

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx775f512ht-80v-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6:PIN NAMES FOR 64-PIN USB, ETHERNET, AND CAN DEVICES

64-PIN QFN⁽³⁾ AND TQFP (TOP VIEW)

PIC32MX764F128H PIC32MX775F256H PIC32MX775F512H PIC32MX795F512H

	64 1										
		QFN ⁽³⁾	64 TQFP								
Pin #	Full Pin Name	Pin #	Full Pin Name								
1	ETXEN/PMD5/RE5	33	USBID/RF3								
2	ETXD0/PMD6/RE6	34	VBUS								
3	ETXD1/PMD7/RE7	35	VUSB3V3								
4	SCK2/U6TX/U3RTS/PMA5/CN8/RG6	36	D-/RG3								
5	SDA4/SDI2/U3RX/PMA4/CN9/RG7	37	D+/RG2								
6	SCL4/SDO2/U3TX/PMA3/CN10/RG8	38	Vdd								
7	MCLR	39	OSC1/CLKI/RC12								
8	SS2/U6RX/U3CTS/PMA2/CN11/RG9	40	OSC2/CLKO/RC15								
9	Vss	41	Vss								
10	Vdd	42	RTCC/AERXD1/ETXD3/IC1/INT1/RD8								
11	AN5/C1IN+/VBUSON/CN7/RB5	43	AERXD0/ETXD2/SS3/U4RX/U1CTS/SDA1/IC2/INT2/RD9								
12	AN4/C1IN-/CN6/RB4	44	ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10								
13	AN3/C2IN+/CN5/RB3	45	ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11								
14	AN2/C2IN-/CN4/RB2	46	OC1/INT0/RD0								
15	PGEC1/AN1/VREF-/CVREF-/CN3/RB1	47	SOSCI/CN1/RC13								
16	PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0	48	SOSCO/T1CK/CN0/RC14								
17	PGEC2/AN6/OCFA/RB6	49	EMDIO/AEMDIO/SCK3/U4TX/U1RTS/OC2/RD1								
18	PGED2/AN7/RB7	50	SDA3/SDI3/U1RX/OC3/RD2								
19	AVdd	51	SCL3/SDO3/U1TX/OC4/RD3								
20	AVss	52	OC5/IC5/PMWR/CN13/RD4								
21	AN8/C2TX ⁽²⁾ /SS4/U5RX/U2CTS/C1OUT/RB8	53	PMRD/CN14/RD5								
22	AN9/C2OUT/PMA7/RB9	54	AETXEN/ETXERR/CN15/RD6								
23	TMS/AN10/CVREFOUT/PMA13/RB10	55	ETXCLK/AERXERR/CN16/RD7								
24	TDO/AN11/PMA12/RB11	56	VCAP								
25	Vss	57	VDD								
26	Vdd	58	C1RX/AETXD1/ERXD3/RF0								
27	TCK/AN12/PMA11/RB12	59	C1TX/AETXD0/ERXD2/RF1								
28	TDI/AN13/PMA10/RB13	60	ERXD1/PMD0/RE0								
29	AN14/C2RX ⁽²⁾ /SCK4/U5TX/U2RTS/PMALH/PMA1/RB14	61	ERXD0/PMD1/RE1								
30	AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15	62	ERXDV/ECRSDV/PMD2/RE2								
31	AC1TX/SDA5/SDI4/U2RX/PMA9/CN17/RF4	63	ERXCLK/EREFCLKPMD3/RE3								
32	AC1RX/SCL5/SDO4/U2TX/PMA8/CN18/RF5	64	ERXERR/PMD4/RE4								
Note	1: Shaded pins are 5V tolerant.										

Note 1: Shaded pins are 5V tolerant.

2: This pin is not available on PIC32MX765F128H devices.

3: The metal plane at the bottom of the QFN device is not connected to any pins and is recommended to be connected to Vss externally.

PIN NAMES FOR 124-PIN USB, ETHERNET, AND CAN DEVICES **TABLE 13:**

12	4-PIN VTLA (BOTTOM VIEW) ^(2,3)			A34
	AI7	B13	B29	Conductive Thermal Pad
	PIC32MX675F512L PIC32MX695F512L PIC32MX795F512L	B1	B56	B41 A51
	A1			
	Polarity Indicator		A68	
Package Bump #	Full Pin Name		Package Bump #	Full Pin Name
A1	No Connect (NC)		A38	D-/RG3
A2	AERXERR/RG15		A39	SCL2/RA2
A3	Vss		A40	TDI/RA4
A4	PMD6/RE6		A41	Vdd
A5	T2CK/RC1		A42	OSC2/CLKO/RC15
A6	T4CK/AC2RX ⁽¹⁾ /RC3		A43	Vss
A7	ECOL/SCK2/U6TX/U3RTS/PMA5/CN8/RG6		A44	AETXEN/SDA1/INT4/RA15
A8	ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/U3TX/PMA3/CN10/RG8		A45	SS1/IC2/RD9
A9	ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/U6RX/U3CTS/PMA2/CN11/R0	G9	A46	EMDC/AEMDC/IC4/PMCS1/PMA14/RD1
A10	Vdd		A47	SOSCI/CN1/RC13
A11	AERXD0/INT1/RE8		A48	Vdd
A12	AN5/C1IN+/VBUSON/CN7/RB5		A49	No Connect (NC)
A13	AN3/C2IN+/CN5/RB3		A50	No Connect (NC)
A14	Vdd		A51	No Connect (NC)
A15	PGEC1/AN1/CN3/RB1		A52	OC2/RD1
A16	No Connect (NC)		A53	OC4/RD3
A17	No Connect (NC)		A54	ETXD3/PMD13/CN19/RD13
A18	No Connect (NC)		A55	PMRD/CN14/RD5
A19	No Connect (NC)		A56	ETXCLK/PMD15/CN16/RD7
A20	PGEC2/AN6/OCFA/RB6		A57	No Connect (NC)
A21	VREF-/CVREF-/AERXD2/PMA7/RA9		A58	No Connect (NC)
A22	AVDD		A59	Vdd
A23	AN8/C1OUT/RB8		A60	C1TX/ETXD0/PMD10/RF1
A24	AN10/CVREFOUT/PMA13/RB10		A61	C2RX ⁽¹⁾ /PMD8/RG0
A25	Vss		A62	TRD3/RA7
A26	TCK/RA1		A63	Vss
A27	AC1RX ⁽¹⁾ /SS4/U5RX/U2CTS/RF12		A64	PMD1/RE1
A28	AN13/ERXD1/AECOL/PMA10/RB13		A65	TRD1/RG12
A29	AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15		A66	PMD2/RE2
A30	VDD		A67	PMD4/RE4
A31	AETXD1/SCK3/U4TX/U1RTS/CN21/RD15		A68	No Connect (NC)
A32	SCL5/SDO4/U2TX/PMA8/CN18/RF5		B1	Vdd
A33	No Connect (NC)		B2	PMD5/RE5
A34	No Connect (NC)		B3	PMD7/RE7
A35	USBID/RF3		B4	T3CK/AC2TX ⁽¹⁾ /RC2
A36	SDA3/SDI3/U1RX/RF2		B5	T5CK/SDI1/RC4
A37	VBUS		B6	ECRS/SDA4/SDI2/U3RX/PMA4/CN9/RG
B7	MCLR		B32	SDA2/RA3

1: 2:

This pin is only available on PIC32MX795F512L devices. Shaded package bumps are 5V tolerant. It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout. 3:

PIC32MX5XX/6XX/7XX

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

TABLE 3-3: PIC32MX5XX/6XX/7XX FAMILY CORE EXCEPTION TYPES

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded Host, full-speed Device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.

The USB module includes the following features:

- USB Full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Endpoint buffering anywhere in system RAM
- Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, as well as other third party may specifications or technologies, require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

12.2 Control Registers

TABLE 12-1: PORTA REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX695F512L, PIC32MX764F128L, PIC32MX775F512L, PIC32MX775F512L, PIC32MX775F512L, PIC32MX775F512L, PIC32MX795F512L, PIC32MX764F128L, PIC32MX775F512L, PIC32MX775F512L, PIC32MX795F512L, PIC32MX795F512L, PIC32MX775F512L, PIC32MX795F512L, PIC32MX79F5F512L, PIC32MX79FF512L, PIC32MX79FF512MX79FF512L, PIC32MX79FF512MX79FF512MX79FF512L, PIC32

ess										Bi	ts								6
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	TRISA	31:16		—		_	—	—	_	_		—		_		—	—	—	0000
6000	IRISA	15:0	TRISA15	TRISA14		_		TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
6010	PORTA	31:16		_		_		_	_	_		_		_		_	_	_	0000
0010	FURIA	15:0	RA15	RA14		-		RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6020	LATA	31:16	-	_	-	—	_	_			-	—	-		-	—	—	—	0000
0020	LAIA	15:0	LATA15	LATA14	-	—	_	LATA10	LATA9		LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6030	ODCA	31:16		_		-		—	_	_		_		_	_	_	-	-	0000
6030	UDCA	15:0	ODCA15	ODCA14	_	_	—	ODCA10	ODCA9	_	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-2:PORTB REGISTER MAP

			-																
ess										Bi	its								
Virtual Addre (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
00.40	TRIOR	31:16			_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
6040	TRISB	15:0	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
COEO	PORTB	31:16	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	0000
6050	PURID	15:0	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
6060	LATB	31:16	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	_	0000
6060	LAID	15:0	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
6070	ODCB	31:16	_		—	—	—	—	—	_	—	—	—	—	—	_	—	—	0000
6070	ODCB	15:0	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

REGISTER 16-1: ICxCON: INPUT CAPTURE 'x' CONTROL REGISTER (CONTINUED)

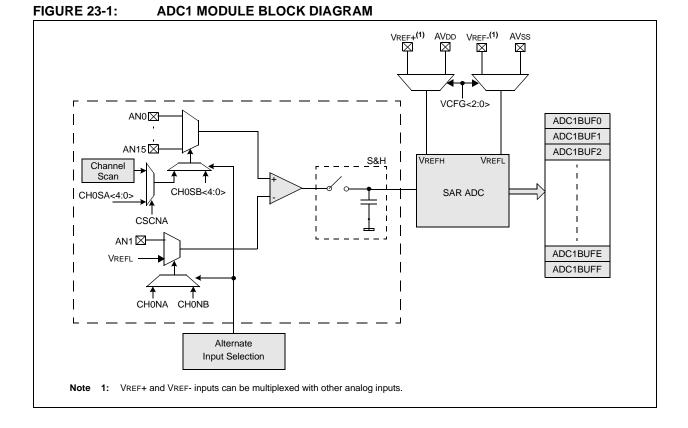
- bit 2-0 ICM<2:0>: Input Capture Mode Select bits
 - 111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)
 - 110 = Simple Capture Event mode every edge, specified edge first and every edge thereafter
 - 101 = Prescaled Capture Event mode every sixteenth rising edge
 - 100 = Prescaled Capture Event mode every fourth rising edge
 - 011 = Simple Capture Event mode every rising edge
 - 010 = Simple Capture Event mode every falling edge
 - 001 = Edge Detect mode every edge (rising and falling)
 - 000 = Input Capture module is disabled
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

23.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104) in the "PIC32 Family Reference Manual", which is available from Microchip web the site (www.microchip.com/PIC32).

The PIC32MX5XX/6XX/7XX 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1 Msps conversion speed
- Up to 16 analog input pins
- External voltage reference input pins
- One unipolar, differential Sample and Hold (S&H) circuit
- Automatic Channel Scan mode
- Selectable conversion trigger source


- 16-word conversion result buffer
- · Selectable buffer fill modes
- Eight conversion result format options
- · Operation during Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 23-1. The 10-bit ADC has up to 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

The analog inputs are connected through two multiplexers to one S&H. The analog input multiplexers can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 23-1).

The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence.

The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight 32-bit output formats when it is read from the result buffer.

REGISTER 23-2: AD1CON2: ADC CONTROL REGISTER 2
--

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16			—	_	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0		
15:8		VCFG<2:0>		OFFCAL	—	CSCNA	—	—		
7.0	R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	BUFS	_		SMP	l<3:0>	BUFM	ALTS			

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

Bit Value	VREFH	VREFL		
lxx	AVdd	AVss		
011	External VREF+ pin	External VREF- pin		
010	AVdd	External VREF- pin		
001	External VREF+ pin	AVss		
000	AVDD	AVss		

bit 12 **OFFCAL:** Input Offset Calibration Mode Select bit

1 = Enable Offset Calibration mode

Positive and negative inputs of the S&H circuit are connected to VREFL.

- 0 = Disable Offset Calibration mode
 - The inputs to the S&H circuit are controlled by AD1CHS or AD1CSSL.

bit 11 Unimplemented: Read as '0'

- bit 10 CSCNA: Input Scan Select bit
 - 1 = Scan inputs
 - 0 = Do not scan inputs
- bit 9-8 Unimplemented: Read as '0'
- bit 7 BUFS: Buffer Fill Status bit
 - Only valid when BUFM = 1.
 - 1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7
 - 0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

- 1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence 1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence
- $\pm\pm\pm\pm$ = interrupts at the completion of conversion for each 15"' sample/convert sequence
- •
- 0001 = Interrupts at the completion of conversion for each 2^{nd} sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence
- bit 1 BUFM: ADC Result Buffer Mode Select bit
 - 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0
- bit 0 ALTS: Alternate Input Sample Mode Select bit
 - 1 = Uses Sample A input multiplexer settings for first sample, and then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
 - 0 = Always use Sample A input multiplexer settings

REGISTER 24-1: CICON: CAN MODULE CONTROL REGISTER (CONTINUED)

bit 13 **SIDLE:** CAN Stop in Idle bit 1 = CAN Stops operation when system enters Idle mode 0 = CAN continues operation when system enters Idle mode

bit 12 Unimplemented: Read as '0'

- bit 11 CANBUSY: CAN Module is Busy bit
 - 1 = The CAN module is active
 - 0 = The CAN module is completely disabled
- bit 10-5 Unimplemented: Read as '0'

bit 4-0 **DNCNT<4:0>:** Device Net Filter Bit Number bits

10011-11111 = Invalid Selection (compare up to 18-bits of data with EID)

- 10010 = Compare up to data byte 2 bit 6 with EID17 (CiRXFn<17>)
- •
- •
- •

00001 = Compare up to data byte 0 bit 7 with EID0 (CiRXFn<0>) 00000 = Do not compare data bytes

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

REGISTER 24-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED)

```
bit 10-8 PRSEG<2:0>: Propagation Time Segment bits<sup>(4)</sup>
           111 = \text{Length is 8 x Tq}
           000 = \text{Length is 1 x Tq}
           SJW<1:0>: Synchronization Jump Width bits<sup>(3)</sup>
bit 7-6
           11 = \text{Length is } 4 \times \text{Tq}
           10 = Length is 3 x TQ
           01 = Length is 2 x TQ
           00 = \text{Length is } 1 \times TQ
           BRP<5:0>: Baud Rate Prescaler bits
bit 5-0
           111111 = TQ = (2 x 64)/FSYS
           111110 = TQ = (2 x 63)/FSYS
           000001 = TQ = (2 \times 2)/FSYS
           000000 = TQ = (2 \times 1)/FSYS
Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
      2: 3 Time bit sampling is not allowed for BRP < 2.
```

- $\textbf{3:} \quad SJW \leq SEG2PH.$
- **4:** The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	—		_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	_	—	_	_	—	—
15.0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15:8	—	—	_			FILHIT<4:0>		
7.0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7:0	_			l	CODE<6:0> ⁽¹)		

REGISTER 24-4: CiVEC: CAN INTERRUPT CODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8	FILHIT<4:0>: Filter Hit Number bit
	11111 = Filter 31
	11110 = Filter 30
	•
	•
	00001 = Filter 1
	00000 = Filter 0
bit 7	Unimplemented: Read as '0'
bit 6-0	ICODE<6:0>: Interrupt Flag Code bits ⁽¹⁾
	11111111 = Reserved
	•
	•
	• 1001001 = Reserved
	1001000 = Invalid message received (IVRIF)
	1001111 = CAN module mode change (MODIF)
	1000110 = CAN timestamp timer (CTMRIF)
	1000101 = Bus bandwidth error (SERRIF)
	1000100 = Address error interrupt (SERRIF)
	1000011 = Receive FIFO overflow interrupt (RBOVIF)
	1000010 = Wake-up interrupt (WAKIF)
	1000001 = Error Interrupt (CERRIF)
	1000000 = No interrupt
	0111111 = Reserved
	•
	•
	0100000 = Reserved
	0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
	0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
	•
	•
	0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
	0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

Note 1: These bits are only updated for enabled interrupts.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	FLTEN7	MSEL7<1:0>			F	SEL7<4:0>		
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FLTEN6	MSEL6<1:0>		FSEL6<4:0>				
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	FLTEN5	MSEL5<1:0>		FSEL5<4:0>				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	FLTEN4	MSEL4<1:0>		FSEL4<4:0>				

REGISTER 24-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31	FLTEN7: Filter 7 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 30-29	MSEL7<1:0>: Filter 7 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 28-24	FSEL7<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	•
	•
	00001 = Message matching filter is stored in FIFO buffer 1
	00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN6: Filter 6 Enable bit
	1 = Filter is enabled
	0 = Filter is disabled
bit 22-21	MSEL6<1:0>: Filter 6 Mask Select bits
	11 = Acceptance Mask 3 selected
	10 = Acceptance Mask 2 selected
	01 = Acceptance Mask 1 selected
	00 = Acceptance Mask 0 selected
bit 20-16	FSEL6<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 - Massage matching filter is stored in EIEO buffer 30

uffer 31 11110 = Message matching filter is stored in FIFO buffer 30

•

•

00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

PIC32MX5XX/6XX/7XX

REGISTER 24-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER 'n' (n = 0 THROUGH 31)									
Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	
Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0	

Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	—	_				TXNFULLIE	TXHALFIE	TXEMPTYIE
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	—	—	—	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
15.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	—	—			_	TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	_	_	_	_	RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26	TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit 1 = Interrupt enabled for FIFO not full 0 = Interrupt disabled for FIFO not full
bit 25	TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit 1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full
bit 24	TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit 1 = Interrupt enabled for FIFO empty 0 = Interrupt disabled for FIFO empty
bit 23-20	Unimplemented: Read as '0'
bit 19	RXOVFLIE: Overflow Interrupt Enable bit
	1 = Interrupt enabled for overflow event0 = Interrupt disabled for overflow event
bit 18	RXFULLIE: Full Interrupt Enable bit
	 1 = Interrupt enabled for FIFO full 0 = Interrupt disabled for FIFO full
bit 17	RXHALFIE: FIFO Half Full Interrupt Enable bit
	1 = Interrupt enabled for FIFO half full0 = Interrupt disabled for FIFO half full
bit 16	RXNEMPTYIE: Empty Interrupt Enable bit
	1 = Interrupt enabled for FIFO not empty0 = Interrupt disabled for FIFO not empty
bit 15-11	Unimplemented: Read as '0'
bit 10	TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit ⁽¹⁾
	<u>TXEN = 1:</u> (FIFO configured as a transmit buffer) 1 = FIFO is not full 0 = FIFO is full
	<u>TXEN = 0:</u> (FIFO configured as a receive buffer) Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

REGISTER 25-18: ETHSCOLFRM: ETHERNET CONTROLLER SINGLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	-	—	_	—	-	—	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	_	—	_	_	_	—	_	—	
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	SCOLFRMCNT<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	SCOLFRMCNT<7:0>								

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **SCOLFRMCNT<15:0>:** Single Collision Frame Count bits Increment count for frames that were successfully transmitted on the second try.

Note 1: This register is only used for TX operations.

2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.

3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 29-3: DEVCFG2: DEVICE CONFIGURATION WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24		-		—	_	_	_	—
00.40	r-1	r-1	r-1	r-1	r-1	R/P	R/P	R/P
23:16		_		—	—	FPLLODIV<2:0>		
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P
15:8	UPLLEN	_	_	_	_	UPLLIDIV<2:0>		
7.0	r-1	R/P-1	R/P	R/P-1	r-1	R/P	R/P	R/P
7:0		FPLLMUL<2:0>				FPLLIDIV<2:0>		

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-19 Reserved: Write '1'

bit 18-16 **FPLLODIV<2:0>:** PLL Output Divider bits 111 = PLL output divided by 256

- 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2
- 000 = PLL output divided by 1
- bit 15 UPLLEN: USB PLL Enable bit 1 = Disable and bypass USB PLL 0 = Enable USB PLL
- bit 14-11 Reserved: Write '1'
- bit 10-8 UPLLIDIV<2:0>: USB PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider 000 = 1x divider
- bit 7 **Reserved:** Write '1'
- bit 6-4 FPLLMUL<2:0>: PLL Multiplier bits
 - 111 = 24x multiplier
 - 110 = 21x multiplier
 - 101 = 20x multiplier
 - 100 = 19x multiplier
 - 011 = 18x multiplier
 - 010 = 17x multiplier 001 = 16x multiplier
 - 001 = 10x multiplier
- bit 3 **Reserved:** Write '1'

30.0 INSTRUCTION SET

The PIC32MX5XX/6XX/7XX family instruction set complies with the MIPS32 Release 2 instruction set architecture. The PIC32 device family does not support the following features:

- Core Extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

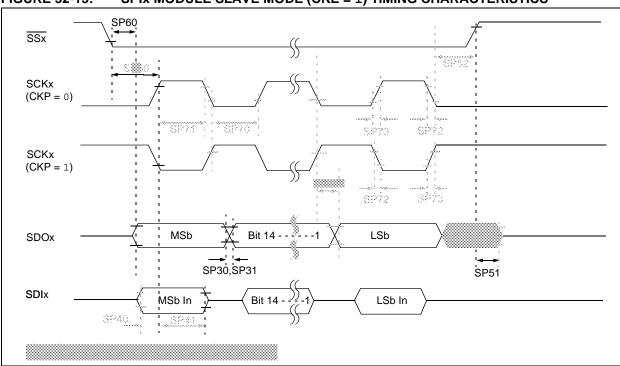

Note: Refer to "MIPS32[®] Architecture for Programmers Volume II: The MIPS32[®] Instruction Set" at www.imgtec.com for more information.

TABLE 32-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
Operating Voltage							
DC10	Vdd	Supply Voltage	2.3		3.6	V	
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.75			V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75		2.1	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005		0.115	V/µs	—

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

FIGURE 32-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 32-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP70	TscL	SCKx Input Low Time ⁽³⁾	Tsck/2		—	ns	—
SP71	TscH	SCKx Input High Time ⁽³⁾	Tsck/2	—	_	ns	—
SP72	TscF	SCKx Input Fall Time	_	5	10	ns	—
SP73	TscR	SCKx Input Rise Time		5	10	ns	—
SP30	TDOF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time ⁽⁴⁾		—	_	ns	See parameter DO31
SP35	SP35 TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	20	ns	VDD > 2.7V
				_	30	ns	VDD < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—	—	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—	—	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	—	—	ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

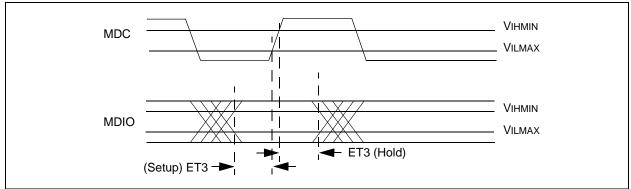
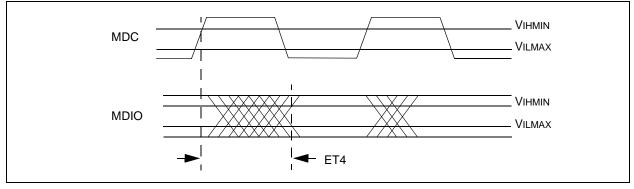

- 3: The minimum clock period for SCKx is 40 ns.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 32-35: ETHERNET MODULE SPECIFICATIONS


AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Characteristic	Min.	Typical	Max.	Units	Conditions	
MIIM Tin	ning Requirements						
ET1	MDC Duty Cycle	40		60	%	—	
ET2	MDC Period	400	—	_	ns	—	
ET3	MDIO Output Setup and Hold	10	—	10	ns	See Figure 32-19	
ET4	MDIO Input Setup and Hold	0	—	300	ns	See Figure 32-20	
MII Timi	ng Requirements						
ET5	TX Clock Frequency	—	25	_	MHz	—	
ET6	TX Clock Duty Cycle	35	—	65	%	—	
ET7	ETXDx, ETEN, ETXERR Output Delay	0	—	25	ns	See Figure 32-21	
ET8	RX Clock Frequency	_	25		MHz	—	
ET9	RX Clock Duty Cycle	35	—	65	%	—	
ET10	ERXDx, ERXDV, ERXERR Setup and Hold	10	—	30	ns	See Figure 32-22	
RMII Tin	ning Requirements						
ET11	Reference Clock Frequency	—	50	_	MHz	—	
ET12	Reference Clock Duty Cycle	35		65	%	—	
ET13	ETXDx, ETEN, Setup and Hold	2	—	4	ns	—	
ET14	ERXDx, ERXDV, ERXERR Setup and Hold	2	—	4	ns	—	

Note 1: The Ethernet module is functional at VBORMIN < VDD < 2.9V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 32-19: MDIO SOURCED BY THE PIC32 DEVICE

FIGURE 32-20: MDIO SOURCED BY THE PHY

Revision H (March 2013)

This revision includes the following global updates:

- Where applicable, control register tables have been added to the document
- All references to VCORE were removed
- All occurrences of XBGA have been updated to: TFBGA

TABLE B-6: MAJOR SECTION UPDATES

• All occurrences of VUSB have been updated to: VUSB3V3

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other significant changes are referenced by their respective section in Table B-6.

Section Name	Update Description
"32-bit Microcontrollers	Updated Core features.
(up to 512 KB Flash and 128	Added the VTLA to the Packages table.
KB SRAM) with Graphics Interface, USB, CAN, and Ethernet"	Added Note 5 to the Feature tables (see Table 1, Table 2, and Table 3).
	The Decommended Minimum Connection was undeted (see Figure 2.4)
Section 2.0 "Guidelines for Getting Started with 32-bit MCUs"	The Recommended Minimum Connection was updated (see Figure 2-1).
Section 5.0 "Flash Program Memory"	A note regarding Flash page size and row size was added.
Section 8.0 "Oscillator Configuration"	The RP resistor was added and Note 1 was updated in the Oscillator Diagram (see Figure 8-1).
Section 31.0 "Electrical	Added Note 1 to Operating MIPS vs. Voltage (see Table 31-1).
Characteristics"	Added the VTLA package to Thermal Packaging Characteristics (see Table 31-3).
	Added Note 2 to DC Temperature and Voltage Specifications (see Table 31-4).
	Updated Note 2 in the Operating Current DC Characteristics (see Table 31-5).
	Updated Note 1 in the Idle Current DC Characteristics (see Table 31-6).
	Updated Note 1 in the Power-Down Current DC Characteristics (see Table 31-7).
	Updated the I/O Pin Output Specifications (see Table 31-9).
	Added Note 2 to the BOR Electrical Characteristics (see Table 31-10).
	Added Note 3 to the Comparator Specifications (see Table 31-13).
	Parameter D320 (VCORE) was removed (see Table 31-15).
	Updated the Minimum value for parameter OS50 (see Table 31-18).
	Parameter SY01 (TPWRT) was removed (see Table 31-22).
	Note 1 was added and the conditions for parameters ET3, ET4, ET7, and ET9 were updated in the Ethernet Module Specifications (see Table 31-35).
	Added Note 6 to the ADC Module Specifications (see Table 31-36).
	Added Note 3 to the 10-bit ADC Conversion Rate Parameter (see Table 31-37).
	Added Note 4 to the Analog-to-Digital Conversion Timing Requirements (see Table 31-38).
	The following figures were added:
	Figure 31-19: "MDIO Sourced by the PIC32 Device"
	Figure 31-21: "Transmit Signal Timing Relationships at the MII"
	Figure 31-22: "Receive Signal Timing Relationships at the MII"
Section 32.0 "DC and AC Device Characteristics Graphs"	This new chapter was added.
Section 33.0 "Packaging	Added the 124-lead VTLA package information (see Section 33.1 "Package
Information"	Marking Information" and Section 33.2 "Package Details").
"Product Identification System"	Added the TL definition for VTLA packages.