

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1904-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Dedicated low-power 32 kHz oscillator driver
- Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART):
 - RS-232, RS-485 and LIN compatible
 - Auto-Baud Detect
 - Auto-wake-up on start

PIC16LF190X Family Types

	~	~		ash					LCD				
Device	Data Sheet Inde)	Program Memor Flash (words)	Data SRAM (bytes)	High-Endurance Fl (bytes)	ا/O's ⁽²⁾	10-bit ADC (ch)	Timers (8/16-bit)	EUSART	Common Pins	Segment Pins	Total Segments	Debug ⁽¹⁾	ХГР
PIC16LF1902	(1)	2048	128	128	25	11	1/1		4	19	72 ⁽³⁾	Н	Y
PIC16LF1903	(1)	4096	256	128	25	11	1/1		4	19	72 ⁽³⁾	Н	Y
PIC16LF1904	(2)	4096	256	128	36	14	1/1	1	4	29	116	I/H	Y
PIC16LF1906	(2)	8192	512	128	25	11	1/1	1	4	19	72 ⁽³⁾	I/H	Y
PIC16LF1907	(2)	8192	512	128	36	14	1/1	1	4	29	116	I/H	Y

Note 1: Debugging Methods: (I) – Integrated on Chip; (H) – using Debug Header; (E) – using Emulation Header.
2: One pin is input-only.

3: COM3 and SEG15 share a pin, so the total segments are limited to 72 for 28-pin devices.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS40001455 PIC16LF1902/3 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.
- 2: DS40001569 PIC16LF1904/6/7 Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

1.0 DEVICE OVERVIEW

The PIC16LF1904/6/7 are described within this data sheet. They are available in 28, 40 and 44-pin packages. Figure 1-1 shows a block diagram of the PIC16LF1904/6/7 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral	PIC16LF1906	PIC16LF1904/7	
ADC		٠	•
EUSART	•	•	
Fixed Voltage Reference	e (FVR)	•	•
LCD		•	•
Temperature Indicator		•	•
Timers			
	Timer0	•	•
	Timer1	•	•

4.2 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection is controlled independently. Internal access to the program memory is unaffected by any code protection setting.

4.2.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Word 1. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.3** "Write **Protection**" for more information.

4.3 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Word 2 define the size of the program memory block that is protected.

4.4 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 10.4 "User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations. For more information on checksum calculation, see the "PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF 190X Memory Programming Specification" (DS41397).

PIC16LF1904/6/7

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
BORCON	SBOREN	BORFS			—	_		BORRDY	45		
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	49		
STATUS	—	_		TO	PD	Z	DC	С	21		
WDTCON	—			WDTPS<4:0> SWDTEN 75							

TABLE 5-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

6.2.1.2 Secondary Oscillator

The secondary oscillator is a separate crystal oscillator that is associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1CKI/T1OSO and T1OSI device pins.

The secondary oscillator can be used as an alternate system clock source and can be selected during run-time using clock switching. Refer to **Section 6.3 "Clock Switching"** for more information.

FIGURE 6-3: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

6.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in Configuration Word 1 to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section 6.3 "Clock Switching"for more information.

In **INTOSC** mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT.

The function of the CLKOUT pin is determined by the state of the CLKOUTEN bit in Configuration Word 1.

The internal oscillator block has two independent oscillators that provides the internal system clock source.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz.
- 2. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

6.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source.

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 6-1). The frequency derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 6.2.2.4** "Internal Oscillator Clock Switch Timing" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 11, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running and can be utilized.

The High-Frequency Internal Oscillator Status Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

PIC16LF1904/6/7

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT			Interru during	pt Sampled Q1				
Interrupt								
GIE								
PC	PC-1	PC	PC	+1	0004h	0005h		
Execute	1 Cycle Insti	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
Interrupt								
GIE								
PC	PC-1	РС	PC+1/FSR	New PC/	0004h	0005h		
Execute-	2 Cycle Insti	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
Interrupt								
GIE								
			[]	[]		\		
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h	
Execute	3 Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	P	0+2	0004h	0005h
Execute	3 Cycle Insti	ruction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)

11.3 PORTC Registers

PORTC is an 8-bit wide bidirectional port. The corresponding data direction register is TRISC (Register 11-6). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 11-5) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

The TRISC register (Register 11-6) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.3.1 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each PORTC pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-7.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in Table 11-7.

Pin Name	Function Priority ⁽¹⁾					
RC0	T1OSO T1CKI RC0					
RC1	T1OSI RC1					
RC2	SEG2 RC2					
RC3	SEG6 RC3					
RC4	SEG11 T1G RC4					
RC5	SEG10 RC5					
RC6	SEG9 RC6 TX/CK					
RC7	SEG8 RC7 RX/DT					

TABLE 11-7: PORTC OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

15.2.6 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 15-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7		Unimplemented: Read as '0'
bit 6-2	2	CHS<4:0>: Analog Channel Select bits
		00000 = ANO
		00001 = AN1
		00010 = AN2
		00011 = AN3
		00100 = AN4
		$00101 = AN5^{(3)}$
		$00110 = AN6^{(3)}$
		$00111 = AN7^{(3)}$
		01000 = AN8
		01001 = AN9
		01010 = AN10
		01011 = AN11
		01100 = AN12
		01101 = ANIS 01110 = Peserved Ne channel connected
		•
		•
		•
		11100 = Reserved. No channel connected.
		11101 = Temperature Indicator ⁽²⁾
		11110 = Reserved. No channel connected.
		11111 = FVR (Fixed Voltage Reference) Buffer 1 Output ⁽¹⁾
bit 1		GO/DONE: A/D Conversion Status bit
		1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.
		This bit is automatically cleared by hardware when the A/D conversion has completed.
		0 = A/D conversion completed/not in progress
bit 0		ADON: ADC Enable bit
		1 = ADC is enabled
		0 = ADC is disabled and consumes no operating current
Note	1:	See Section 13.0 "Fixed Voltage Reference (FVR)" for more information.
	2:	See Section 14.0 "Temperature Indicator Module" for more information.
	3:	ADC channel is reserved on the PIC16LF1906 28-pin device.

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Foso	: = 20.00	0 MHz	Fosc = 18.432 MHz			Fosc	: = 16.00	0 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215
1200	1200	-0.01	4166	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303
2400	2400	0.02	2082	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151
9600	9597	-0.03	520	9600	0.00	479	9592	-0.08	416	9600	0.00	287
10417	10417	0.00	479	10425	0.08	441	10417	0.00	383	10433	0.16	264
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47
115.2k	116.3k	0.94	42	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23

TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fos	c = 8.00	0 MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_

18.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 18.4.2). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRGL begins counting up using the BRG counter clock as shown in Table 18-6. The fifth rising edge will occur on the RX/ DT pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH:SPBRGL register pair, the ABDEN bit is automatically cleared, and the RCIF interrupt flag is set. A read operation on the RCREG needs to be performed to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 18-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> the Break character (see Section 18.4.3 "Auto-Wake-up on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the autobaud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 18-6: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

XXXXh 0000h **BRG** Value 001Ch - Edge #1 - Edge #2 - Edge #3 - Edge #4 Edge #5 RX/DT pin bit 2 bit 3 bit 6 bit 7 Start bit 0 bit 1 bit 4 bit 5 Stop bit Auto Cleared Set by User ABDEN bit RCIDL RCIF bit (Interrupt) Read RCREG XXh SPBRGL 1Ch SPBRGH XXh 00h Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode

FIGURE 18-6: AUTOMATIC BAUD RATE CALIBRATION

R/W-0/0	R/W-0/0	R/C-0/0	U-0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1
LCDEN	SLPEN	WERR	_	(CS<1:0>	LMUX	<1:0>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimp	lemented bit, read	as '0'	
u = Bit is uncl	hanged	x = Bit is unkn	own	-n/n = Valu	e at POR and BO	R/Value at all of	her Resets
'1' = Bit is set	:	'0' = Bit is clea	red	C = Only c	learable bit		
bit 7	LCDEN: LCD	Driver Enable	bit				
	1 = LCD drive	er module is ena	abled				
	0 = LCD drive	er module is dis	abled				
bit 6	SLPEN: LCD	Driver Enable i	n Sleep Mo	de bit			
	1 = LCD drive 0 = LCD drive	er module is dis er module is ena	abled in Sle	ep mode ep mode			
bit 5	WERR: LCD	Write Failed Eri	or bit				
	1 = LCDDAT	An register wri	tten while t	he WA bit of	the LCDPS regist	ter = 0 (must	be cleared in
	software))					
L:1 4	0 = NO LCD V	vrite error	. 1				
DIT 4	Unimplemen	ted: Read as 10)" 				
bit 3-2	CS<1:0>: Clo	ck Source Sele	ct bits				
	00 = FOSC/25 01 = T1OSC	0 (Timer1)					
	1x = LFINTO	SC (31 kHz)					
bit 1-0	LMUX<1:0>:	Commons Sele	ect bits				
		Multiples	N	laximum Nu	mber of Pixels	Piece	
			PI	C16LF1906	PIC16LF1904/7	Dias	
	00	Static (CON	/10)	19	29	Static	
	01	1/2 (COM<1	:0>)	38	58	1/2 or 1/3	
	10	1/3 (COM<2	:0>)	57	87	1/2 or 1/3	
	11	1/4 (COM<3	:0>)	72 ⁽¹⁾	116	1/3	

REGISTER 19-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER

Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 72 segments.

PIC16LF1904/6/7

19.11 Operation During Sleep

The LCD module can operate during Sleep. The selection is controlled by bit SLPEN of the LCDCON register. Setting the SLPEN bit allows the LCD module to go to Sleep. Clearing the SLPEN bit allows the module to continue to operate during Sleep.

If a SLEEP instruction is executed and SLPEN = 1, the LCD module will cease all functions and go into a very low-current Consumption mode. The module will stop operation immediately and drive the minimum LCD voltage on both segment and common lines. Figure 19-20 shows this operation.

The LCD module can be configured to operate during Sleep. The selection is controlled by bit SLPEN of the LCDCON register. Clearing SLPEN and correctly configuring the LCD module clock will allow the LCD module to operate during Sleep. Setting SLPEN and correctly executing the LCD module shutdown will disable the LCD module during Sleep and save power.

If a SLEEP instruction is executed and SLPEN = 1, the LCD module will immediately cease all functions, drive the outputs to Vss and go into a very low-current mode. The SLEEP instruction should only be executed after the LCD module has been disabled and the current cycle completed, thus ensuring that there are no DC voltages on the glass. To disable the LCD module, clear the LCDEN bit. The LCD module will complete the disabling process after the current frame, clear the LCDA bit and optionally cause an interrupt.

The steps required to properly enter Sleep with the LCD disabled are:

- Clear LCDEN
- Wait for LCDA = 0 either by polling or by interrupt
- Execute SLEEP

If SLPEN = 0 and SLEEP is executed while the LCD module clock source is FOSC/4, then the LCD module will halt with the pin driving the last LCD voltage pattern. Prolonged exposure to a fixed LCD voltage pattern will cause damage to the LCD glass. To prevent LCD glass damage, either perform the proper LCD module shutdown prior to Sleep, or change the LCD module clock to allow the LCD module to continue operation during Sleep.

If a SLEEP instruction is executed and SLPEN = 0 and the LCD module clock is either T1OSC or LFINTOSC, the module will continue to display the current contents of the LCDDATA registers. While in Sleep, the LCD data cannot be changed. If the LCDIE bit is set, the device will wake from Sleep on the next LCD frame boundary. The LCD module current consumption will not decrease in this mode; however, the overall device power consumption will be lower due to the shutdown of the CPU and other peripherals. Table 19-7 shows the status of the LCD module during a Sleep while using each of the three available clock sources.

Note:	When the LCDEN bit is cleared, the LCD
	module will be disabled at the completion
	of frame. At this time, the port pins will
	revert to digital functionality. To minimize
	power consumption due to floating digital
	inputs, the LCD pins should be driven low
	using the PORT and TRIS registers.

If a SLEEP instruction is executed and SLPEN = 0, the module will continue to display the current contents of the LCDDATA registers. To allow the module to continue operation while in Sleep, the clock source must be either the LFINTOSC or T1OSC external oscillator. While in Sleep, the LCD data cannot be changed. The LCD module current consumption will not decrease in this mode; however, the overall consumption of the device will be lower due to shut down of the core and other peripheral functions.

Table 19-7 shows the status of the LCD module during Sleep while using each of the three available clock sources:

TABLE 19-7:	LCD MODULE STATUS
	DURING SLEEP

Clock Source	SLPEN	Operational During Sleep
T1080	0	Yes
11030	1	No
	0	Yes
LFINTOSC	1	No
Eccc/4	0	No
FUSU/4	1	No

Note: The LFINTOSC or external T1OSC oscillator must be used to operate the LCD module during Sleep.

If LCD interrupts are being generated (Type-B waveform with a Multiplex mode not static) and LCDIE = 1, the device will awaken from Sleep on the next frame boundary.

Mnomonic				14-Bit Opcode				Status	
Ope	erands	Description	Cycles	MSb			LSb	Affected	Notes
	BYTE-ORIENTED FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED	SKIP OPERATIO	ONS					
DECESZ	f. d	Decrement f. Skip if 0	1(2)	00	1011	dfff	ffff		1.2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE F		RATIO	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED S	SKIP OPERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL	OPERA	FIONS							
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

TABLE 21-3: PIC16LF1904/6/7 ENHANCED INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

22.2 DC Characteristics

TABLE 22-1: SUPPLY VOLTAGE

PIC16LF1904/6/7				Standard Operating Conditions (unless otherwise stated)				
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd		1.8 2.3	_	3.6 3.6	V V	$Fosc \le 16 \text{ MHz}$ $Fosc \le 20 \text{ MHz} (EC mode only)$	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	—	V	Device in Sleep mode	
D002A*	VPOR*	Power-on Reset Release Voltage	1.54	1.64	1.74	V		
D002B*	VPORR*	Power-on Reset Rearm Voltage	-	1.7	_	V	Device in Sleep mode	
D003	VADFVR	Fixed Voltage Reference Voltage for ADC, Initial Accuracy	6 7 7 8	 	4 4 6 6	%	1.024V, VDD ≥ 1.8V, 85°C 1.024V, VDD ≥ 1.8V, 125°C 2.048V, VDD ≥ 2.5V, 85°C 2.048V, VDD ≥ 2.5V, 125°C	
D003A	VCDAFVR	Fixed Voltage Reference Voltage for Comparator and DAC, Initial Accuracy	7 8 8 9		5 5 7 7	%	1.024V, VDD ≥ 1.8V, 85°C 1.024V, VDD ≥ 1.8V, 125°C 2.048V, VDD ≥ 2.5V, 85°C 2.048V, VDD ≥ 2.5V, 125°C	
D003B	VLCDFVR	Fixed Voltage Reference Voltage for LCD Bias, Initial Accuracy	9 9.5	_	9 9	%	$\begin{array}{l} 3.072 \text{V}, \ \text{VDD} \geq 3.6 \text{V}, \ 85^{\circ}\text{C} \\ 3.072 \text{V}, \ \text{VDD} \geq 3.6 \text{V}, \ 125^{\circ}\text{C} \end{array}$	
D003C*	TCVFVR	Temperature Coefficient, Fixed Voltage Reference	—	-130	—	ppm/°C		
D003D*	$\Delta VFVR/$ ΔVIN	Line Regulation, Fixed Voltage Reference	_	0.270	_	%/V		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_	_	V/ms	See Section 5.1 "Power-on Reset (POR)" for details.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

FIGURE 22-3: POR AND POR REARM WITH SLOW RISING VDD

TABLE 22-6: THERMAL CONSIDERATIONS

Standard Operati	na Conditions	(unless of	nerwise stated)
oluniaana operali		101110000 011	ici mise statea)

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Тур.	Units	Conditions			
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package			
			80	°C/W	28-pin SOIC package			
			90	°C/W	28-pin SSOP package			
			27.5	°C/W	28-pin UQFN 4x4mm package			
			47.2	°C/W	40-pin PDIP package			
			41.0	°C/W	40-pin UQFN 5x5mm package			
			46.0	°C/W	44-pin TQFP package			
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package			
			24	°C/W	28-pin SOIC package			
			24	°C/W	28-pin SSOP package			
			24	°C/W	28-pin UQFN 4x4mm package			
			24.7	°C/W	40-pin PDIP package			
			50.5	°C/W	40-pin UQFN 5x5mm package			
			14.5	°C/W	44-pin TQFP package			
TH03	Тјмах	Maximum Junction Temperature	150	°C				
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O			
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾			
TH06	Pi/o	I/O Power Dissipation	—	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$			
TH07	PDER	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾			

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature

24.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

25.0 PACKAGING INFORMATION

25.1 Package Marking Information

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

40-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 5x5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC			
Optional Center Pad Width	W2			3.80	
Optional Center Pad Length	T2			3.80	
Contact Pad Spacing	C1		5.00		
Contact Pad Spacing	C2		5.00		
Contact Pad Width (X40)	X1			0.20	
Contact Pad Length (X40)	Y1			0.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2156B