

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1904-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	10
2.0	Enhanced Mid-range CPU	15
3.0	Memory Organization	16
4.0	Device Configuration	38
5.0	Resets	43
6.0	Oscillator Module	51
7.0	Interrupts	60
8.0	Power-Down Mode (Sleep)	71
9.0	Watchdog Timer	73
10.0	Flash Program Memory Control	77
11.0	I/O Ports	93
12.0	Interrupt-On-Change	. 109
13.0	Fixed Voltage Reference (FVR)	. 112
14.0	Temperature Indicator Module	. 114
15.0	Analog-to-Digital Converter (ADC) Module	. 115
16.0	Timer0 Module	. 128
17.0	Timer1 Module with Gate Control	. 130
18.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	. 142
19.0	Liquid Crystal Display (LCD) Driver Module	. 171
20.0	In-Circuit Serial Programming™ (ICSP™)	. 205
21.0	Instruction Set Summary	. 207
22.0	Electrical Specifications	. 221
23.0	DC and AC Characteristics Graphs and Charts	. 238
24.0	Development Support	. 239
25.0	Packaging Information	. 243
Appe	ndix A: Data Sheet Revision History	. 261
The N	/icrochip WebSite	. 262
Custo	omer Change Notification Service	. 262
Custo	mer Support	. 262
Produ	uct Identification System	. 263

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16LF1904/6/7 are described within this data sheet. They are available in 28, 40 and 44-pin packages. Figure 1-1 shows a block diagram of the PIC16LF1904/6/7 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16LF1906	PIC16LF1904/7
ADC	٠	•	
EUSART		•	•
Fixed Voltage Reference	e (FVR)	•	•
LCD		•	•
Temperature Indicator		•	•
Timers			
	Timer0	•	•
	Timer1	•	•

TABLE 3-3: PIC16LF1904/6/7 MEMORY MAP

000h		[
	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	—	28Ch	—	30Ch	—	38Ch	—
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	_	30Dh	—	38Dh	—
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	_	20Eh	—	28Eh	—	30Eh	_	38Eh	_
00Fh	PORTD ⁽¹⁾	08Fh	TRISD ⁽¹⁾	10Fh	LATD ⁽¹⁾	18Fh	_	20Fh	—	28Fh	—	30Fh	_	38Fh	—
010h	PORTE	090h	TRISE ⁽¹⁾	110h	LATE ⁽¹⁾	190h	ANSELE ⁽¹⁾	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	_	191h	PMADRL	211h	_	291h	—	311h	—	391h	_
012h	PIR2	092h	PIE2	112h	_	192h	PMADRH	212h	—	292h	_	312h	_	392h	_
013h	_	093h	—	113h	_	193h	PMDATL	213h	—	293h	—	313h	_	393h	_
014h	_	094h	—	114h	_	194h	PMDATH	214h	—	294h	—	314h	_	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	_	195h	PMCON1	215h	—	295h	_	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	—	296h	—	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	—	217h	—	297h	—	317h	—	397h	—
018h	T1CON	098h	—	118h	—	198h	_	218h	—	298h	—	318h	—	398h	—
019h	T1GCON	099h	OSCCON	119h	—	199h	RCREG	219h	—	299h	—	319h	—	399h	—
01Ah	—	09Ah	OSCSTAT	11Ah	—	19Ah	TXREG	21Ah	—	29Ah	—	31Ah	—	39Ah	—
01Bh	—	09Bh	ADRESL	11Bh	—	19Bh	SPBRG	21Bh	—	29Bh	—	31Bh	—	39Bh	—
01Ch	—	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	—	29Ch	—	31Ch	—	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	_	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	—
01Eh	_	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh	_	29Eh	_	31Eh	_	39Eh	—
01Fh	—	09Fh	—	11Fh	—	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh	—	39Fh	—
020h	General Purpose	0A0h	General Purpose Register 80 Bytes	120h 13Fh 140h	General Purpose Register 80 Bytes	1A0h	General Purpose Register 80 Bytes ⁽²⁾	220h	General Purpose Register 80 Bytes ⁽²⁾	2A0h	General Purpose Register 80 Bytes ⁽²⁾	320h	General Purpose Register 32 Bytes ⁽²⁾ Unimplemented Read as ¹⁰	3A0h	Unimplemented Read as '0'
06Fh	Register	0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h 07Fh	So dytes	0F0h 0FFh	Accesses 70h – 7Fh	170h 17Fh	Accesses 70h – 7Fh	1F0h 1FFh	Accesses 70h – 7Fh	270h 27Fh	Accesses 70h – 7Fh	2F0h 2FFh	Accesses 70h – 7Fh	370h 37Fh	Accesses 70h – 7Fh	3F0h 3FFh	Accesses 70h – 7Fh

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: PIC16LF1904/7 only.

2: PIC16LF1906/7 only.

4.2 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection is controlled independently. Internal access to the program memory is unaffected by any code protection setting.

4.2.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Word 1. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.3** "Write **Protection**" for more information.

4.3 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Word 2 define the size of the program memory block that is protected.

4.4 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 10.4 "User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF 190X Memory Programming Specification" (DS41397).

R-1/q	U-0	R-q/q	R-0/q	U-0	U-0	R-0/0	R-0/q
T1OSCR		OSTS	HFIOFR	_	—	LFIOFR	HFIOFS
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Condition	nal		
bit 7	T1OSCR: Tin	ner1 Oscillator	Ready bit				
	If T1OSCEN	<u>= 1</u> :					
	1 = Timer1 c	scillator is rea	dy .				
	0 = 1 imer1 c	scillator is not	ready				
	If I1OSCEN	<u>= 0</u> : Nock cource in	alwaya raady				
			always leauy				
DIT 6	Unimplemen	ted: Read as	0.				
bit 5	OSTS: Oscilla	ator Start-up Ti	me-out Status	bit			
	1 = Running 0 = Running	from the exter	nal clock soure al oscillator (F	ce (EC) OSC<1:0> = 0	0)		
bit 4	HFIOFR: Hig	h-Frequency Ir	ternal Oscillat	or Ready bit	,		
	1 = HFINTOS	SC is ready		,			
	0 = HFINTOS	SC is not ready	,				
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	LFIOFR: Low	-Frequency In	ernal Oscillato	or Ready bit			
	1 = LFINTOS	SC is ready					
	0 = LFINTOS	SC is not ready					
bit 0	HFIOFS: High	h-Frequency Ir	ternal Oscillate	or Stable bit			
	1 = HFINTOS	SC 16 MHz os	cillator is stable	e and is driving	the INTOSC		
	0 = HFINTOS	SC 16 MHz os	cillator is not st	able, the start-	up oscillator is o	driving INTOSC	2

REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER

TABLE 6-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF	<3:0>			SCS	58	
OSCSTAT	T1OSCR	—	OSTS	HFIOFR	_	-	LFIOFR	HFIOFS	59
T1CON	TMR10	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC		TMR10N	139

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	—	CLKOUTEN	BOREI	N<1:0>	—	20
CONFIGT	7:0	CP	MCLRE PWRTE		WDTE	E<1:0>		FOSC	C<1:0>	39

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

7.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 7-3.

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

U-0	U-0	U-0	U-0	U-0	R/W-0/0	U-0	U-0
—	—	—	—	—	LCDIE	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	Unimplemented: Read as '0'
bit 2	LCDIE: LCD Module Interrupt Enable bit
	1 = Enables the LCD module interrupt
	0 = Disables the LCD module interrupt
bit 1-0	Unimplemented: Read as '0'

DS40001569D-page 84

© 2011-2016 Microchip Technology Inc

PIC16LF1904/6/7

PIC16LF1904/6/7

EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR ; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR, stored in little endian format ; ; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH: ADDRL ; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM) INTCON,GIE BCF ; Disable ints so required sequences will execute properly PMADRH ; Bank 3 BANKSEL MOVF ADDRH,W ; Load initial address MOVWF PMADRH MOVF ADDRL,W MOVWE PMADRL LOW DATA_ADDR ; Load initial data address MOVLW MOVWF FSROL MOVLW HIGH DATA_ADDR ; Load initial data address MOVWF FSROH ; PMCON1,CFGS ; Not configuration space BCF BSF PMCON1.WREN ; Enable writes BSF PMCON1,LWLO ; Only Load Write Latches LOOP MOVIW FSR0++ ; Load first data byte into lower MOVWE PMDATT. ; MOVIW FSR0++ ; Load second data byte into upper MOVWF PMDATH ; Check if lower bits of address are '00000' MOVF PMADRL,W 0x1F ; Check if we're on the last of 32 addresses XORLW ANDLW 0x1F STATUS, Z ; Exit if last of 32 words, BTFSC GOTO START_WRITE ; MOVLW 55h ; Start of required write sequence: MOVWF PMCON2 ; Write 55h Required Sequence MOVLW 0AAh MOVWF PMCON2 ; Write AAh ; Set WR bit to begin write BSF PMCON1,WR NOP ; NOP instructions are forced as processor ; loads program memory write latches NOP INCF PMADRL, F ; Still loading latches Increment address GOTO LOOP ; Write next latches START_WRITE BCF PMCON1,LWLO ; No more loading latches - Actually start Flash program ; memory write MOVLW 55h ; Start of required write sequence: MOVWF PMCON2 ; Write 55h Required Sequence MOVLW 0AAh ; MOVWF PMCON2 ; Write AAh BSF PMCON1,WR ; Set WR bit to begin write NOP ; NOP instructions are forced as processor writes ; all the program memory write latches simultaneously NOP ; to program memory. ; After NOPs, the processor ; stalls until the self-write process in complete ; after write processor continues with 3rd instruction BCF PMCON1,WREN ; Disable writes BSF INTCON, GIE ; Enable interrupts

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Prog	gram Memory	Control Regist	er 2		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
S = Bit can onl	y be set	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PMCON1	(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	91
PMCON2	2 Program Memory Control Register 2								92
PMADRL	PMADRL<7:0>							90	
PMADRH	(1)	(1) PMADRH<6:0>							90
PMDATL	PMDATL<7:0>							90	
PMDATH	_	—	PMDATH<5:0>						90
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	65

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Flash Program Memory module. Note 1: Unimplemented, read as '1'.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	—	—	—	CLKOUTEN	BORE	N<1:0>		20
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		1	FOSC<1:0>		39
CONFICS	13:8	—	—	LVP	DEBUG	LPBOR	BORV	STVREN	1	40
CONFIG2	7:0	_	_	_	_	_	_	WRT	<1:0>	40

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Flash Program Memory.

11.3 PORTC Registers

PORTC is an 8-bit wide bidirectional port. The corresponding data direction register is TRISC (Register 11-6). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 11-5) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

The TRISC register (Register 11-6) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.3.1 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each PORTC pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-7.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in Table 11-7.

Pin Name	Function Priority ⁽¹⁾
RC0	T1OSO T1CKI RC0
RC1	T1OSI RC1
RC2	SEG2 RC2
RC3	SEG6 RC3
RC4	SEG11 T1G RC4
RC5	SEG10 RC5
RC6	SEG9 RC6 TX/CK
RC7	SEG8 RC7 RX/DT

TABLE 11-7: PORTC OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

REGISTER 11-10: PORTC: PORTC REGISTER

		R/W-X/U	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RC6	RC5	RC4	RC3	RC2	RC1	RC0	
						bit 0	
t	W = Writable I	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
	'0' = Bit is clea	ared					
1	RC6 t ged	t W = Writable ged x = Bit is unkn '0' = Bit is clea	RC6 RC5 RC4 t W = Writable bit iged x = Bit is unknown '0' = Bit is cleared	RC6 RC5 RC4 RC3 t W = Writable bit U = Unimpler iged x = Bit is unknown -n/n = Value a '0' = Bit is cleared '0' = Bit is cleared	RC6 RC5 RC4 RC3 RC2 t W = Writable bit U = Unimplemented bit, read iged x = Bit is unknown -n/n = Value at POR and BOR '0' = Bit is cleared '0' = Bit is cleared	RC6 RC5 RC4 RC3 RC2 RC1 t W = Writable bit U = Unimplemented bit, read as '0' iged x = Bit is unknown -n/n = Value at POR and BOR/Value at all o '0' = Bit is cleared	

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTC are actually written to the corresponding LATC register. Reads from the PORTC register is return of actual I/O pin values.

REGISTER 11-11: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 11-12: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

15.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 15-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

FIGURE 15-1: ADC BLOCK DIAGRAM

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 15.2.5 "A/D Conversion
	Procedure".

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

FIGURE 17-5:	TIMER1 GATE SINGLE-PL	PULSE MODE
		_
IMRIGE		
T1GPOL		
T1GSPM		Cleared by bardware on
T1GG <u>O/</u> DONE	← Set by software Counting enabled on rising edge of T1G	falling edge of T1GVAL
T1G_IN		
T1CKI		
T1GVAL		
Timer1	<u>N</u>	N + 1 N + 2
TMR1GIF	— Cleared by software	Set by hardware on falling edge of T1GVAL

FIGURE 18-10: SYNCHRONOUS TRANSMISSION

FIGURE 18-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

19.4.3 AUTOMATIC POWER MODE SWITCHING

As an LCD segment is electrically only a capacitor, current is drawn only during the interval where the voltage is switching. To minimize total device current, the LCD internal reference ladder can be operated in a different power mode for the transition portion of the duration. This is controlled by the LCDRL Register (Register 19-7). The LCDRL register allows switching between two power modes, designated 'A' and 'B'. 'A' Power mode is active for a programmable time, beginning at the time when the LCD segments transition. 'B' Power mode is the remaining time before the segments or commons change again. The LRLAT<2:0> bits select how long, if any, that the 'A' Power mode is active. Refer to Figure 19-4.

To implement this, the 5-bit prescaler used to divide the 32 kHz clock down to the LCD controller's 1 kHz base rate is used to select the power mode.

FIGURE 19-4: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	Z		28			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1		1.40 REF			
Lead Angle	Θ	0°	-	I		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0545-0