

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx775f512lt-80i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 13: PIN NAMES FOR 124-PIN USB, ETHERNET, AND CAN DEVICES (CONTINUED)

124	4-PIN VTLA (BOTTOM VIEW) ^(2,3)			A34		
		B13	B29		Conductive Thermal Pad	
	PIC32MX675F512L PIC32MX695F512L PIC32MX795F512L	B1	B56	B41	A51	
	A1					
	Polarity Indicator		A68			
Package Bump #	Full Pin Name		Package Bump #	F	ull Pin Name	
B8	Vss		B33	TDO/RA5		
B9	TMS/RA0		B34	OSC1/CLKI/RC	212	
B10	AERXD1/INT2/RE9		B35	No Connect (N	C)	
B11	AN4/C1IN-/CN6/RB4		B36	AETXCLK/SCL	.1/INT3/RA14	
B12	Vss		B37	RTCC/EMDIO/	AEMDIO/IC1/RD8	
B13	AN2/C2IN-/CN4/RB2		B38	SCK1/IC3/PMC	CS2/PMA15/RD10	
B14	PGED1/AN0/CN2/RB0		B39	SDO1/OC1/INT	[0/RD0	
B15	No Connect (NC)		B40	SOSCO/T1CK/	CN0/RC14	
B16	PGED2/AN7/RB7		B41	Vss		
B17	VREF+/CVREF+/AERXD3/PMA6/RA10		B42	OC3/RD2		
B18	AVss		B43	ETXD2/IC5/PN	ID12/RD12	
B19	AN9/C2OUT/RB9		B44	OC5/PMWR/CI	N13/RD4	
B20	AN11/ERXERR/AETXERR/PMA12/RB11		B45	ETXEN/PMD14	4/CN15/RD6	
B21	Vdd		B46	Vss		
B22	AC1TX/SCK4/U5TX/U2RTS/RF13		B47	No Connect (N	C)	
B23	AN12/ERXD0/AECRS/PMA11/RB12		B48	VCAP		
B24	AN14/ERXD2/AETXD3/PMALH/PMA1/RB14		B49	C1RX ⁽¹⁾ /ETXD	1/PMD11/RF0	
B25	Vss		B50	C2TX ⁽¹⁾ /ETXE	RR/PMD9/RG1	
B26	AETXD0/SS3/U4RX/U1CTS/CN20/RD14		B51	TRCLK/RA6		
B27	SDA5/SDI4/U2RX/PMA9/CN17/RF4		B52	PMD0/RE0		
B28	No Connect (NC)		B53	Vdd		
B29	SCL3/SDO3/U1TX/RF8		B54	TRD2/RG14		
B30	VUSB3V3		B55	TRD0/RG13		
B31	D+/RG2		B56	PMD3/RE3		

This pin is only available on PIC32MX795F512L devices. Note 1:

2:

Shaded package bumps are 5V tolerant. It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout. 3:

		Pin Number ⁽¹⁾							
Pin Nam	e 64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description		
RA0	_	17	G3	B9	I/O	ST	PORTA is a bidirectional I/O port		
RA1	—	38	J6	A26	I/O	ST			
RA2	—	58	H11	A39	I/O	ST			
RA3	—	59	G10	B32	I/O	ST			
RA4	—	60	G11	A40	I/O	ST			
RA5	—	61	G9	B33	I/O	ST			
RA6	—	91	C5	B51	I/O	ST			
RA7	—	92	B5	A62	I/O	ST			
RA9	—	28	L2	A21	I/O	ST			
RA10		29	K3	B17	I/O	ST]		
RA14		66	E11	B36	I/O	ST]		
RA15	—	67	E8	A44	I/O	ST			
RB0	16	25	K2	B14	I/O	ST	PORTB is a bidirectional I/O port		
RB1	15	24	K1	A15	I/O	ST			
RB2	14	23	J2	B13	I/O	ST			
RB3	13	22	J1	A13	I/O	ST			
RB4	12	21	H2	B11	I/O	ST			
RB5	11	20	H1	A12	I/O	ST			
RB6	17	26	L1	A20	I/O	ST			
RB7	18	27	J3	B16	I/O	ST			
RB8	21	32	K4	A23	I/O	ST			
RB9	22	33	L4	B19	I/O	ST			
RB10	23	34	L5	A24	I/O	ST	1		
RB11	24	35	J5	B20	I/O	ST]		
RB12	27	41	J7	B23	I/O	ST]		
RB13	28	42	L7	A28	I/O	ST]		
RB14	29	43	K7	B24	I/O	ST			
RB15	30	44	L8	A29	I/O	ST			
RC1	—	6	D1	A5	I/O	ST	PORTC is a bidirectional I/O port		
RC2	—	7	E4	B4	I/O	ST			
RC3	—	8	E2	A6	I/O	ST			
RC4		9	E1	B5	I/O	ST]		
RC12	39	63	F9	B34	I/O	ST]		
RC13	47	73	C10	A47	I/O	ST]		
RC14	48	74	B11	B40	I/O	ST]		
	-	64	F11	A42	I/O	ST	1		

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

AECRS	64-Pin QFN/TQFP	100-Pin			Pin	Ruttor	
		TQFP	121-Pin TFBGA	124-pin VTLA	Туре	Buffer Type	Description
		41	J7	B23	I	ST	Alternate Ethernet carrier sense ⁽²⁾
AEMDC	30	71	C11	A46	0		Alternate Ethernet Management Data clock ⁽²⁾
AEMDIO	49	68	E9	B37	I/O		Alternate Ethernet Management Data ⁽²
TRCLK	_	91	C5	B51	0		Trace clock
TRD0		97	A3	B55	0	_	Trace Data bits 0-3
TRD1	_	96	C3	A65	0	_	
TRD2	_	95	C4	B54	0	_	
TRD3	_	92	B5	A62	0		
PGED1	16	25	K2	B14	I/O	ST	Data I/O pin for Programming/ Debugging Communication Channel 1
PGEC1	15	24	K1	A15	I	ST	Clock input pin for Programming/ Debugging Communication Channel 1
PGED2	18	27	J3	B16	I/O	ST	Data I/O pin for Programming/ Debugging Communication Channel 2
PGEC2	17	26	L1	A20	Ι	ST	Clock input pin for Programming/ Debugging Communication Channel 2
MCLR	7	13	F1	B7	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd	19	30	J4	A22	Р	Р	Positive supply for analog modules. This pin must be connected at all times
AVss	20	31	L3	B18	Р	Р	Ground reference for analog modules
Vdd	10, 26, 38, 57	2, 16, 37, 46, 62, 86	A7, C2, C9, E5, K8, F8, G5, H4, H6	A10, A14, A30, A41, A48, A59, B1, B21, B53	Ρ	_	Positive supply for peripheral logic and I/O pins
VCAP	56	85	B7	B48	Р		Capacitor for Internal Voltage Regulato
Vss	9, 25, 41	15, 36, 45, 65, 75	A8, B10, D4, D5, E7, F5, F10, G6, G7, H3	A3, A25, A43, A63, B8, B12, B25, B41, B46	Ρ	_	Ground reference for logic and I/O pins This pin must be connected at all times
Vref+	16	29	K3	B17	I	Analog	Analog voltage reference (high) input
Vref-	15	28	L2	A21	I	Analog	Analog voltage reference (low) input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer
Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX5XX/6XX/7XX devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the "*PIC32 Flash Programming Specification*" (DS60001145), which can be downloaded from the Microchip web site.

Note: For PIC32MX5XX/6XX/7XX devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 **SOSCEN:** Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator

bit 0 **OSWEN:** Oscillator Switch Enable bit

- 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete

Note: Writes to this register require an unlock sequence. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24				CHEW3<	:31:24>						
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16				CHEW3<	:23:16>						
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8	CHEW3<15:8>										
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
7:0	CHEW3<7:0>										

REGISTER 9-8: CHEW3: CACHE WORD 3

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW3<31:0>:** Word 3 of the cache line selected by CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

Note: This register is a window into the cache data array and is only readable if the device is not code-protected.

REGISTER 9-9: CHELRU: CACHE LRU REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
31.24	—	—	_	—	—	_	—	CHELRU<24>
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16				CHELRI	J<23:16>			
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8				CHELR	U<15:8>			
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0				CHELF	RU<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Write '0'; ignore read

bit 24-0 **CHELRU<24:0>:** Cache Least Recently Used State Encoding bits Indicates the pseudo-LRU state of the cache.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	—	—	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_		—	—		—	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	—	—	_	—	—
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0				—	RDWR	[DMACH<2:0>	•

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-4 Unimplemented: Read as '0'

bit 3 RDWR: Read/Write Status bit

1 = Last DMA bus access was a read

0 = Last DMA bus access was a write

bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04-04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
31:24	DMAADDR<31:24>										
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
23:16	DMAADDR<23:16>										
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8				DMAADDI	R<15:8>						
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				DMAADD	R<7:0>						

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

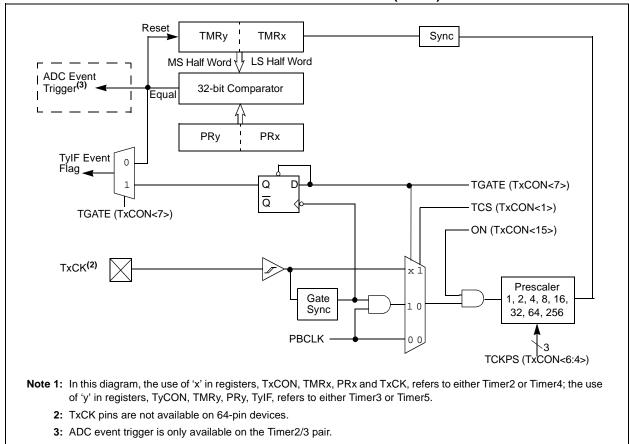
bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	—	—	—	—	_	—	_	
23:16	U-0	U-0						
23.10	—	—	—	—	_	—	_	
15:8	U-0	U-0						
15.6	—	—	—	—	_	—	_	
	R/W-0	R/W-0						
7:0	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE ⁽¹⁾	URSTIE ⁽²⁾
	STALLIE	ATTACHIE	RESUMEIE	IDLEIE		SOFIE	UERRIE'	DETACHIE ⁽³⁾

Legend:


R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

	•·····
bit 7	STALLIE: STALL Handshake Interrupt Enable bit
	1 = STALL interrupt is enabled
	0 = STALL interrupt is disabled
bit 6	ATTACHIE: ATTACH Interrupt Enable bit
	1 = ATTACH interrupt is enabled
	0 = ATTACH interrupt is disabled
bit 5	RESUMEIE: RESUME Interrupt Enable bit
	1 = RESUME interrupt is enabled
	0 = RESUME interrupt is disabled
bit 4	IDLEIE: Idle Detect Interrupt Enable bit
	1 = Idle interrupt is enabled
	0 = Idle interrupt is disabled
bit 3	TRNIE: Token Processing Complete Interrupt Enable bit
	1 = TRNIF interrupt is enabled
	0 = TRNIF interrupt is disabled
bit 2	SOFIE: SOF Token Interrupt Enable bit
	1 = SOFIF interrupt is enabled
	0 = SOFIF interrupt is disabled
bit 1	UERRIE: USB Error Interrupt Enable bit ⁽¹⁾
	1 = USB Error interrupt is enabled
	0 = USB Error interrupt is disabled
bit 0	URSTIE: USB Reset Interrupt Enable bit ⁽²⁾
	1 = URSTIF interrupt is enabled
	0 = URSTIF interrupt is disabled
	DETACHIE: USB Detach Interrupt Enable bit ⁽³⁾
	1 = DATTCHIF interrupt is enabled
	0 = DATTCHIF interrupt is disabled

Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

- 2: Device mode.
- 3: Host mode.

FIGURE 14-2: TIMER2/3 AND TIMER4/5 BLOCK DIAGRAM (32-BIT)

NOTES:

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 8 **TRMT:** Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (has at least 1 data character) **ADDEN:** Address Character Detect bit (bit 8 of received data = 1) bit 5 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect. 0 = Address Detect mode is disabled bit 4 **RIDLE:** Receiver Idle bit (read-only) 1 =Receiver is idle 0 = Data is being received bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected FERR: Framing Error Status bit (read-only) bit 2 1 = Framing error has been detected for the current character 0 = Framing error has not been detected bit 1 **OERR:** Receive Buffer Overrun Error Status bit. This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to an empty state.
 - 1 = Receive buffer has overflowed
 - 0 = Receive buffer has not overflowed
- bit 0 **URXDA:** Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

REGISTER 23-3: AD1CON3: ADC CONTROL REGISTER 3										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	_		—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	_		—	—		
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ADRC	—	—	SAMC<4:0> ⁽¹⁾						
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0		
7:0		ADCS<7:0> ⁽²⁾								

Legend:

0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15	ADRC: ADC Conversion Clock Source bit
	1 = Clock derived from FRC
	0 = Clock derived from Peripheral Bus Clock (PBCLK)
bit 14-13	Unimplemented: Read as '0'

```
bit 12-8 SAMC<4:0>: Auto-Sample Time bits<sup>(1)</sup>
          11111 = 31 TAD
          00001 = 1 TAD
          00000 = 0 TAD (Not allowed)
          ADCS<7:0>: ADC Conversion Clock Select bits<sup>(2)</sup>
bit 7-0
          11111111 =TPB • 2 • (ADCS<7:0> + 1) = 512 • TPB = TAD
```

```
00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD
00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
```

- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - 2: This bit is not used if the ADRC bit (AD1CON3<15>) = 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
22:16	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
15:8	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7.0	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

REGISTER 24-7: CIRXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 RXOVF<31:0>: FIFOn Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed

0 = FIFO has not overflowed

REGISTER 24-8: CITMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
51.24		CANTS<15:8>									
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	CANTS<7:0>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	CANTSPRE<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				CANTSPF	RE<7:0>						

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (CiCON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits

1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks
.

0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: CiTMR will be paused when CANCAP = 0.

2: The CiTMR prescaler count will be reset on any write to CiTMR (CANTSPRE will be unaffected).

31.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

31.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

31.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

31.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$							
Param. No.	Typical ⁽³⁾	Max.	Units		Conditions	i			
Operatir	ng Current (I	DD) ^(1,2,4) f O I	PIC32MX5	575/675/695/775/795 Family D)evices				
DC20	6	9	mA	-40°C, +25°C, +85°C		Code executing from Flash +25°C,			4 MHz
DC20b	7	10			+105⁰C				
DC20a	4			Code executing from SRAM	_				
DC21	37	40	mA	Code executing from Flash			25 MHz		
DC21a	25		IIIA	Code executing from SRAM	_		23 1011 12		
DC22	64	70	mA	Code executing from Flash					
DC22a	61	_	IIIA	Code executing from SRAM		_	60 MHz		
DC23	85	98	mA	Code executing from Flash	-40ºC, +25ºC, +85ºC		80 MHz		
DC23b	90	120]		+105⁰C				
DC23a	85]	Code executing from SRAM	—				
DC25a	125	150	μA	—	+25°C	3.3V	LPRC (31 kHz)		

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.

- 2: The test conditions for IDD measurements are as follows:
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
 - CPU, program Flash, and SRAM data memory are operational, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD
 - CPU executing while(1) statement from Flash
 - RTCC and JTAG are disabled
- **3:** Data in "Typical" column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

DC CHA	RACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions
DI50	lil	Input Leakage Current ⁽³⁾ I/O Ports	_	_	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, Pin at high-impedance
DI51		Analog Input Pins	—	—	<u>+</u> 1	μΑ	VSS \leq VPIN \leq VDD, Pin at high-impedance
DI55 DI56		MCLR ⁽²⁾ OSC1	—	_	<u>+</u> 1 <u>+</u> 1	μΑ μΑ	$\label{eq:VSS} \begin{array}{l} \forall SS \leq VPIN \leq VDD \\ \forall SS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$
DI60a	licl	Input Low Injection Current	0	_	₋₅ (7,10)	mA	This parameter applies to all pins, with the exception of RB10. Maximum IICH current for this exception is 0 mA.
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(8,9,10)	mA	This parameter applies to all pins, with the exception of all 5V toler- ant pins, SOSCI, and RB10. Maximum IICH current for these exceptions is 0 mA.
DI60c	∑IICT	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽¹¹⁾	_	+20 ⁽¹¹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT

TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V-tolerant pins.
- 6: The VIH specification is only in relation to externally applied inputs and not with respect to the user-selectable pull-ups. Externally applied high impedance or open drain input signals utilizing the PIC32 internal pullups are guaranteed to be recognized as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the maximum value of ICNPU.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

TABLE 32-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				(unless	0 1	; ≤ TA ≤	+85°C	6∨ for Industrial C for V-Temp		
Param. No.	Symbol	Chai	racteristic	s ⁽¹⁾	Min.	Max.	Units	Conditions		
TB10	ТтхН	TxCK High Time	Synchrono prescaler	ous, with	[(12.5 ns or 1 TPB)/N] + 25 ns	—	ns	Must also meet parameter TB15	value (1, 2, 4, 8,	
TB11	ΤτxL	TxCK Low Time	Synchrono prescaler	ous, with	[(12.5 ns or 1 ТРВ)/N] + 25 ns		ns	Must also meet parameter TB15	16, 32, 64, 256)	
TB15	ΤτχΡ	TxCK Input	Synchrono prescaler	ous, with	[(Greater of [(25 ns or 2 Трв)/N] + 30 ns	_	ns	VDD > 2.7V		
		Period			[(Greater of [(25 ns or 2 Трв)/N] + 50 ns	—	ns	VDD < 2.7V		
TB20	TCKEXTMRL	Delay from Clock Edge			_	1	Трв	_		

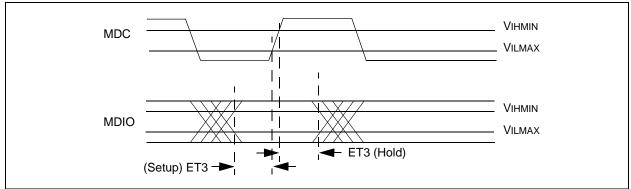
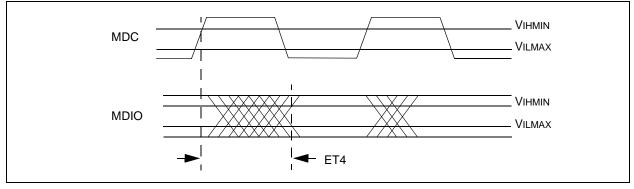

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 32-35: ETHERNET MODULE SPECIFICATIONS


АС СНА	RACTERISTICS	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			85°C for Industrial	
Param. No.	Characteristic	Min. Typical Max. Units Conditions				
MIIM Tin	ning Requirements					
ET1	MDC Duty Cycle	40		60	%	—
ET2	MDC Period	400	—	—	ns	—
ET3	MDIO Output Setup and Hold	10	—	10	ns	See Figure 32-19
ET4	MDIO Input Setup and Hold	0	—	300	ns	See Figure 32-20
MII Timi	ng Requirements					
ET5	TX Clock Frequency	—	25	_	MHz	—
ET6	TX Clock Duty Cycle	35	—	65	%	—
ET7	ETXDx, ETEN, ETXERR Output Delay	0	—	25	ns	See Figure 32-21
ET8	RX Clock Frequency	—	25	_	MHz	—
ET9	RX Clock Duty Cycle	35	—	65	%	—
ET10	ERXDx, ERXDV, ERXERR Setup and Hold	10	—	30	ns	See Figure 32-22
RMII Tin	ning Requirements					
ET11	Reference Clock Frequency		50	—	MHz	—
ET12	Reference Clock Duty Cycle	35		65	%	—
ET13	ETXDx, ETEN, Setup and Hold	2	—	4	ns	—
ET14	ERXDx, ERXDV, ERXERR Setup and Hold	2	—	4	ns	—

Note 1: The Ethernet module is functional at VBORMIN < VDD < 2.9V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

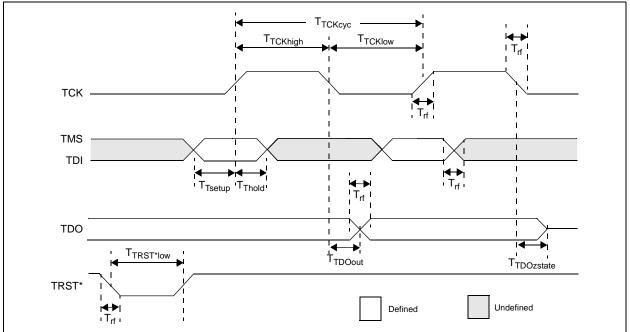

FIGURE 32-19: MDIO SOURCED BY THE PIC32 DEVICE

FIGURE 32-20: MDIO SOURCED BY THE PHY

FIGURE 32-28: EJTAG TIMING CHARACTERISTICS

TABLE 32-43: EJTAG TIMING REQUIREMENTS

AC CHA	RACTERISTI	CS	$\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$				
Param. No.	Symbol	Description ⁽¹⁾	Min. Max. Units Conditions		Conditions		
EJ1	Ттсксүс	TCK Cycle Time	25	_	ns		
EJ2	Ттскнідн	TCK High Time	10		ns	—	
EJ3	TTCKLOW	TCK Low Time	10		ns	—	
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_	
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	—	ns	_	
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK	—	5	ns	_	
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	-	5	ns	—	
EJ8	TTRSTLOW	TRST Low Time	25	_	ns	—	
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output	—	—	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

INDEX

366
390
388
391
398
386
368
369
397
395
396
396
394
368
231

В

Block Diagrams
ADC1 Module231
Comparator I/O Operating Modes
Comparator Voltage Reference
Connections for On-Chip Voltage Regulator
Core and Peripheral Modules25
DMA 111
Ethernet Controller279
I2C Circuit 196
Input Capture181
Interrupt Controller73
JTAG Programming, Debugging and Trace Ports 343
MCU
Output Compare Module185
PIC32 CAN Module241
PMP Pinout and Connections to External Devices 211
Prefetch Module 101
Reset System69
RTCC
SPI Module189
Timer1167
Timer2/3/4/5 (16-Bit) 171
Typical Multiplexed Port Structure 157
UART
WDT and Power-up Timer 177
Brown-out Reset (BOR)
and On-Chip Voltage Regulator

С

C Compilers	
MPLAB XC	348
Clock Diagram	
Comparator	
Specifications	364
Comparator Module	323
Comparator Voltage Reference (CVref	327
Configuration Bits	333
Controller Area Network (CAN)	241
CPU Module	
Customer Change Notification Service	437
Customer Notification Service	437
Customer Support	437

D

DC and AC Characteristics

Graphs and Tables	. 399
DC Characteristics	. 352
I/O Pin Input Specifications	. 360
I/O Pin Output Specifications	. 362
Idle Current (IIDLE)	. 356
Power-Down Current (IPD)	. 358
Program Memory	. 363
Temperature and Voltage Specifications	. 353
Development Support	. 347
Direct Memory Access (DMA) Controller	. 111

Е

Electrical Characteristics	351
AC	366
Errata	23
Ethernet Controller	279
ETHPMM0 (Ethernet Controller Pattern Match Mask 0)	289
ETHPMM1 (Ethernet Controller Pattern Match Mask 1)	289
External Clock	
Timer1 Timing Requirements	372
Timer2, 3, 4, 5 Timing Requirements	373
Timing Requirements	367

F

Flash Program Memory	. 63
RTSP Operation	. 63

L

I/O Ports	157
Parallel I/O (PIO)	158
Input Capture	181
Instruction Set	345
Inter-Integrated Circuit (I2C)	195
Internal Voltage Reference Specifications	365
Internet Address	437
Interrupt Controller	73
IRG, Vector and Bit Location	74

Μ

MCU
Architecture Overview 42
Coprocessor 0 Registers 43
Core Exception Types 44
EJTAG Debug Support 45
Power Management 45
MCU Module
Memory Map 52
Memory Maps 48, 49, 50, 51, 53
Memory Organization 47
Layout 47
Microchip Internet Web Site 437
Migration
PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX 419
MPASM Assembler
MPLAB Assembler, Linker, and Librarian 348
MPLAB ICD 3 In-Circuit Debugger System 349
MPLAB PM3 Device Programmer
MPLAB REAL ICE In-Circuit Emulator System 349
MPLAB X Integrated Development Environment Software
347
MPLINK Object Linker/MPLIB Object Librarian
0
Open-Drain Configuration 158