁽²⁾	_	—	—	EWMARKIE ⁽²⁾	FWMARKIE ⁽²⁾
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONEIE ⁽²⁾	PKTPENDIE ⁽²⁾	RXACTIE ⁽²⁾		TXDONEIE ⁽¹⁾	TXABORTIE ⁽¹⁾	RXBUFNAIE ⁽²⁾	RXOVFLWIE ⁽²⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

- bit 14 **TXBUSEIE:** Transmit BVCI Bus Error Interrupt Enable bit⁽¹⁾
 - 1 = Enable TXBUS Error Interrupt
 - 0 = Disable TXBUS Error Interrupt
- bit 13 **RXBUSEIE:** Receive BVCI Bus Error Interrupt Enable bit⁽²⁾
 - 1 = Enable RXBUS Error Interrupt 0 = Disable RXBUS Error Interrupt
- bit 12-10 Unimplemented: Read as '0'

bit 9	EWMARKIE: Empty Watermark Interrupt Enable bit ⁽²⁾ 1 = Enable EWMARK Interrupt
	0 = Disable EWMARK Interrupt
bit 8	FWMARKIE: Full Watermark Interrupt Enable bit ⁽²⁾
	1 = Enable FWMARK Interrupt
	0 = Disable FWMARK Interrupt
bit 7	RXDONEIE: Receiver Done Interrupt Enable bit ⁽²⁾
	1 = Enable RXDONE Interrupt
	0 = Disable RXDONE Interrupt
bit 6	PKTPENDIE: Packet Pending Interrupt Enable bit ⁽²⁾
	1 = Enable PKTPEND Interrupt
	0 = Disable PKTPEND Interrupt
bit 5	RXACTIE: RX Activity Interrupt Enable bit
	1 = Enable RXACT Interrupt 0 = Disable RXACT Interrupt
bit 4	Unimplemented: Read as '0'
bit 3	TXDONEIE: Transmitter Done Interrupt Enable bit ⁽¹⁾
DIL 3	1 = Enable TXDONE Interrupt
	0 = Disable TXDONE Interrupt
bit 2	TXABORTIE: Transmitter Abort Interrupt Enable bit ⁽¹⁾
on L	1 = Enable TXABORT Interrupt
	0 = Disable TXABORT Interrupt
bit 1	RXBUFNAIE: Receive Buffer Not Available Interrupt Enable bit ⁽²⁾
	1 = Enable RXBUFNA Interrupt
	0 = Disable RXBUFNA Interrupt
bit 0	RXOVFLWIE: Receive FIFO Overflow Interrupt Enable bit ⁽²⁾
	1 = Enable RXOVFLW Interrupt

- 0 = Disable RXOVFLW Interrupt
- **Note 1:** This bit is only used for TX operations.
 - **2:** This bit is only used for RX operations.

29.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Programming and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual", which are available from the Microchip web site (www.microchip.com/PIC32).

The PIC32MX5XX/6XX/7XX family of devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. Key features include:

- Flexible device configuration
- Watchdog Timer (WDT)
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

29.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- DEVID: Device and Revision ID Register

30.0 INSTRUCTION SET

The PIC32MX5XX/6XX/7XX family instruction set complies with the MIPS32 Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- Core Extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to "MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set" at www.imgtec.com for more information.

PIC32MX5XX/6XX/7XX

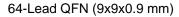
DC CHA	RACTER	ISTICS	Standar (unless Operatin	otherwi	se state	ed)	$\frac{1}{2.3} \times \frac{1}{5} \times $
				ig tempe	erature		\leq TA \leq +85°C for Industrial \leq TA \leq +105°C for V-temp
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	_	_	0.4	V	$\text{IOL} \leq 10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RC15	_	_	0.4	V	$\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Source Driver pins	2.4	_	_	V	Ioh ≥ -10 mA, Vdd = 3.3V
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15	2.4	_	_	V	IOH \ge -15 mA, VDD = 3.3V
		Output High Voltage	1.5 ⁽¹⁾	—	—		Ioh \geq -14 mA, Vdd = 3.3V
		4x Source Driver Pins - All I/O	2.0 ⁽¹⁾	—	—	V	Ioh \geq -12 mA, Vdd = 3.3V
	O20A Voh1	output pins not defined as 8x Sink Driver pins	3.0 ⁽¹⁾	—	_		$IOH \geq \textbf{-7} \; mA, \; VDD = 3.3 V$
5020A		Output High Voltage	1.5 ⁽¹⁾	—	—		$\text{IOH} \geq \text{-22 mA}, \text{ VDD} = 3.3 \text{V}$
		8x Source Driver Pins - RC15	2.0 ⁽¹⁾	_	—	V	Ioh \geq -18 mA, Vdd = 3.3V
			3.0 ⁽¹⁾	_			Ioh \geq -10 mA, Vdd = 3.3V

TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: This driver pin only applies to devices with less than 64 pins.

3: This driver pin only applies to devices with 64 pins.

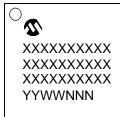

TABLE 32-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp					
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Min. ⁽¹⁾ Typical Max. Units Co		Conditions		
BO10	VBOR	BOR Event on VDD transition high-to-low (Note 2)	2.0		2.3	V	—	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

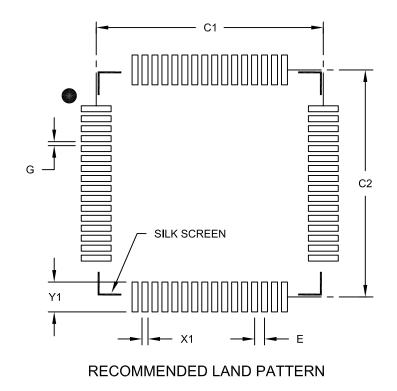
2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.


34.1 Package Marking Information (Continued)



121-Lead TFBGA (10x10x1.1 mm)

124-Lead VTLA (9x9x0.9 mm)


Example

Lanand	VV V	Customer eneritie information
Legena	XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)
		can be found on the outer packaging for this package.
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will
		d over to the next line, thus limiting the number of available s for customer-specific information.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

Revision J (September 2016)

This revision includes typographical and formatting updates throughout the data sheet text. In addition, all SFR Register maps were moved from the Memory chapter to their respective peripheral chapters.

All other major updates are referenced by their respective section in Table B-7.

Section Name	Update Description
"32-bit Microcontrollers (up to 512	Updated Communication Interfaces for LIN support to 2.1.
KB Flash and 128 KB SRAM) with Graphics Interface, USB, CAN, and Ethernet"	Updated Qualification and Class B Support to AEC-Q100 REVH.
2.0 "Guidelines for Getting Started with 32-bit MCUs"	The Recommended Minimum Connection diagram was updated (see Figure 2-1).
	The Example of MCLR Pin Connections diagram was updated (see Figure 2- 2).
	2.11 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" was added.
4.0 "Memory Organization"	The SFR Memory Map was added (see Table 4-1).
7.0 "Interrupt Controller"	The UART interrupt sources were updated in the Interrupt IRQ, Vector, and Bit location table (see Table 7-1).
8.0 "Oscillator Configuration"	Updated the bit value definitions for the TUN<5:0> bits in the OCSTUN register (see Register 8-2).
15.0 "Watchdog Timer (WDT)"	The content in this chapter was relocated from the Special Features chapter to its own chapter.
18.0 "Serial Peripheral Interface (SPI)"	The register map tables were combined (see Table 18-1).
19.0 "Inter-Integrated Circuit (I ² C)"	The register map tables were combined (see Table 19-1).
	The PMADDR register was updated (see Register 21-3).
21.0 "Parallel Master Port (PMP)"	The bit value definitions for the ADRMUX<1:0> and CSF<1:0> bits in the PMCON register were updated (see Register 21-1).
29.0 "Special Features"	Removed the duplicate bit value definition for '010' in the DEVCFG2 register (see Register 29-3).
	Note 1 was added to the Programming, Debugging, and Trace Ports block diagram (see Figure 29-2).
	The DDPCON register was relocated (see Register 29-6).
	The Device ID, Revision, and Configuration Summary was updated (see Table 29-2).