

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx795f512lt-80v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nur	nber ⁽¹⁾	(,	
Pin Name	64-Pin QFN/TQFP	100-Pin TQFP	121-Pin TFBGA	124-pin VTLA	Pin Type	Buffer Type	Description
SDI1	_	9	E1	B5	I	ST	SPI1 data in
SDO1		72	D9	B39	0	_	SPI1 data out
SS1	_	69	E10	A45	I/O	ST	SPI1 slave synchronization or frame pulse I/O
SCK3	49	48	K9	A31	I/O	ST	Synchronous serial clock input/output for SPI3
SDI3	50	52	K11	A36	Ι	ST	SPI3 data in
SDO3	51	53	J10	B29	0		SPI3 data out
SS3	43	47	L9	B26	I/O	ST	SPI3 slave synchronization or frame pulse I/O
SCK2	4	10	E3	A7	I/O	ST	Synchronous serial clock input/output for SPI2
SDI2	5	11	F4	B6	I	ST	SPI2 data in
SDO2	6	12	F2	A8	0	_	SPI2 data out
SS2	8	14	F3	A9	I/O	ST	SPI2 slave synchronization or frame pulse I/O
SCK4	29	39	L6	B22	I/O	ST	Synchronous serial clock input/output for SPI4
SDI4	31	49	L10	B27	Ι	ST	SPI4 data in
SDO4	32	50	L11	A32	0	_	SPI4 data out
SS4	21	40	K6	A27	I/O	ST	SPI4 slave synchronization or frame pulse I/O
SCL1	44	66	E11	B36	I/O	ST	Synchronous serial clock input/output for I2C1
SDA1	43	67	E8	A44	I/O	ST	Synchronous serial data input/output for I2C1
SCL3	51	53	J10	B29	I/O	ST	Synchronous serial clock input/output for I2C3
SDA3	50	52	K11	A36	I/O	ST	Synchronous serial data input/output for I2C3
SCL2		58	H11	A39	I/O	ST	Synchronous serial clock input/output for I2C2
SDA2		59	G10	B32	I/O	ST	Synchronous serial data input/output for I2C2
SCL4	6	12	F2	A8	I/O	ST	Synchronous serial clock input/output for I2C4
SDA4	5	11	F4	B6	I/O	ST	Synchronous serial data input/output for I2C4
SCL5	32	50	L11	A32	I/O	ST	Synchronous serial clock input/output for I2C5
SDA5	31	49	L10	B27	I/O	ST	Synchronous serial data input/output for I2C5
Legend: C S T	CMOS = CMO ST = Schmitt T TL = TTL inp	S compatib Frigger input ut buffer	le input or c t with CMO	output S levels	A O	nalog = A = Outpu	Analog input P = Power t I = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are only provided for reference. See the "Device Pin Tables" section for device pin availability.

2: See 25.0 "Ethernet Controller" for more information.

FIGURE 4-6: MEMORY MAP ON RESET FOR PIC32MX695F512H, PIC32MX695F512L, PIC32MX795F512H AND PIC32MX795F512L DEVICES

2: The size of this memory region is programmable (see Section 3. "Memory Organization" (DS60001115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information).

5.1 **Control Registers**

FLASH CONTROLLER REGISTER MAP

ess										Bi	ts								ú		
Virtual Addr (BF80_#)	Registe Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets		
E400		31:16	_		_	—			—		—	—		—		—	—	—	0000		
F400		15:0	WR	WREN	WRERR	LVDERR	LVDSTAT		_		_	_		_	NVMOP<3:0>						
F410												0									
1410		15:0	0000													0000					
F420		31:16	3 N/MADDR -21:0-								0000										
1 420	NUNADDR	15:0														0000					
E430		31:16									A_31.05								0000		
1430		15:0								NVINDAI	AC01.02								0000		
E440	NVMSRC	31:16									21·05								0000		
F440	ADDR	15:0								INVIVISRCAI	001<31.0>								0000		

PIC32MX5XX/6XX/7XX

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information. Note 1:

ess										В	its								6		
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset		
	INTOON	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SS0	0000		
1000	INTCON	15:0	—	—	—	MVEC	_		TPC<2:0>		—	_		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000		
1010		31:16	—	_	—	—	_	_	—	-	_	_				_	—	_	0000		
1010	INTSTATO	15:0	—	—	—	-	—		SRIPL<2:0> — —						VEC	<5:0>			0000		
1020	IPTMR	31:16																0000			
1020		15:0			•													0000			
		31:16	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF SPI3TXIF	U1RXIF SPI3RXIF	U1EIF SPI3EIF		_	_	OC5IF	IC5IF	T5IF	INT4IF	OC4IF	IC4IF	T4IF	0000		
1030	IFS0					I2C3MIF	I2C3SIF	I2C3BIF													
		15:0	INT3IF	OC3IF	IC3IF	T3IF	INT2IF	OC2IF	IC2IF	T2IF	INT1IF	OC1IF	IC1IF	T1IF	INT0IF	CS1IF	CS0IF	CTIF	0000		
		31:16	IC3EIF	IC2EIF	IC1EIF	ETHIF	_	_	USBIF	FCEIF	DMA7IF ⁽²⁾	DMA6IF ⁽²⁾	DMA5IF ⁽²⁾	DMA4IF ⁽²⁾	DMA3IF	DMA2IF	DMA1IF	DMA0IF	0000		
1040								U2TXIF	U2RXIF	U2EIF	U3TXIF	U3RXIF	U3EIF								
1040	151	15:0	RTCCIF	FSCMIF	—	—	—	SPI4TXIF	SPI4RXIF	SPI4EIF	SPI2TXIF	SPI2RXIF	SPI2EIF	CMP2IF	CMP1IF	PMPIF	AD1IF	CNIF	0000		
								I2C5MIF	I2C5SIF	I2C5BIF	I2C4MIF	I2C4SIF	I2C4BIF								
1050	IES2	31:16	_	—			—	_	—	_	_	_	_	_	_	_	—	—	0000		
1000	11 02	15:0	—	—	—	—	U5TXIF	U5RXIF	U5EIF	U6TXIF	U6RXIF	U6EIF	U4TXIF	U4RXIF	U4EIF	PMPEIF	IC5EIF	IC4EIF	0000		
		31:16	1:16 I2C1MIE					U1TXIE	U1RXIE	U1EIE	_										
1060	IEC0			I2C1SIE I20	I2C1BIE	SPI3TXIE	SPI3RXIE SPI3EIE	SPI3EIE	EIE —		—	OC5IE	IC5IE	T5IE	INT4IE	OC4IE	IC4IE	T4IE	0000		
						I2C3MIE	I2C3SIE	I2C3BIE													
		15:0	INT3IE	OC3IE	IC3IE	T3IE	INT2IE	OC2IE	IC2IE	T2IE	INT1IE	OC1IE	IC1IE	T1IE	INTOIE	CS1IE	CSOIE	CTIE	0000		
		31:16	IC3EIE	IC2EIE	IC1EIE	ETHIE	_		USBIE	FCEIE			DMA5IE	DMA4IE**	DMA3IE	DMA2IE	DMA1IE	DMA0IE	0000		
1070	IEC1	15.0	PTCCIE	ESCMIE									SDISEIE	CMD2IE	CMD1IE	DMDIE		CNIE	0000		
		15.0	RICCIE	FSCIVIE	_	_	_	J2CEMIE		JOCEDIE		JOCASIE		CIVIPZIE		PINIFIE	ADTIE	CINIE	0000		
		31.16			_	_	_	1203IVITE	120551E	1203BIE	1204IVITE	120431E	1204bie	_	_		_		0000		
1080	IEC2	15:0	_	_	_	_	U5TXIE	U5RXIE	U5EIE	U6TXIE	U6RXIE	U6EIE	U4TXIE	U4RXIE	U4EIE	PMPEIE	IC5EIE	IC4EIE	0000		
		31:16	_	_	_		INT0IP<2:0>		INTOIS	6001741 <u>2</u> 6<1:0>	_	_	_	0 HOUL	CS1IP<2:0>	ב.ב	CS1IS	S<1:0>	0000		
1090	IPC0	15:0	_	_	_		CS0IP<2:0>		CSOIS	S<1:0>	_	_	_		CTIP<2:0>		CTIS	<1:0>	0000		
	15.07	31:16	_	_	_		INT1IP<2:0>	,	INT1IS	S<1:0>	_	_	_		OC1IP<2:0>		OC1IS	S<1:0>	0000		
10A0	IPC1	15:0	—	_	_		IC1IP<2:0>		IC1IS	<1:0>	_	—	_		T1IP<2:0>		T1IS	<1:0>	0000		
1000	IDCO	31:16	—	_	—		INT2IP<2:0>	•	INT2IS<1:0>		—	—			OC2IP<2:0>	•	OC2IS	S<1:0>	0000		
1080	IPC2	15:0	—	_	_		IC2IP<2:0>		IC2IS	<1:0>	_	_			T2IP<2:0>		T2IS	<1:0>	0000		
1000	IPC3	31:16	_	_	_		INT3IP<2:0>	,	INT3IS<1:0>		_	_	_	OC3IP<2:0>		OC3IP<2:0>		OC3IS	S<1:0>	0000	
1000	15.03	15:0	—	—	—		IC3IP<2:0>		IC3IS	JIS<1:0> — — — T3IP<2:0>		T3IS	<1:0>	0000							
Legend	1: x = 1	unknov	vn value on	value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																	

TABLE 7-3: INTERRUPT REGISTER MAP FOR PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H AND DIC22MV605E512U DEVICES

DS60001156J-page 79

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Except where noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 "CLR, SET and INV Note 1: Registers" for more information.

These bits are not available on PIC32MX664 devices. 2:

This register does not have associated CLR, SET, and INV registers. 3:

© 2009-2016 Microchip Technology Inc.

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	_	—	_		IP03<2:0>		IS03-	<1:0>	
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	_	—	_		IP02<2:0>		IS02<1:0>		
15.9	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.0	—	—	—		IP01<2:0>		IS01-	<1:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_				IP00<2:0>	IS00<1:0>			

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-29 Unimplemented: Read as '0'

bit 28-26	IP03<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	• $010 - $ Interrupt priority is 2
	0.01 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 25-24	IS03<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 23-21	Unimplemented: Read as '0'
bit 20-18	IP02<2:0>: Interrupt Priority bits
	111 = Interrupt priority is 7
	•
	•
	• $010 - $ Interrupt priority is 2
	0.01 = Interrupt priority is 1
	000 = Interrupt is disabled
bit 17-16	IS02<1:0>: Interrupt Sub-priority bits
	11 = Interrupt sub-priority is 3
	10 = Interrupt sub-priority is 2
	01 = Interrupt sub-priority is 1
	00 = Interrupt sub-priority is 0
bit 15-13	Unimplemented: Read as '0'
Note:	This register represents a generic definiti

definitions.

ister represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit ns.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
51.24	—	—	—	—	—	—	—	—					
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23.10	—	—	—	—		—		—					
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
15.0	—	—	—	—		—		—					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
7.0	CNT<7:0>												

REGISTER 11-16: U1SOF: USB SOF THRESHOLD REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

- bit 7-0 CNT<7:0>: SOF Threshold Value bits
 - Typical values of the threshold are: 01001010 = 64-byte packet 00101010 = 32-byte packet 00011010 = 16-byte packet

00010010 = 8-byte packet

REGISTER 11-17: U1BDTP1: USB BUFFER DESCRIPTOR TABLE PAGE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	—	—	—			
23.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	—	—	—			
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.6	—	—	—	—	—	—	—	—			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
7.0	BDTPTRL<15:9>										

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 31-8 Unimplemented: Read as '0'

bit 7-1 BDTPTRL<15:9>: BDT Base Address bits

This 7-bit value provides address bits 15 through 9 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

bit 0 Unimplemented: Read as '0'

TABLE 12-9: PORTF REGISTER MAP FOR PIC32MX534F064H, PIC32MX564F064H, PIC32MX564F128H, PIC32MX575F512H, PIC32MX664F064H, PIC32MX664F128H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX775F512H, PIC32MX795F512H, DEVICES

ess	Register Name ⁽¹⁾	e								Bi	its								\$
Virtual Addl (BF88_#		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6140	TDICE	31:16	_	_	-	—	-	_	_	—	-	_	—	—	_	_	_	_	0000
6140	IRISE	15:0	_	_	_	_	_	_	_	_	_	_	TRISF5	TRISF4	TRISF3	_	TRISF1	TRISF0	003B
6150	DODTE	31:16		_	_		_	-	_			—	_		_				0000
6150	PURIF	15:0		_	_		_		_			—	RF5	RF4	RF3		RF1	RF0	xxxx
6160		31:16	_		—	-	—	-			_	—	_	-		-	_	-	0000
0100	LAIF	15:0	-	_	_		_	-	_			—	LATF5	LATF4	LATF3		LATF1	LATF0	xxxx
6170	ODCE	31:16		_	_		_		_			—	_		_				0000
	ODCF	15:0	_	_	_	_	_	_	_	_	_	_	ODCF5	ODCF4	ODCF3	_	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 12-10: PORTF REGISTER MAP PIC32MX534F064L, PIC32MX564F064L, PIC32MX564F128L, PIC32MX575F256L, PIC32MX575F512L, PIC32MX664F064L, PIC32MX664F128L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX764F128L, PIC32MX775F512L AND PIC32MX795F512L DEVICES

ess										В	ts								6
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6140	TDICE	31:16	-	_	-	-	-	_	-	-	-	_	-	_	_	-	_	_	0000
6140	IRISE	15:0	_	_	TRISF13	TRISF12	_	-	_	TRISF8	_	_	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
6150	DODTE	31:16	_	_	_	_	_	_	_	_		_	—	_	_	_	_	_	0000
0150	FURIF	15:0	_	—	RF13	RF12	_	_	_	RF8		—	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6160		31:16	—	—	—	—	—	—	—	_	_	—	—	—	—	—	—		0000
0160	LAIF	15:0	—	_	LATF13	LATF12	—	_	—	LATF8	-	—	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6170	ODCE	31:16		_	—	_	-	_	_			_	—	_	_	—	_	_	0000
6170	ODCF	15:0	_	_	ODCF13	ODCF12	_	_	_	ODCF8	_		ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	—	—	—	—	—
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_	_	_	_	_

REGISTER 12-1: CNCON: CHANGE NOTICE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = Idle mode halts CN operation
 - 0 = Idle mode does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

15.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Watchdog Timer and Power-up Timer" in the "PIC32 (DS60001114) Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes the operation of the WDT and Power-up Timer of the PIC32MX5XX/6XX/7XX.

The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are key features of the WDT module:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle mode

FIGURE 15-1: WATCHDOG TIMER AND POWER-UP TIMER BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	_
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ^(1,2)	—	—	—	—	—	—	_
7:0	U-0	R-y	R-y	R-y	R-y	R-y	R/W-0	R/W-0
	_		S	WDTWINEN	WDTCLR			

REGISTER 15-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Legend:	y = Values set from Configuration bits on POR		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 0

- bit 15 **ON:** Watchdog Timer Enable bit^(1,2)
 - 1 = Enables the WDT if it is not enabled by the device configuration 0 = Disable the WDT if it was enabled in software
- bit 14-7 **Unimplemented:** Read as '0'
- bit 6-2 **SWDTPS<4:0>:** Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> Configuration bits.
- bit 1 WDTWINEN: Watchdog Timer Window Enable bit
 - 1 = Enable windowed Watchdog Timer
 - 0 = Disable windowed Watchdog Timer
 - WDTCLR: Watchdog Timer Reset bit
 - 1 = Writing a '1' will clear the WDT
 - 0 = Software cannot force this bit to a '0'
- Note 1: A read of this bit results in a '1' if the Watchdog Timer is enabled by the device configuration or software.
 - 2: When using the 1:1 PBCLK divisor, the user's software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

16.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122) of the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/PIC32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:

- Simple capture event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin

- Capture timer value on every edge (rising and falling)
- Capture timer value on every edge (rising and falling), specified edge first.
- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input Capture module can also be used to provide additional sources of external interrupts

FIGURE 16-1: INPUT CAPTURE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—	—	_	
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16		MONT	H10<3:0>		MONTH01<3:0>				
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8		DAY	10<1:0>		DAY01<3:0>				
7:0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
	_	_	_			WDAYO)1<3:0>		

REGISTER 22-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
23.10	—	—	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN		
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
10.0	TERRCNT<7:0>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				RERRC	NT<7:0>					

REGISTER 24-5: CITREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT \geq 256)

- bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT \geq 128)
- bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT \geq 128)
- bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)
- bit 17 **RXWARN:** Receiver in Error State Warning $(128 > \text{RERRCNT} \ge 96)$
- bit 16 EWARN: Transmitter or Receiver is in Error State Warning
- bit 15-8 TERRCNT<7:0>: Transmit Error Counter
- bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 24-6: CIFSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
31.24	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
23.10	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
10.0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 FIFOIP<31:0>: FIFOn Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

REGISTER 25-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

bit 6	PKTPEND: Packet Pending Interrupt bit
	1 = RX packet pending in memory 0 = RX packet is not pending in memory
	This bit is set when the BUFCNT counter has a value other than '0'. It is cleared by either a Reset or by writing the BUFCDEC bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.
bit 5	RXACT: Receive Activity Interrupt bit
	1 = RX packet data was successfully received0 = No interrupt pending
	This bit is set whenever RX packet data is stored in the RXBM FIFO. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 4	Unimplemented: Read as '0'
bit 3	TXDONE: Transmit Done Interrupt bit
	1 = TX packet was successfully sent0 = No interrupt pending
	This bit is set when the currently transmitted TX packet completes transmission, and the Transmit Status Vector is loaded into the first descriptor used for the packet. It is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 2	TXABORT: Transmit Abort Condition Interrupt bit
	 1 = TX abort condition occurred on the last TX packet 0 = No interrupt pending
	This bit is set when the MAC aborts the transmission of a TX packet for one of the following reasons:
	Jumbo TX packet abort
	Underrun abort
	Excessive defer abort
	Late collision abort
	Excessive collisions abort
	This bit is cleared by either a Reset or CPU write of a '1' to the CLR register.
bit 1	RXBUFNA: Receive Buffer Not Available Interrupt bit
	 1 = RX Buffer Descriptor Not Available condition has occurred 0 = No interrupt pending
	This bit is set by a RX Buffer Descriptor Overrun condition. It is cleared by either a Reset or a CPU write of a '1' to the CLR register.
bit 0	RXOVFLW: Receive FIFO Over Flow Error bit
	1 = RX FIFO Overflow Error condition has occurred0 = No interrupt pending
	RXOVFLW is set by the RXBM Logic for an RX FIFO Overflow condition. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	_			—		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	—			—	_	—
	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SOFT	SIM			RESET	RESET	RESET	RESET
	RESET	RESET			RMCS	RFUN	TMCS	TFUN
	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
7:0			_	LOOPBACK	TX PAUSE	RX PAUSE	PASSALL	RX ENABLE

-				
1	ea	er	nd:	

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	SOFTRESET: Soft Reset bit
	Setting this bit will put the MACMII in reset. Its default value is '1'.
bit 14	SIMRESET: Simulation Reset bit
	Setting this bit will cause a reset to the random number generator within the Transmit Function.
bit 13-12	Unimplemented: Read as '0'
bit 11	RESETRMCS: Reset MCS/RX bit
	Setting this bit will put the MAC Control Sub-layer/Receive domain logic in reset.
bit 10	RESETRFUN: Reset RX Function bit
	Setting this bit will put the MAC Receive function logic in reset.
bit 9	RESETTMCS: Reset MCS/TX bit
	Setting this bit will put the MAC Control Sub-layer/TX domain logic in reset.
bit 8	RESETTFUN: Reset TX Function bit
	Setting this bit will put the MAC Transmit function logic in reset.
bit 7-5	Unimplemented: Read as '0'
bit 4	LOOPBACK: MAC Loopback mode bit
	 1 = MAC Transmit interface is loop backed to the MAC Receive interface 0 = MAC normal operation
bit 3	TXPAUSE: MAC TX Flow Control bit
	 1 = PAUSE Flow Control frames are allowed to be transmitted 0 = PAUSE Flow Control frames are blocked
bit 2	RXPAUSE: MAC RX Flow Control bit
	1 = The MAC acts upon received PAUSE Flow Control frames0 = Received PAUSE Flow Control frames are ignored
bit 1	PASSALL: MAC Pass all Receive Frames bit
	1 = The MAC will accept all frames regardless of type (Normal vs. Control)0 = The received Control frames are ignored
bit 0	RXENABLE: MAC Receive Enable bit
	1 = Enable the MAC receiving of frames

0 = Disable the MAC receiving of frames

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

PIC32MX5XX/6XX/7XX

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	—	—	—	—		—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	—	_	—	
15.0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	
15.6	STNADDR2<7:0>								
7:0	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	R/W-P	
	STNADDR1<7:0>								

REGISTER 25-39: EMAC1SA2: ETHERNET CONTROLLER MAC STATION ADDRESS 2 REGISTER

Legend:		P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-16 Reserved: Maintain as '0'; ignore read
- bit 15-8 **STNADDR2<7:0>:** Station Address Octet 2 bits These bits hold the second transmitted octet of the station address.
- bit 7-0 **STNADDR1<7:0>:** Station Address Octet 1 bits These bits hold the most significant (first transmitted) octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

31.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

31.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

32.1 DC Characteristics

TABLE 32-1: OPERATING MIPS VS. VOLTAGE

Charactoristic	VDD Range	Temp. Range	Max. Frequency	
Characteristic	(in Volts) ⁽¹⁾	(in °C)	PIC32MX5XX/6XX/7XX	
DC5	2.3-3.6V	-40°C to +85°C	80 MHz	
DC5b	2.3-3.6V	-40°C to +105°C	80 MHz	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 32-10 for BOR values.

TABLE 32-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Typical	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-Temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH)		PINT + PI/O		W	
I/O Pin Power Dissipation: $I/O = S (({VDD - VOH} \times IOH) + S (VOL \times IOL))$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Max.	Unit	See Note
Package Thermal Resistance, 121-Pin TFBGA (10x10x1.1 mm)	θJA	40		°C/W	1
Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm)	θJA	43	—	°C/W	1
Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm)	θJA	43		°C/W	1
Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm)	θJA	47		°C/W	1
Package Thermal Resistance, 64-Pin QFN (9x9x0.9 mm)	θJA	28	—	°C/W	1
Package Thermal Resistance, 124-Pin VTLA (9x9x0.9 mm)	θJA	21		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

FIGURE 32-21: TRANSMIT SIGNAL TIMING RELATIONSHIPS AT THE MII

Example

34.0 PACKAGING INFORMATION

34.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

Legend	: XXX	Customer-specific information						
_	Y Year code (last digit of calendar year)							
	ΥY	Year code (last 2 digits of calendar year)						
	WW	Week code (week of January 1 is week '01')						
	NNN	Alphanumeric traceability code						
		Pb-free JEDEC designator for Matte Tin (Sn)						
	*	This package is Pb-free. The Pb-free JEDEC designator (\bigcirc						
		can be found on the outer packaging for this package. \Box						
Note:	In the ever	nt the full Microchip part number cannot be marked on one line, it will						
	be carried characters	d over to the next line, thus limiting the number of available s for customer-specific information.						