

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XEI

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M4K™                                                                     |
| Core Size                  | 32-Bit Single-Core                                                               |
| Speed                      | 80MHz                                                                            |
| Connectivity               | CANbus, Ethernet, I <sup>2</sup> C, SPI, UART/USART, USB OTG                     |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                                       |
| Number of I/O              | 85                                                                               |
| Program Memory Size        | 256КВ (256К х 8)                                                                 |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 64K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V                                                                      |
| Data Converters            | A/D 16x10b                                                                       |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 100-TQFP                                                                         |
| Supplier Device Package    | 100-TQFP (14x14)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx775f256l-80v-pf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|           |                            | Pin Nun                  | nber <sup>(1)</sup>                                  |                                                        | <b>D</b> .  |                      |                                                                                      |
|-----------|----------------------------|--------------------------|------------------------------------------------------|--------------------------------------------------------|-------------|----------------------|--------------------------------------------------------------------------------------|
| Pin Name  | 64-Pin<br>QFN/TQFP         | 100-Pin<br>TQFP          | 121-Pin<br>TFBGA                                     | 124-pin<br>VTLA                                        | Pin<br>Type | Buffer<br>Type       | Description                                                                          |
| AECRS     |                            | 41                       | J7                                                   | B23                                                    | 1           | ST                   | Alternate Ethernet carrier sense <sup>(2)</sup>                                      |
| AEMDC     | 30                         | 71                       | C11                                                  | A46                                                    | 0           | _                    | Alternate Ethernet Management Data clock <sup>(2)</sup>                              |
| AEMDIO    | 49                         | 68                       | E9                                                   | B37                                                    | I/O         |                      | Alternate Ethernet Management Data <sup>(2)</sup>                                    |
| TRCLK     | —                          | 91                       | C5                                                   | B51                                                    | 0           | —                    | Trace clock                                                                          |
| TRD0      | —                          | 97                       | A3                                                   | B55                                                    | 0           | —                    | Trace Data bits 0-3                                                                  |
| TRD1      | _                          | 96                       | C3                                                   | A65                                                    | 0           |                      |                                                                                      |
| TRD2      | —                          | 95                       | C4                                                   | B54                                                    | 0           |                      |                                                                                      |
| TRD3      | —                          | 92                       | B5                                                   | A62                                                    | 0           | —                    |                                                                                      |
| PGED1     | 16                         | 25                       | K2                                                   | B14                                                    | I/O         | ST                   | Data I/O pin for Programming/<br>Debugging Communication Channel 1                   |
| PGEC1     | 15                         | 24                       | K1                                                   | A15                                                    | I           | ST                   | Clock input pin for Programming/<br>Debugging Communication Channel 1                |
| PGED2     | 18                         | 27                       | J3                                                   | B16                                                    | I/O         | ST                   | Data I/O pin for Programming/<br>Debugging Communication Channel 2                   |
| PGEC2     | 17                         | 26                       | L1                                                   | A20                                                    | I           | ST                   | Clock input pin for Programming/<br>Debugging Communication Channel 2                |
| MCLR      | 7                          | 13                       | F1                                                   | B7                                                     | I/P         | ST                   | Master Clear (Reset) input. This pin is an active-low Reset to the device.           |
| AVdd      | 19                         | 30                       | J4                                                   | A22                                                    | Р           | Ρ                    | Positive supply for analog modules.<br>This pin must be connected at all times.      |
| AVss      | 20                         | 31                       | L3                                                   | B18                                                    | Р           | Р                    | Ground reference for analog modules                                                  |
| Vdd       | 10, 26, 38,<br>57          | 2, 16, 37,<br>46, 62, 86 | A7, C2,<br>C9, E5,<br>K8, F8,<br>G5, H4,<br>H6       | A10, A14,<br>A30, A41,<br>A48, A59,<br>B1, B21,<br>B53 | Ρ           | _                    | Positive supply for peripheral logic and I/O pins                                    |
| VCAP      | 56                         | 85                       | B7                                                   | B48                                                    | Р           |                      | Capacitor for Internal Voltage Regulator                                             |
| Vss       | 9, 25, 41                  | 15, 36, 45,<br>65, 75    | A8, B10,<br>D4, D5,<br>E7, F5,<br>F10, G6,<br>G7, H3 | A3, A25,<br>A43, A63,<br>B8, B12,<br>B25, B41,<br>B46  | Ρ           | _                    | Ground reference for logic and I/O pins.<br>This pin must be connected at all times. |
| VREF+     | 16                         | 29                       | K3                                                   | B17                                                    | I           | Analog               | Analog voltage reference (high) input                                                |
| VREF-     | 15                         | 28                       | L2                                                   | A21                                                    | I           | Analog               | Analog voltage reference (low) input                                                 |
| Legend: C | CMOS = CMC<br>ST = Schmitt | S compatib               | le input or o                                        | output<br>S levels                                     | A<br>O      | nalog = A<br>= Outpu | Analog input P = Power<br>t I = Input                                                |

## TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer
Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

## TABLE 3-3: PIC32MX5XX/6XX/7XX FAMILY CORE EXCEPTION TYPES

| Exception | Description                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Reset     | Assertion MCLR or a Power-on Reset (POR).                                                                                               |
| DSS       | EJTAG debug single step.                                                                                                                |
| DINT      | EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register. |
| NMI       | Assertion of NMI signal.                                                                                                                |
| Interrupt | Assertion of unmasked hardware or software interrupt signal.                                                                            |
| DIB       | EJTAG debug hardware instruction break matched.                                                                                         |
| AdEL      | Fetch address alignment error.<br>Fetch reference to protected address.                                                                 |
| IBE       | Instruction fetch bus error.                                                                                                            |
| DBp       | EJTAG breakpoint (execution of SDBBP instruction).                                                                                      |
| Sys       | Execution of SYSCALL instruction.                                                                                                       |
| Вр        | Execution of BREAK instruction.                                                                                                         |
| RI        | Execution of a reserved instruction.                                                                                                    |
| CpU       | Execution of a coprocessor instruction for a coprocessor that is not enabled.                                                           |
| CEU       | Execution of a CorExtend instruction when CorExtend is not enabled.                                                                     |
| Ov        | Execution of an arithmetic instruction that overflowed.                                                                                 |
| Tr        | Execution of a trap (when trap condition is true).                                                                                      |
| DDBL/DDBS | EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).                                           |
| AdEL      | Load address alignment error.<br>Load reference to protected address.                                                                   |
| AdES      | Store address alignment error.<br>Store to protected address.                                                                           |
| DBE       | Load or store bus error.                                                                                                                |
| DDBL      | EJTAG data hardware breakpoint matched in load data compare.                                                                            |

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--|
| 04.04        | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |  |  |  |  |  |
| 31:24        |                   |                   |                   | BMXPFN            | 1SZ<31:24>        |                   |                  |                  |  |  |  |  |  |
| 22.16        | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |  |  |  |  |  |
| 23.10        |                   | BMXPFMSZ<23:16>   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 45.0         | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |  |  |  |  |  |
| 15:8         |                   |                   |                   | BMXPF             | /ISZ<15:8>        |                   |                  |                  |  |  |  |  |  |
| 7.0          | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |  |  |  |  |  |
| 7:0          |                   |                   |                   | BMXPF             | MSZ<7:0>          |                   |                  |                  |  |  |  |  |  |

### REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

## Legend:

| Legenu.           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00010000 = device has 64 KB Flash 0x00020000 = device has 128 KB Flash 0x00040000 = device has 256 KB Flash 0x00080000 = device has 512 KB Flash

#### REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|
| 24.24        | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |  |  |  |  |
| 31.24        |                   |                   |                   | BMXBOO            | TSZ<31:24>        |                   |                  |                  |  |  |  |  |
| 00.40        | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |  |  |  |  |
| 23:16        | BMXBOOTSZ<23:16>  |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |
| 15.0         | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |  |  |  |  |
| 10.0         |                   |                   |                   | BMXBOC            | )TSZ<15:8>        |                   |                  |                  |  |  |  |  |
| 7.0          | R                 | R                 | R                 | R                 | R                 | R                 | R                | R                |  |  |  |  |
| 7:0          |                   |                   |                   | BMXBO             | OTSZ<7:0>         |                   |                  |                  |  |  |  |  |

| Legend:           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00003000 = device has 12 KB boot Flash

#### 5.1 **Control Registers**



## FLASH CONTROLLER REGISTER MAP

| ess                      |                  |           |                          |                     |       |        |         |       |      | Bi          | ts                                      |      |      |      |      |      |        |      | ú          |
|--------------------------|------------------|-----------|--------------------------|---------------------|-------|--------|---------|-------|------|-------------|-----------------------------------------|------|------|------|------|------|--------|------|------------|
| Virtual Addr<br>(BF80_#) | Register<br>Name | Bit Range | 31/15                    | 30/14               | 29/13 | 28/12  | 27/11   | 26/10 | 25/9 | 24/8        | 23/7                                    | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1   | 16/0 | All Resets |
| E400                     |                  | 31:16     | _                        |                     | _     | —      |         |       | —    |             | —                                       | —    |      | —    |      | —    | —      | —    | 0000       |
| F400                     |                  | 15:0      | WR                       | WREN                | WRERR | LVDERR | LVDSTAT |       | _    |             | _                                       | _    |      | _    |      | NVMO | P<3:0> |      | 0000       |
| F410                     |                  | 31:16     |                          |                     |       |        |         |       |      |             | V~31·0>                                 |      |      |      |      |      |        |      | 0000       |
| 1410                     |                  | 15:0      |                          |                     |       |        |         |       |      |             | 1<01.02                                 |      |      |      |      |      |        |      | 0000       |
| F420                     |                  | 31:16     |                          |                     |       |        |         |       |      |             | R-31.0>                                 |      |      |      |      |      |        |      | 0000       |
| 1 420                    | NUNADDR          | 15:0      |                          |                     |       |        |         |       |      | NUMADE      | /////////////////////////////////////// |      |      |      |      |      |        |      | 0000       |
| E430                     |                  | 31:16     |                          | NV//DATA -21-0.0000 |       |        |         |       |      |             |                                         |      |      |      |      |      |        |      |            |
| 1430                     |                  | 15:0      | 0000                     |                     |       |        |         |       |      |             |                                         |      |      |      |      |      |        |      |            |
| E440                     | NVMSRC           | 31:16     | N/4/SPC4.PDP -24/0. 0000 |                     |       |        |         |       |      |             |                                         |      |      |      |      |      |        |      |            |
| F440                     | ADDR             | 15:0      |                          |                     |       |        |         |       |      | INVIVISRCAI | 001<31.0>                               |      |      |      |      |      |        |      | 0000       |

PIC32MX5XX/6XX/7XX

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

#### TABLE 7-4: INTERRUPT REGISTER MAP FOR PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES (CONTINUED)

| ess                      |                                 |           |       |       |       |       |                            |       |        | В                          | its  |      |      |      |             |      |        |                      |           |
|--------------------------|---------------------------------|-----------|-------|-------|-------|-------|----------------------------|-------|--------|----------------------------|------|------|------|------|-------------|------|--------|----------------------|-----------|
| Virtual Addr<br>(BF88_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11                      | 26/10 | 25/9   | 24/8                       | 23/7 | 22/6 | 21/5 | 20/4 | 19/3        | 18/2 | 17/1   | 16/0                 | All Reset |
| 1000                     |                                 | 31:16     | _     | _     | _     |       | INT4IP<2:0                 | >     | INT4I  | S<1:0>                     | _    | _    | _    |      | OC4IP<2:0>  | >    | OC4IS  | <1:0>                | 000       |
| 1000                     | 1604                            | 15:0      | _     | _     | -     |       | IC4IP<2:0>                 |       | IC4IS  | S<1:0>                     | _    | _    | _    |      | T4IP<2:0>   |      | T4IS-  | <1:0>                | 000       |
| 1050                     | IDCE                            | 31:16     | —     |       | _     | —     | —                          | —     | —      | _                          |      | _    | —    |      | OC5IP<2:0>  | >    | OC5IS  | <1:0>                | 000       |
| IUEU                     | IFC5                            | 15:0      | —     | _     | _     |       | IC5IP<2:0>                 |       | IC5IS  | S<1:0>                     | _    | _    | —    |      | T5IP<2:0>   |      | T5IS-  | <1:0>                | 000       |
|                          |                                 | 31:16     | _     | _     | -     |       | AD1IP<2:0>                 | •     | AD1IS  | S<1:0>                     | _    | _    | _    |      | CNIP<2:0>   |      | CNIS   | <1:0>                | 000       |
| 1050                     | IDCC                            |           |       |       |       |       |                            |       |        |                            |      |      |      |      | U1IP<2:0>   |      | U1IS-  | <1:0>                |           |
| TUFU                     | IPC6                            | 15:0      | _     | —     | _     |       | I2C1IP<2:0>                | >     | I2C11  | S<1:0>                     | —    | —    | _    |      | SPI3IP<2:0: | >    | SPI3IS | S<1:0>               | 000       |
|                          |                                 |           |       |       |       |       |                            |       |        |                            |      |      |      |      | I2C3IP<2:0> | >    | 12C315 | 6<1:0>               |           |
|                          |                                 |           |       |       |       |       | U3IP<2:0>                  |       | U3IS   | <1:0>                      |      |      |      |      |             |      |        |                      |           |
| 1100                     |                                 | 31:16     | _     | —     | —     |       | SPI2IP<2:0;                | >     | SPI2IS | S<1:0>                     | —    | —    | —    |      | CMP2IP<2:0  | >    | CMP2I  | S<1:0>               | 000       |
| 1100                     | 11 07                           |           |       |       |       |       | I2C4IP<2:0>                | >     | I2C4I  | S<1:0>                     |      |      |      |      |             |      |        |                      |           |
|                          |                                 | 15:0      | _     |       | —     | (     | CMP1IP<2:0                 | >     | CMP1   | IS<1:0>                    |      | —    | -    |      | PMPIP<2:0>  | >    | PMPIS  | S<1:0>               | 000       |
|                          |                                 | 31:16     | _     |       | —     |       | RTCCIP<2:0                 | >     | RTCCI  | S<1:0>                     |      | —    | -    |      | SCMIP<2:0   | >    | FSCMI  | S<1:0>               | 000       |
| 1110                     | IPC8                            |           |       |       |       |       |                            |       |        |                            |      |      |      |      | U2IP<2:0>   |      | U2IS-  | <1:0>                |           |
| 1110                     | 11 00                           | 15:0      | —     | —     | —     | —     | —                          | -     | -      | —                          | —    | —    | -    |      | SPI4IP<2:0> | >    | SPI4IS | S<1:0>               | 000       |
|                          |                                 |           |       |       |       |       |                            |       |        |                            |      |      |      |      | I2C5IP<2:0> | >    | 12C515 | 5<1:0>               |           |
| 1120                     | IPC9                            | 31:16     | _     |       | —     |       | DMA3IP<2:0                 | >     | DMA3   | IS<1:0>                    |      | —    | -    |      | DMA2IP<2:0  | >    | DMA2I  | S<1:0>               | 000       |
| 1120                     | 11 00                           | 15:0      | —     |       | —     |       | DMA1IP<2:0                 | >     | DMA1   | IS<1:0>                    | —    | —    | —    | 1    | DMA0IP<2:0  | >    | DMA0I  | S<1:0>               | 000       |
| 1130                     | IPC10                           | 31:16     | —     |       | —     | D     | DMA7IP<2:0> <sup>(2)</sup> |       | DMA7IS | DMA7IS<1:0> <sup>(2)</sup> |      | —    | —    | D    | MA6IP<2:0>  | (2)  | DMA6IS | <1:0> <sup>(2)</sup> | 000       |
| 1150                     | 11 010                          | 15:0      | _     |       | —     | D     | MA5IP<2:0>                 | .(2)  | DMA5IS | S<1:0> <sup>(2)</sup>      |      | —    | -    | D    | MA4IP<2:0>  | (2)  | DMA4IS | <1:0> <sup>(2)</sup> | 000       |
| 1140                     | IPC11                           | 31:16     | —     |       | —     | C     | AN2IP<2:0>                 | (2)   | CAN2IS | S<1:0> <sup>(2)</sup>      | —    | —    | —    |      | CAN1IP<2:0  | >    | CAN1   | S<1:0>               | 000       |
| 1140                     |                                 | 15:0      | _     | _     | —     |       | USBIP<2:0>                 | >     | USBIS  | S<1:0>                     | _    | —    | —    |      | FCEIP<2:0>  | >    | FCEIS  | <1:0>                | 000       |
| 1150                     | IPC12                           | 31:16     | _     | —     | —     |       | U5IP<2:0>                  |       | U5IS   | <1:0>                      | —    | —    | -    |      | U6IP<2:0>   |      | U6IS-  | <1:0>                | 000       |
| 1150                     | 11 012                          | 15:0      |       | —     |       |       | U4IP<2:0>                  |       | U4IS   | <1:0>                      | —    | —    | -    |      | ETHIP<2:0>  | >    | ETHIS  | i<1:0>               | 000       |

Legend: x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information. This bit is unimplemented on PIC32MX764F128H device. This register does not have associated CLR, SET, and INV registers.

2:

3:

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|
| 04.04        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0               |
| 31:24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                 |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | R/W-0             |
| 23:16        | —                 | —                 | —                 | —                 | —                 | -                 | —                | CHECOH            |
| 15.0         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | R/W-0            | R/W-0             |
| 10.0         | —                 | —                 | —                 | —                 | —                 |                   | DCSZ             | <b>ː&lt;</b> 1:0> |
| 7.0          | U-0               | U-0               | R/W-0             | R/W-0             | U-0               | R/W-1             | R/W-1            | R/W-1             |
| 7:0          | —                 | —                 | PREFE             | N<1:0>            | —                 | F                 | PFMWS<2:0>       | •                 |

#### REGISTER 9-1: CHECON: CACHE CONTROL REGISTER

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

bit 31-17 Unimplemented: Write '0'; ignore read

- bit 16 CHECOH: Cache Coherency Setting on a PFM Program Cycle bit
  - 1 = Invalidate all data and instruction lines
  - 0 = Invalidate all data lnes and instruction lines that are not locked
- bit 15-10 Unimplemented: Write '0'; ignore read
- bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits
  - Changing these bits causes all lines to be reinitialized to the "invalid" state.
    - 11 = Enable data caching with a size of 4 lines
    - 10 = Enable data caching with a size of 2 lines
    - 01 = Enable data caching with a size of 1 line
    - 00 = Disable data caching
- bit 7-6 Unimplemented: Write '0'; ignore read
- bit 5-4 **PREFEN<1:0>:** Predictive Prefetch Enable bits
  - 11 = Enable predictive prefetch for both cacheable and non-cacheable regions
  - 10 = Enable predictive prefetch only for non-cacheable regions
  - 01 = Enable predictive prefetch only for cacheable regions
  - 00 = Disable predictive prefetch
- bit 3 Unimplemented: Write '0'; ignore read

#### bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits

- 111 = Seven Wait states
- 110 = Six Wait states
- 101 = Five Wait states
- 100 = Four Wait states
- 011 = Three Wait states
- 010 = Two Wait states
- 001 = One Wait state
- 000 = Zero Wait state

x = Bit is unknown

| Bit<br>Range | Bit<br>31/23/15/7                                                        | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|--------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 21.24        | R/W-x                                                                    | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |  |  |  |
| 31.24        |                                                                          |                   |                   | CHEHIT<           | :31:24>           |                   |                  |                  |  |  |  |
| 00.40        | R/W-x                                                                    | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |  |  |  |
| 23.10        |                                                                          |                   |                   | CHEHIT<           | :23:16>           |                   |                  |                  |  |  |  |
| 15.0         | R/W-x                                                                    | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |  |  |  |
| 10.0         |                                                                          |                   |                   | CHEHIT            | <15:8>            |                   |                  |                  |  |  |  |
| 7.0          | R/W-x                                                                    | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |  |  |  |
| 7.0          |                                                                          |                   |                   | CHEHIT            | <7:0>             |                   |                  |                  |  |  |  |
|              | · · ·                                                                    |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| Legend       | Legend:                                                                  |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| R = Rea      | R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$ |                   |                   |                   |                   |                   |                  |                  |  |  |  |

#### **REGISTER 9-10: CHEHIT: CACHE HIT STATISTICS REGISTER**

#### bit 31-0 CHEHIT<31:0>: Cache Hit Count bits

- - - - -

-n = Value at POR

Incremented each time the processor issues an instruction fetch or load that hits the prefetch cache from a cacheable region. Non-cacheable accesses do not modify this value.

-----

'0' = Bit is cleared

| REGISTER 9-11: | CHEMIS: CA | CHE MISS | STATISTICS | S REGISTE | ĸ |
|----------------|------------|----------|------------|-----------|---|
|                |            |          |            |           | _ |

'1' = Bit is set

| Bit<br>Range                                                         | Bit<br>31/23/15/7                                                       | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|----------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24                                                                | R/W-x                                                                   | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |
| 31.24                                                                | CHEMIS<31:24>                                                           |                   |                   |                   |                   |                   |                  |                  |
| 22:46                                                                | R/W-x                                                                   | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |
| 23:16 CHEMIS<23:16>                                                  |                                                                         |                   |                   |                   |                   |                   |                  |                  |
| 45.0                                                                 | R/W-x                                                                   | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |
| 15:8                                                                 |                                                                         |                   |                   | CHEMIS            | <15:8>            |                   |                  |                  |
| 7.0                                                                  | R/W-x                                                                   | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |
| 7:0                                                                  |                                                                         |                   |                   | CHEMIS            | 6<7:0>            |                   |                  |                  |
|                                                                      |                                                                         |                   |                   |                   |                   |                   |                  |                  |
| Legend:                                                              | :                                                                       |                   |                   |                   |                   |                   |                  |                  |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |                                                                         |                   |                   |                   |                   |                   |                  |                  |
| -n = Valu                                                            | = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown |                   |                   |                   |                   |                   | known            |                  |

#### bit 31-0 CHEMIS<31:0>: Cache Miss Count bits

Incremented each time the processor issues an instruction fetch from a cacheable region that misses the prefetch cache. Non-cacheable accesses do not modify this value.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        | —                 | —                 | —                 | —                 | —                 | _                 | —                | —                |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23.10        | —                 |                   | _                 | _                 | —                 | _                 | —                | _                |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 10.0         | CHCSIZ<15:8>      |                   |                   |                   |                   |                   |                  |                  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
|              |                   |                   |                   | CHCSIZ            | 2<7:0>            |                   |                  |                  |

### REGISTER 10-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

111111111111111 = 65,535 bytes transferred on an event

### REGISTER 10-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        |                   | —                 | —                 | _                 | —                 |                   |                  | —                |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16        |                   | —                 | —                 | —                 | —                 | —                 |                  | —                |
| 45.0         | R-0               | R-0               | R-0               | R-0               | R-0               | R-0               | R-0              | R-0              |
| 15:8         |                   | CHCPTR<15:8>      |                   |                   |                   |                   |                  |                  |
| 7:0          | R-0               | R-0               | R-0               | R-0               | R-0               | R-0               | R-0              | R-0              |
|              |                   |                   |                   | CHCPTF            | R<7:0>            |                   |                  |                  |

| Legend:           |                  |                          |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

bit 31-16 Unimplemented: Read as '0'

**Note:** When in Pattern Detect mode, this register is reset on a pattern detect.

## 17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 16.** "Output Compare" (DS60001111) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

The Output Compare module is used to generate a single pulse or a series of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of the Output Compare module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base





| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|
|              | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 31:24        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |  |
|              | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 23:16        | —                 | —                 | —                 | —                 | —                 | —                 | —                | —                |  |
| 45.0         | U-0               | R/W-0             | U-0               | U-0               | U-0               | R/W-0             | R/W-0            | R/W-0            |  |
| 15:8         | —                 | PTEN14            | —                 | —                 | —                 |                   | PTEN<10:8>       |                  |  |
| 7:0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |
|              |                   |                   |                   | PTEN              | <7:0>             |                   |                  |                  |  |

### REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

### Legend:

| 0                 |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

- bit 31-15 **Unimplemented:** Read as '0'
- bit 15-14 **PTEN14:** PMCS1 Strobe Enable bits
  - 1 = PMA14 functions as either PMA14 or PMCS1<sup>(1)</sup>
  - 0 = PMA14 functions as port I/O
- bit 13-11 Unimplemented: Read as '0'
- bit 10-2 PTEN<10:2>: PMP Address Port Enable bits
  - 1 = PMA<10:2> function as PMP address lines
  - 0 = PMA<10:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Strobe Enable bits
  - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL<sup>(2)</sup>
  - 0 = PMA1 and PMA0 pads function as port I/O
- **Note 1:** The use of this pin as PMA14 or CS1 is selected by the CSF<1:0> bits in the PMCON register.
  - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

| Bit<br>Range | Bit<br>31/23/15/7       | Bit<br>30/22/14/6    | Bit<br>29/21/13/5  | Bit<br>28/20/12/4       | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1     | Bit<br>24/16/8/0 |
|--------------|-------------------------|----------------------|--------------------|-------------------------|-------------------|-------------------|----------------------|------------------|
| 24.24        | U-0                     | U-0                  | U-0                | U-0                     | U-0               | U-0               | U-0                  | U-0              |
| 31.24        | —                       | —                    | —                  | —                       | —                 | —                 | —                    | —                |
| 00.40        | U-0                     | U-0                  | U-0                | U-0                     | U-0               | U-0               | U-0                  | U-0              |
| 23.10        | —                       | —                    | —                  | —                       | —                 | —                 | —                    | —                |
| 45.0         | R/W-0                   | R/W-0                | R/W-0              | R-0                     | R/W-0             | R/W-0             | R/W-0                | R/W-0            |
| 15:8         | ALRMEN <sup>(1,2)</sup> | CHIME <sup>(2)</sup> | PIV <sup>(2)</sup> | ALRMSYNC <sup>(3)</sup> |                   | AMASK             | <3:0> <sup>(2)</sup> |                  |
| 7.0          | R/W-0                   | R/W-0                | R/W-0              | R/W-0                   | R/W-0             | R/W-0             | R/W-0                | R/W-0            |
| 7:0          |                         |                      | •                  | ARPT<7:0                | > <sup>(2)</sup>  |                   |                      |                  |
|              | •                       |                      |                    |                         |                   |                   |                      |                  |

## REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER

#### Legend:

| - <b>5</b>        |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit<sup>(1,2)</sup>
  - 1 = Alarm is enabled
  - 0 = Alarm is disabled
- bit 14 **CHIME:** Chime Enable bit<sup>(2)</sup>
  - 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
  - 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

#### bit 13 **PIV:** Alarm Pulse Initial Value bit<sup>(3)</sup>

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

#### bit 12 ALRMSYNC: Alarm Sync bit<sup>(3)</sup>

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read.
   The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

#### bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits<sup>(2)</sup>

1111 = Reserved

- 1010 = Reserved
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1000 = Once a month
- 0111 = Once a week
- 0110 = Once a day
- 0101 = Every hour
- 0100 = Every 10 minutes
- 0011 = Every minute
- 0010 = Every 10 seconds
- 0001 = Every second
- 0000 = Every half-second
- Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0 > = 0.0 and CHIME = 0.
  - **2:** This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
  - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

**Note:** This register is only reset on a Power-on Reset (POR).

| Bit<br>Range                                                       | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 24.24                                                              | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |
| 31:24                                                              |                   | HR104             | <3:0>             |                   |                   | HR01              | <3:0>            |                  |
| 00.40                                                              | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |
| 23:10                                                              |                   | MIN10             | <3:0>             |                   | MIN01<3:0>        |                   |                  |                  |
| 45.0                                                               | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x             | R/W-x            | R/W-x            |
| 15:8                                                               |                   | SEC10             | <3:0>             |                   |                   | SEC01             | <3:0>            |                  |
| 7.0                                                                | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 7:0                                                                | _                 | _                 | _                 | _                 | _                 | _                 | _                | _                |
|                                                                    |                   |                   |                   |                   |                   |                   |                  |                  |
| Legend:                                                            |                   |                   |                   |                   |                   |                   |                  |                  |
| R = Readable bitW = Writable bitU = Unimplemented bit, read as '0' |                   |                   | ead as '0'        |                   |                   |                   |                  |                  |

#### REGISTER 22-3: RTCTIME: RTC TIME VALUE REGISTER

|                              |                            | (0) = Bit is cleared $x = Bit is unk$ |                    |  |  |  |  |
|------------------------------|----------------------------|---------------------------------------|--------------------|--|--|--|--|
| -n = Value at POR            | '1' = Bit is set           | '0' = Bit is cleared                  | x = Bit is unknown |  |  |  |  |
|                              |                            |                                       |                    |  |  |  |  |
| bit 31-28 HR10<3:0>: Binary- | Coded Decimal Value of Hou | rs bits, 10 digits; contains a        | value from 0 to 2  |  |  |  |  |

bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

**Note:** This register is only writable when RTCWREN = 1 (RTCCON<3>).

### REGISTER 25-19: ETHMCOLFRM: ETHERNET CONTROLLER MULTIPLE COLLISION FRAMES STATISTICS REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 31:24        | —                 | —                 | _                 | —                 | —                 | _                 | _                | _                |  |  |  |
| 22:46        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 23.10        | —                 | —                 | _                 | —                 | —                 | _                 | _                | _                |  |  |  |
| 15.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 10.0         | MCOLFRMCNT<15:8>  |                   |                   |                   |                   |                   |                  |                  |  |  |  |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |
| 7.0          |                   | MCOLFRMCNT<7:0>   |                   |                   |                   |                   |                  |                  |  |  |  |

| Legend:           |                  |                           |                    |
|-------------------|------------------|---------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

#### bit 31-16 Unimplemented: Read as '0'

bit 15-0 **MCOLFRMCNT<15:0>:** Multiple Collision Frame Count bits Increment count for frames that were successfully transmitted after there was more than one collision.

**Note 1:** This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

**3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

## REGISTER 25-27: EMAC1CLRT: ETHERNET CONTROLLER MAC COLLISION WINDOW/RETRY LIMIT REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 31:24        |                   | —                 | —                 | —                 | —                 | —                 | —                | —                |  |
| 00.40        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |
| 23.10        |                   | —                 | —                 | —                 | —                 | —                 | —                | —                |  |
| 15.0         | U-0               | U-0               | R/W-1             | R/W-1             | R/W-0             | R/W-1             | R/W-1            | R/W-1            |  |
| 0.61         | —                 | —                 | CWINDOW<5:0>      |                   |                   |                   |                  |                  |  |
| 7:0          | U-0               | U-0               | U-0               | U-0               | R/W-1             | R/W-1             | R/W-1            | R/W-1            |  |
|              |                   | _                 | — — RETX<3:0>     |                   |                   |                   |                  |                  |  |

#### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ead as '0'         |
|-------------------|------------------|---------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |

#### bit 31-14 Unimplemented: Read as '0'

bit 13-8 **CWINDOW<5:0>:** Collision Window bits

This is a programmable field representing the slot time or collision window during which collisions occur in properly configured networks. Since the collision window starts at the beginning of transmission, the preamble and SFD is included. Its default of 0x37 (55d) corresponds to the count of frame bytes at the end of the window.

bit 7-4 Unimplemented: Read as '0'

#### bit 3-0 RETX<3:0>: Retransmission Maximum bits

This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The Standard specifies the maximum number of attempts (attemptLimit) to be 0xF (15d). Its default is '0xF'.

**Note:** Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|
| 21.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |
| 31:24        | —                 | —                 |                   | —                 | _                 | —                 | —                | —                |  |  |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |  |  |
| 23.10        | —                 | —                 |                   | —                 | _                 | —                 | —                | —                |  |  |
| 15.0         | R/W-P             | R/W-P             | R/W-P             | R/W-P             | R/W-P             | R/W-P             | R/W-P            | R/W-P            |  |  |
| 15.0         | STNADDR6<7:0>     |                   |                   |                   |                   |                   |                  |                  |  |  |
| 7:0          | R/W-P             | R/W-P             | R/W-P             | R/W-P             | R/W-P             | R/W-P             | R/W-P            | R/W-P            |  |  |
|              |                   | STNADDR5<7:0>     |                   |                   |                   |                   |                  |                  |  |  |

### REGISTER 25-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER

| Legend:           |                  | P = Programmable bit  |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 31-16 Unimplemented: Read as '0'

- bit 15-8 **STNADDR6<7:0>:** Station Address Octet 6 bits These bits hold the sixth transmitted octet of the station address.
- bit 7-0 **STNADDR5<7:0>:** Station Address Octet 5 bits These bits hold the fifth transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

## 27.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. A block diagram of the module is illustrated in Figure 27-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

Key features of the CVREF module include:

- High and low range selection
- Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin





NOTES:

| DC CHARACTERISTICS |        |                                                                                                                            | Standard<br>(unless<br>Operatin | d Opera<br>otherwi<br>g tempe | nting Co<br>se state<br>erature | nditions: 2.3V to 3.6V<br>ed)<br>-40°C ≤ TA ≤ +85°C for Industrial<br>-40°C ≤ TA ≤ +105°C for V-temp |                                                             |  |
|--------------------|--------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| Param.             | Symbol | I Characteristic Min. Typ. Max. U                                                                                          |                                 |                               | Units                           | Conditions                                                                                           |                                                             |  |
| DO10 Vol           |        | Output Low Voltage<br>I/O Pins:<br>4x Sink Driver Pins - All I/O<br>output pins not defined as 8x<br>Sink Driver pins      | _                               | _                             | 0.4                             | V                                                                                                    | $\text{IOL} \leq 10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ |  |
|                    |        | Output Low Voltage<br>I/O Pins:<br>8x Sink Driver Pins - RC15                                                              | _                               | _                             | 0.4                             | V                                                                                                    | $\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ |  |
| DO20               | Voн    | Output High Voltage<br>I/O Pins:<br>4x Source Driver Pins - All I/O<br>output pins not defined as 8x<br>Source Driver pins | 2.4                             | _                             | _                               | v                                                                                                    | Ioh $\ge$ -10 mA, Vdd = 3.3V                                |  |
|                    |        | Output High Voltage<br>I/O Pins:<br>8x Source Driver Pins - RC15                                                           | 2.4                             |                               |                                 | V                                                                                                    | Ioh $\ge$ -15 mA, Vdd = 3.3V                                |  |
|                    |        | Output High Voltage                                                                                                        | 1.5 <sup>(1)</sup>              | —                             | _                               |                                                                                                      | $\text{IOH} \geq \text{-14 mA},  \text{VDD} = 3.3 \text{V}$ |  |
|                    |        | 4x Source Driver Pins - All I/O                                                                                            | 2.0 <sup>(1)</sup>              | —                             | _                               | V                                                                                                    | $\text{IOH} \geq \text{-12 mA},  \text{VDD} = 3.3 \text{V}$ |  |
| 0204               | \/oµ1  | output pins not defined as 8x<br>Sink Driver pins                                                                          | 3.0 <sup>(1)</sup>              | —                             | _                               |                                                                                                      | Ioh $\geq$ -7 mA, Vdd = 3.3V                                |  |
| DOZUA              | VONI   | Output High Voltage                                                                                                        | 1.5 <sup>(1)</sup>              | _                             | —                               | V                                                                                                    | $\text{IOH} \geq \text{-22 mA, VDD} = 3.3\text{V}$          |  |
|                    |        | 8x Source Driver Pins - RC15                                                                                               | 2.0 <sup>(1)</sup>              | —                             | —                               |                                                                                                      | $\text{IOH} \geq \text{-18 mA}, \text{ VDD} = 3.3 \text{V}$ |  |
|                    |        |                                                                                                                            | 3.0 <sup>(1)</sup>              |                               |                                 |                                                                                                      | Ioh $\geq$ -10 mA, Vdd = 3.3V                               |  |

### TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: This driver pin only applies to devices with less than 64 pins.

**3:** This driver pin only applies to devices with 64 pins.

#### TABLE 32-10: ELECTRICAL CHARACTERISTICS: BOR

| DC CHAF       | RACTERIS | TICS                                                      | Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-Temp |         |      |       |            |
|---------------|----------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|------------|
| Param.<br>No. | Symbol   | Characteristics                                           | Min. <sup>(1)</sup>                                                                                                                                                                                | Typical | Max. | Units | Conditions |
| BO10          | VBOR     | BOR Event on VDD transition high-to-low ( <b>Note 2</b> ) | 2.0                                                                                                                                                                                                |         | 2.3  | V     |            |

**Note 1:** Parameters are for design guidance only and are not tested in manufacturing.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

## 100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

## 64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | MILLIMETERS |              |      |      |  |
|------------------------|-------------|--------------|------|------|--|
| Dimension              | MIN         | NOM          | MAX  |      |  |
| Number of Pins         | N           | 64           |      |      |  |
| Pitch                  | е           | 0.50 BSC     |      |      |  |
| Overall Height         | A           | 0.80 0.90 1. |      |      |  |
| Standoff               | A1          | 0.00         | 0.02 | 0.05 |  |
| Contact Thickness      | A3          | 0.20 REF     |      |      |  |
| Overall Width          | E           | 9.00 BSC     |      |      |  |
| Exposed Pad Width      | E2          | 7.05         | 7.15 | 7.50 |  |
| Overall Length         | D           | 9.00 BSC     |      |      |  |
| Exposed Pad Length     | D2          | 7.05         | 7.15 | 7.50 |  |
| Contact Width          | b           | 0.18         | 0.25 | 0.30 |  |
| Contact Length         | L           | 0.30         | 0.40 | 0.50 |  |
| Contact-to-Exposed Pad | K           | 0.20         | -    | -    |  |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2