

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx795f512ht-80i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nur	nber ⁽¹⁾		D !	Buffer Type	Description		
Pin Nam	e 64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type				
RA0	_	17	G3	B9	I/O	ST	PORTA is a bidirectional I/O port		
RA1	—	38	J6	A26	I/O	ST			
RA2	—	58	H11	A39	I/O	ST			
RA3	—	59	G10	B32	I/O	ST			
RA4	—	60	G11	A40	I/O	ST			
RA5	—	61	G9	B33	I/O	ST			
RA6	—	91	C5	B51	I/O	ST			
RA7	—	92	B5	A62	I/O	ST			
RA9	—	28	L2	A21	I/O	ST			
RA10		29	K3	B17	I/O	ST]		
RA14		66	E11	B36	I/O	ST]		
RA15	—	67	E8	A44	I/O	ST			
RB0	16	25	K2	B14	I/O	ST	PORTB is a bidirectional I/O port		
RB1	15	24	K1	A15	I/O	ST			
RB2	14	23	J2	B13	I/O	ST			
RB3	13	22	J1	A13	I/O	ST			
RB4	12	21	H2	B11	I/O	ST			
RB5	11	20	H1	A12	I/O	ST			
RB6	17	26	L1	A20	I/O	ST			
RB7	18	27	J3	B16	I/O	ST			
RB8	21	32	K4	A23	I/O	ST			
RB9	22	33	L4	B19	I/O	ST			
RB10	23	34	L5	A24	I/O	ST	1		
RB11	24	35	J5	B20	I/O	ST]		
RB12	27	41	J7	B23	I/O	ST]		
RB13	28	42	L7	A28	I/O	ST]		
RB14	29	43	K7	B24	I/O	ST			
RB15	30	44	L8	A29	I/O	ST			
RC1	—	6	D1	A5	I/O	ST	PORTC is a bidirectional I/O port		
RC2	—	7	E4	B4	I/O	ST			
RC3	—	8	E2	A6	I/O	ST			
RC4		9	E1	B5	I/O	ST]		
RC12	39	63	F9	B34	I/O	ST]		
RC13	47	73	C10	A47	I/O	ST]		
RC14	48	74	B11	B40	I/O	ST]		
	-	64	F11	A42	I/O	ST	1		

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

TABLE 1-1	: PINOU	T I/O DES		NS (CONT)				
		Pin Number ⁽¹⁾							
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description		
PMD0	60	93	A4	B52	I/O	TTL/ST	Parallel Master Port data		
PMD1	61	94	B4	A64	I/O	TTL/ST	(Demultiplexed Master mode) or		
PMD2	62	98	B3	A66	I/O	TTL/ST	address/data (Multiplexed Master modes)		
PMD3	63	99	A2	B56	I/O	TTL/ST	nodes)		
PMD4	64	100	A1	A67	I/O	TTL/ST			
PMD5	1	3	D3	B2	I/O	TTL/ST			
PMD6	2	4	C1	A4	I/O	TTL/ST			
PMD7	3	5	D2	B3	I/O	TTL/ST			
PMD8	—	90	A5	A61	I/O	TTL/ST			
PMD9	—	89	E6	B50	I/O	TTL/ST			
PMD10	—	88	A6	A60	I/O	TTL/ST			
PMD11	_	87	B6	B49	I/O	TTL/ST			
PMD12	_	79	A9	B43	I/O	TTL/ST			
PMD13	_	80	D8	A54	I/O	TTL/ST			
PMD14	_	83	D7	B45	I/O	TTL/ST			
PMD15	_	84	C7	A56	I/O	TTL/ST			
PMALL	30	44	L8	A29	ο	_	Parallel Master Port address latch enable low byte (Multiplexed Master modes)		
PMALH	29	43	К7	B24	0	_	Parallel Master Port address latch enable high byte (Multiplexed Master modes)		
PMRD	53	82	B8	A55	0	_	Parallel Master Port read strobe		
PMWR	52	81	C8	B44	0	_	Parallel Master Port write strobe		
VBUS	34	54	H8	A37	I	Analog	USB bus power monitor		
VUSB3V3	35	55	H9	B30	Р	_	USB internal transceiver supply. If the USB module is <i>not</i> used, this pin mus be connected to VDD.		
VBUSON	11	20	H1	A12	0	_	USB Host and OTG bus power contro output		
D+	37	57	H10	B31	I/O	Analog	USB D+		
D-	36	56	J11	A38	I/O	Analog	USB D-		
USBID	33	51	K10	A35	Ι	ST	USB OTG ID detect		
C1RX	58	87	B6	B49	I	ST	CAN1 bus receive pin		
C1TX	59	88	A6	A60	0		CAN1 bus transmit pin		
AC1RX	32	40	K6	A27	I	ST	Alternate CAN1 bus receive pin		
AC1TX	31	39	L6	B22	0	—	Alternate CAN1 bus transmit pin		
C2RX	29	90	A5	A61	I	ST	CAN2 bus receive pin		
	21	89	E6	B50	0	—	CAN2 bus transmit pin		
C2TX			1	1	1		Alternate CAN2 bus receive pin		

PINOLIT I/O DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority.

TABLE 3-3: PIC32MX5XX/6XX/7XX FAMILY CORE EXCEPTION TYPES

Exception	Description
Reset	Assertion MCLR or a Power-on Reset (POR).
DSS	EJTAG debug single step.
DINT	EJTAG debug interrupt. Caused by the assertion of the external <i>EJ_DINT</i> input or by setting the EjtagBrk bit in the ECR register.
NMI	Assertion of NMI signal.
Interrupt	Assertion of unmasked hardware or software interrupt signal.
DIB	EJTAG debug hardware instruction break matched.
AdEL	Fetch address alignment error. Fetch reference to protected address.
IBE	Instruction fetch bus error.
DBp	EJTAG breakpoint (execution of SDBBP instruction).
Sys	Execution of SYSCALL instruction.
Вр	Execution of BREAK instruction.
RI	Execution of a reserved instruction.
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.
CEU	Execution of a CorExtend instruction when CorExtend is not enabled.
Ov	Execution of an arithmetic instruction that overflowed.
Tr	Execution of a trap (when trap condition is true).
DDBL/DDBS	EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value).
AdEL	Load address alignment error. Load reference to protected address.
AdES	Store address alignment error. Store to protected address.
DBE	Load or store bus error.
DDBL	EJTAG data hardware breakpoint matched in load data compare.

3.3 Power Management

The MIPS32 M4K Processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 28.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the PIC32MX-5XX/6XX/7XX family core is in the clock tree and clocking registers. The PIC32 family uses extensive use of local gated clocks to reduce this dynamic power consumption.

3.4 EJTAG Debug Support

The MIPS32 M4K Processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the MIPS M4K core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the MIPS32 M4K processor core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used.

Interrupt Source ⁽¹⁾	IRQ	Vector	Interrupt Bit Location					
Interrupt Source	Number	Number	Flag	Enable	Priority	Sub-Priority		
IC3E – Input Capture 3 Error	63	13	IFS1<31>	IEC1<31>	IPC3<12:10>	IPC3<9:8>		
IC4E – Input Capture 4 Error	64	17	IFS2<0>	IEC2<0>	IPC4<12:10>	IPC4<9:8>		
IC5E – Input Capture 5 Error	65	21	IFS2<1>	IEC2<1>	IPC5<12:10>	IPC5<9:8>		
PMPE – Parallel Master Port Error	66	28	IFS2<2>	IEC2<2>	IPC7<4:2>	IPC7<1:0>		
U4E – UART4 Error	67	49	IFS2<3>	IEC2<3>	IPC12<12:10>	IPC12<9:8>		
U4RX – UART4 Receiver	68	49	IFS2<4>	IEC2<4>	IPC12<12:10>	IPC12<9:8>		
U4TX – UART4 Transmitter	69	49	IFS2<5>	IEC2<5>	IPC12<12:10>	IPC12<9:8>		
U6E – UART6 Error	70	50	IFS2<6>	IEC2<6>	IPC12<20:18>	IPC12<17:16>		
U6RX – UART6 Receiver	71	50	IFS2<7>	IEC2<7>	IPC12<20:18>	IPC12<17:16>		
U6TX – UART6 Transmitter	72	50	IFS2<8>	IEC2<8>	IPC12<20:18>	IPC12<17:16>		
U5E – UART5 Error	73	51	IFS2<9>	IEC2<9>	IPC12<28:26>	IPC12<25:24>		
U5RX – UART5 Receiver	74	51	IFS2<10>	IEC2<10>	IPC12<28:26>	IPC12<25:24>		
U5TX – UART5 Transmitter	75	51	IFS2<11>	IEC2<11>	IPC12<28:26>	IPC12<25:24>		
(Reserved)	—	—	—	—	<u> </u>			
	Lowe	est Natural (Order Priority	/				

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX5XX USB and CAN Features", TABLE 2: "PIC32MX6XX USB and Ethernet Features" and TABLE 3: "PIC32MX7XX USB, Ethernet, and CAN Features" for the list of available peripherals.

'1' = Bit is set

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31.24				CHEPFAB	Г<31:24>						
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16	CHEPFABT<23:16>										
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8				CHEPFAB	T<15:8>						
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
7:0	CHEPFABT<7:0>										
·											
Legend:											
R = Rea	R = Readable bit			bit	U = Unimplemented bit, read as '0'						

bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits

-n = Value at POR

Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load or store.

'0' = Bit is cleared

x = Bit is unknown

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24		DCRCDATA<31:24>										
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	DCRCDATA<23:16>											
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	DCRCDATA<15:8>											
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				DCRCDA	ΓA<7:0>							

REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	DCRCXOR<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	DCRCXOR<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	DCRCXOR<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0		DCRCXOR<7:0>									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

1 = Enable the XOR input to the Shift register

0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

Т	ABLE 12	PORTG REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F256H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H	Н.
		PIC32MX764F128H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES	,
	ssa	Bits	

ö		Φ								-									<i>(</i> 0
Virtual Addres (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6180	TRISG	31:16	—	—	—	_	—	—	_	—	—	—	_	_	-	_	_	_	0000
6160	TRIBU	15:0	_	_	_	_	_		TRISG9	TRISG8	TRISG7	TRISG6	_		TRISG3	TRISG2	-		03CC
6100	PORTG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
6190	PURIG	15:0	_	_	_	_	_		RG9	RG8	RG7	RG6	_		RG3	RG2	-		xxxx
61A0	LATG	31:16	_	_	_	_	_		_	_	_	_	_				-		0000
OTAU	LAIG	15:0	_	_	_	_	_		LATG9	LATG8	LATG7	LATG6	_		LATG3	LATG2	-		xxxx
61B0	ODCG	31:16	-	_	_	_	-	_	_	_	_	-	_			-	_		0000
0180	ODCG	15:0	-	_	_	_	-	_	ODCG9	ODCG8	ODCG7	ODCG6	_		ODCG3	ODCG2	_		0000
Laware				Divisi			fal Deset	alter a successful		dia statistical									

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

TABLE 12-12: PORTG REGISTER MAP FOR PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX764F128L. PIC32MX775F256L. PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess										Bi	ts								<i>(</i> 0
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6180	TRISG	31:16	_	—	_	-	_	—	-	—	—	-	—	-	-	-	-	-	0000
0100	TRISG	15:0	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
6100	PORTG	31:16		_		_		-	-	-	-	—	-	—	—	—	_	—	0000
6190	PURIG	15:0	RG15	RG14	RG13	RG12			RG9	RG8	RG7	RG6			RG3	RG2	RG1	RG0	xxxx
61A0	LATG	31:16	-	_		_	-	-	-	-	-	—	-	—	—	—	—	—	0000
61A0	LAIG	15:0	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	-	LATG3	LATG2	LATG1	LATG0	xxxx
61B0	ODCG	31:16		—	_	_		_		_	_	—	_	—	—	—	—	—	0000
0160	ODCG	15:0	ODCG15	ODCG14	ODCG13	ODCG12	_	-	ODCG9	ODCG8	ODCG7	ODCG6	-	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

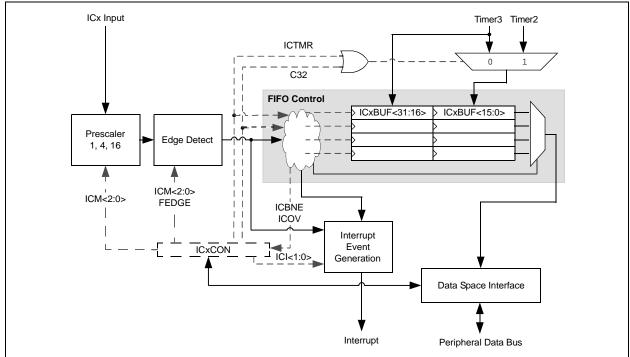
All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more Note 1: information.

16.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122) of the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:


- Simple capture event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin

- Capture timer value on every edge (rising and falling)
- Capture timer value on every edge (rising and falling), specified edge first.
- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input Capture module can also be used to provide additional sources of external interrupts

FIGURE 16-1: INPUT CAPTURE BLOCK DIAGRAM

19.1 Control Registers

TABLE 19-1: I2C1THROUGH I2C5 REGISTER MAP

ss										Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	I2C3CON	31:16	_	_	—	_			_	_			—	_	—				0000
		15:0	ON	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5010	I2C3STAT	31:16 15:0	— ACKSTAT	— TRSTAT			_	BCL	— GCSTAT	— ADD10		– I2COV	— D/A	— P		— R/W	— RBF	— TBF	0000
	1000100	31:16	—	-	_	_	_	-		-	—	-		-	_	-	—	—	0000
5020	I2C3ADD	15:0	_	_	_	_	_	_					ADD	<9:0>					0000
5000	IOCOMOK	31:16	_	_	—	—	—	_	—	_	—	_	—	—	—	_	—	_	0000
5030	I2C3MSK	15:0	_	_	—	_	—	— — MSK<9:0>									0000		
5040	I2C3BRG	31:16	_	_	—	_	_	-	_	_	-	_	_	_	_	_	_	_	0000
5040	IZCODKG	15:0	_	_	—	—					Ba	ud Rate Ger	nerator Regi	ster					0000
5050	I2C3TRN	31:16	—	—			—			_		—	_	_	_	—	—	-	0000
5050	120311(1)	15:0	—	—			—			_			-	Transmit	Register				0000
5060	I2C3RCV	31:16	—	—	—	—	—	_	—	—	_	—	—	—	—	—	—	—	0000
0000	12001101	15:0	_	_	—	_	—	_	_	—				Receive	Register	-	-		0000
5100	I2C4CON	31:16	_	_	—	_	_	_	_	—	_	—	_	_	_	—	—	—	0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5110	I2C4STAT	31:16	—	—	—		_	—	—	_	—	—		—		—	—	—	0000
L		15:0	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5120	I2C4ADD	31:16	_	_	—	_	_	_	—		—	—	—	—	—	_	_	—	0000
		15:0	_	_	_	_	_						ADD	<9:0>					0000
5130	I2C4MSK	31:16	_	_						_	_	_					_	_	0000
┢────┼		15:0		_			_						MSK	<9:0>					0000
5140	I2C4BRG	31:16		_	_			—	—		-	—	—	—	—	_	_	—	0000
		15:0 31:16	_	_	_							ud Rate Ger	erator Regi	ster					0000
5150	I2C4TRN	15:0									_	_	_	 Transmit	— Register	—	—	—	0000
ł		31:16														_	_	_	0000
5160	I2C4RCV	15:0	_	_						_	_			Receive	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
5200	I2C5CON	15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5040	10050747	31:16	_	_	—	—	_	_	—		_	_	—	—	—	_	_	_	0000
5210	I2C5STAT	15:0	ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
5000	1005405	31:16	_	_	—	—	_	—	—	_	—	_	—	—	—	_	_	_	0000
5220	I2C5ADD	15:0	_	_	_	_	_	_					ADD	<9:0>					0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

2: This register is not available on 64-pin devices.

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽²⁾
 - 1 = Active-high (PMCS1)
 - $0 = \text{Active-low}(\overline{\text{PMCS1}})$
- bit 2 Unimplemented: Read as '0'
- bit 1 WRSP: Write Strobe Polarity bit
 - For Slave Modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
 - 1 = Write strobe active-high (PMWR)
 - $0 = Write strobe active-low (\overline{PMWR})$

For Master mode 1 (PMMODE<9:8> = 11):

- 1 = Enable strobe active-high (PMENB)
- 0 = Enable strobe active-low (PMENB)
- bit 0 RDSP: Read Strobe Polarity bit
 - For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):
 - 1 = Read Strobe active-high (PMRD)
 - 0 = Read Strobe active-low (PMRD)

For Master mode 1 (PMMODE<9:8> = 11):

- 1 = Read/write strobe active-high (PMRD/ \overline{PMWR})
- 0 = Read/write strobe active-low (PMRD/PMWR)
- **Note 1:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	FLTEN11	MSEL1	1<1:0>	FSEL11<4:0>							
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23.10	FLTEN10	MSEL1	0<1:0>	FSEL10<4:0>							
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	FLTEN9	MSEL	9<1:0>	FSEL9<4:0>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	FLTEN8	FLTEN8 MSEL8<1:0>			FSEL8<4:0>						

REGISTER 24-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31	FLTEN11: Filter 11 Enable bit
	1 = Filter is enabled 0 = Filter is disabled
bit 30-29	MSEL11<1:0>: Filter 11 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 28-24	FSEL11<4:0>: FIFO Selection bits
	<pre>11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30</pre>
	• 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
bit 23	FLTEN10: Filter 10 Enable bit
	1 = Filter is enabled0 = Filter is disabled
bit 22-21	MSEL10<1:0>: Filter 10 Mask Select bits
	 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 20-16	FSEL10<4:0>: FIFO Selection bits
	11111 = Message matching filter is stored in FIFO buffer 31
	11110 = Message matching filter is stored in FIFO buffer 30
	· ·
	00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
	— · · · · · · · · · · · · · · · · · · ·

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31.24	FLTEN23	MSEL2	3<1:0>	FSEL23<4:0>							
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	FLTEN22	MSEL2	2<1:0>	FSEL22<4:0>							
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
10.0	FLTEN21	MSEL2	21<1:0>	FSEL21<4:0>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	FLTEN20	MSEL2	20<1:0>	FSEL20<4:0>							

REGISTER 24-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit (31	FLTEN23: Filter 23 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit (30-29	MSEL23<1:0>: Filter 23 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 2	28-24	<pre>FSEL23<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1</pre>
bit 2	23	00000 = Message matching filter is stored in FIFO buffer 0 FLTEN22: Filter 22 Enable bit 1 = Filter is enabled 0 = Filter is disabled
bit 2	22-21	MSEL22<1:0>: Filter 22 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected
bit 2	20-16	FSEL22<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0
	otor	The hite in this register can only be madified if the correspond

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_						_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	—	-	_	_
15:8	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
10.0	_	TXBUSE	RXBUSE	_	_	_	EWMARK	FWMARK
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	RXDONE	PKTPEND	RXACT	_	TXDONE	TXABORT	RXBUFNA	RXOVFLW

REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-15	Unimplemented: Read as '0'
bit 14	TXBUSE: Transmit BVCI Bus Error Interrupt bit
	1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 13	RXBUSE: Receive BVCI Bus Error Interrupt bit
	1 = BVCI Bus Error has occurred 0 = BVCI Bus Error has not occurred
	This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 12-10	Unimplemented: Read as '0'
bit 9	EWMARK: Empty Watermark Interrupt bit
	1 = Empty Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.
bit 8	FWMARK: Full Watermark Interrupt bit
	1 = Full Watermark pointer reached0 = No interrupt pending
	This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 7	RXDONE: Receive Done Interrupt bit
	1 = RX packet was successfully received0 = No interrupt pending
	This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
Note:	It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 25-32: EMAC1MCMD: ETHERNET CONTROLLER MAC MII MANAGEMENT COMMAND REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_		—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	—	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0		_				_	SCAN	READ

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-2 Unimplemented: Read as '0'

- bit 1 SCAN: MII Management Scan Mode bit
 - 1 = The MII Management module will perform read cycles continuously (for example, useful for monitoring the Link Fail)
 - 0 = Normal Operation

bit 0 READ: MII Management Read Command bit

- 1 = The MII Management module will perform a single read cycle. The read data is returned in the EMAC1MRDD register
- 0 = The MII Management module will perform a write cycle. The write data is taken from the EMAC1MWTD register

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

32.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX5XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX5XX/6XX/7XX devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD \ge 2.3V (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	0.3V to +3.6V
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	300 mA
Maximum current into Vod pin(s) (Note 2)	300 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 2)	200 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).

3: See the "Device Pin Tables" section for the 5V tolerant pins.

DC CHARACT	ERISTICS		Standard ((unless ot) Operating t	trial mp				
Parameter No.	Typical ⁽²⁾	Max.	Units	Units Conditions				
Idle Current (I	IDLE) ^(1,3) for P	PIC32MX575	/675/695/775	795 Family Devices				
DC30	4.5	6.5	mA	-40°C, +25°C, +85°C		4 MHz		
DC30b	5	7	mA	+105°C	—	4 MHZ		
DC31	13	15	mA	-40°C, +25°C, +85°C	—	25 MHz		
DC32	28	30	mA	-40°C, +25°C, +85°C	—	60 MHz		
DC33	36	42	mA	-40°C, +25°C, +85°C		80 MHz		
DC33b	39	45	mA	+105°C	—			
DC34		40		-40°C				
DC34a		75	<u></u>	+25°C	2.3V			
DC34b	800		μA	+85°C	2.3V			
DC34c		1000		+105°C				
DC35	35			-40°C				
DC35a	65			+25°C	3.3V			
DC35b	600	_	μΑ	+85°C	3.3V	LPRC (31 kHz)		
DC35c	800			+105°C				
DC36		43		-40°C				
DC36a		106		+25°C	3.6V			
DC36b			μA	+85°C	3.0V			
DC36c				+105°C				

TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode, program Flash memory Wait states = 111, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0)
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.
- **4:** All parameters are characterized, but only those parameters listed for 4 MHz and 80 MHz are tested at 3.3V in manufacturing.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-Temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min. Typ. ⁽¹⁾ Max. Units Conditions				
D130	Ер	Cell Endurance	1000	_	_	E/W	
D130a	Ер	Cell Endurance	20,000			E/W	See Note 5
D131	Vpr	VDD for Read	2.3	—	3.6	V	—
D132	Vpew	VDD for Erase or Write	3.0	—	3.6	V	—
D132a	Vpew	VDD for Erase or Write	2.3	_	3.6	V	See Note 5
D134	Tretd	Characteristic Retention	20	_	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	—	10	_	mA	_
D138	Tww	Word Write Cycle Time ⁽⁴⁾	—	411	_	FRC Cycles	
D136	Trw	Row Write Cycle Time ^(2,4)	_	26067	_	FRC Cycles	
D137	TPE	Page Erase Cycle Time ⁽⁴⁾	_	201060		FRC Cycles	
D139	TCE	Chip Erase Cycle Time ⁽⁴⁾	_	804652		FRC Cycles	—

TABLE 32-11: DC CHARACTERISTICS: PROGRAM MEMORY⁽³⁾

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).

- **3:** Refer to *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.
- 4: This parameter depends on the FRC accuracy (see Table 32-19) and the FRC tuning values (see Register 8-2).
- **5:** This parameter only applies to PIC32MX534/564/664/764 devices.

TABLE 32-12: PROGRAM FLASH MEMORY WAIT STATE CHARACTERISTICS

DC CHARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-Temp} \end{array}$			
Required Flash Wait States	SYSCLK	Units	Comments	
0 Wait State	0 to 30	MHz	—	
1 Wait State	31 to 60			
2 Wait States	61 to 80			

TABLE 32-22: RESETS TIMING

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	_	400	600	μS	-40°C to +85°C
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.		1 μs + 8 SYSCLK cycles	_	_	-40°C to +85°C
SY20	TMCLR	MCLR Pulse Width (low)	—	2	_	μS	-40°C to +85°C
SY30	TBOR	BOR Pulse Width (low)	—	1		μS	-40°C to +85°C

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

APPENDIX A: MIGRATING FROM PIC32MX3XX/4XX TO PIC32MX5XX/6XX/7XX DEVICES

This appendix provides an overview of considerations for migrating from PIC32MX3XX/4XX devices to the PIC32MX5XX/6XX/7XX family of devices. The code developed for the PIC32MX3XX/4XX devices can be ported to the PIC32MX5XX/6XX/7XX devices after making the appropriate changes outlined below.

A.1 DMA

PIC32MX5XX/6XX/7XX devices do not support stopping DMA transfers in Idle mode.

A.2 Interrupts

PIC32MX5XX/6XX/7XX devices have persistent interrupts for some of the peripheral modules. This means that the interrupt condition for these peripherals must be cleared before the interrupt flag can be cleared.

For example, to clear a UART receive interrupt, the user application must first read the UART Receive register to clear the interrupt condition and then clear the associated UxIF flag to clear the pending UART interrupt. In other words, the UxIF flag cannot be cleared by software until the UART Receive register is read.

Table A-1 outlines the peripherals and associated interrupts that are implemented differently on PIC32MX5XX/6XX/7XX versus PIC32MX3XX/4XX devices.

In addition, on the SPI module, the IRQ numbers for the receive done interrupts were changed from 25 to 24 and the transfer done interrupts were changed from 24 to 25.

TABLE A-1: PIC32MX3XX/4XX VERSUS PIC32MX5XX/6XX/7XX INTERRUPT IMPLEMENTATION DIFFERENCES

Module	Interrupt Implementation
Input Capture	To clear an interrupt source, read the Buffer Result (ICxBUF) register to obtain the number of capture results in the buffer that are below the interrupt threshold (specified by ICI<1:0> bits).
SPI	Receive and transmit interrupts are controlled by the SRXISEL<1:0> and STXISEL<1:0> bits, respectively. To clear an interrupt source, data must be written to, or read from, the SPIxBUF register to obtain the number of data to receive/transmit below the level specified by the SRXISEL<1:0> and STXISEL<1:0> bits.
UART	TX interrupt will be generated as soon as the UART module is enabled. Receive and transmit interrupts are controlled by the URXISEL<1:0> and UTXISEL<1:0> bits, respectively. To clear an interrupt source, data must be read from, or written to, the UxRXREG or UxTXREG registers to obtain the number of data to receive/transmit below the level specified by the URXISEL<1:0> and UTXISEL<1:0> bits.
ADC	All samples must be read from the result registers (ADC1BUFx) to clear the interrupt source.
PMP	To clear an interrupt source, read the Parallel Master Port Data Input/Output (PMDIN/PMDOUT) register.