

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1906-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16LF1904/6/7

3.2.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-4 can be addressed from any Bank.

TABLE 3-4:	CORE FUNCTION REGISTERS SUMMARY

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	0-31										
x00h or x80h	INDF0	Addressing (not a phys	this locatior	uses conte	nts of FSR0H	/FSR0L to a	ddress data i	memory		XXXX XXXX	uuuu uuuu
x01h or x81h	INDF1	Addressing (not a phys	this locatior	uses conte	nts of FSR1H	/FSR1L to a	ddress data i	memory		XXXX XXXX	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Da	ta Memory A	ddress 0 Lo	w Pointer					0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Da	ta Memory A	ddress 0 Hig	gh Pointer					0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	_	—		BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Register									uuuu uuuu
x0Ahor x8Ah	PCLATH	Write Buffer for the upper 7 bits of the Program Counter								-000 0000	-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', <math>r = reserved. Shaded locations are unimplemented, read as '0'.

3.5.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

REGISTER 4-2: CONFIGURATION WORD 2

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1
		LVP ⁽¹⁾	DEBUG ⁽³⁾	LPBOR	BORV ⁽²⁾	STVREN	
		bit 13					bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
 bit 7	—	_	_	_	_	WRI	<1:0> bit 0
Dit 7							bit 0
Legend:							
R = Readable	e bit	P = Programm	able bit	U = Unimplem	nented bit, read	l as '1'	
'0' = Bit is cle	ared	'1' = Bit is set		-n = Value wh	en blank or afte	er Bulk Erase	
bit 13	LVP: Low-Vol 1 = Low-volta	tage Programm ge programmin ge on MCLR m	ning Enable bit g enabled	(1)	1		
bit 12	DEBUG: In-C 1 = In-Circuit 0 = In-Circuit	ircuit Debugger Debugger disat Debugger enab	⁻ Mode bit ⁽³⁾ bled, ICSPCLk bled, ICSPCLK	and ICSPDAT	are general pi are dedicated	urpose I/O pins to the debugge	er
bit 11	LPBOR: Low- 1 = Low-Powe 0 = Low-Powe	Power BOR bit er BOR is disab er BOR is enab	t iled led				
bit 10	BORV: Brown 1 = Brown-ou 0 = Brown-ou	i-out Reset Volt t Reset voltage t Reset voltage	age Selection (VBOR), low tr (VBOR), high t	bit ⁽²⁾ ip point selecte rip point selecte	ed		
bit 9	STVREN: Sta 1 = Stack Ove 0 = Stack Ove	ck Overflow/Ur erflow or Underf erflow or Underf	nderflow Reset flow will cause flow will not ca	: Enable bit a Reset use a Reset			
bit 8-2	Unimplement	ted: Read as '1	, -				
bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits <u>4 kW Flash memory (PIC16LF1904 only)</u> : 11 = Write protection off 10 = 000h to 1FFh write-protected, 200h to FFFh may be modified by PMCON control 01 = 000h to 7FFh write-protected, 800h to FFFh may be modified by PMCON control 00 = 000h to FFFh write-protected, no addresses may be modified by PMCON control <u>8 kW Flash memory (PIC16LF1906/7 only)</u> : 11 = Write protection off							
	10 = 000 01 = 000 00 = 000	00h to 0FFFh w 00h to 1FFFh w 00h to 1FFFh w	rite-protected, rite-protected,	1000h to 1FFF no addresses	Thay be modified from the modi	lified by PMCON of by PMCO	N control control
Note 1: Th 2: Se 3: Th de	ne LVP bit canno ee VBOR paramo ne DEBUG bit ir buggers and pr	ot be programmeter for specific Configuration Cogrammers. Fo	ned to '0' wher trip point volta Words is mana or normal device	n Programming liges. aged automatic ce operation, th	mode is entere cally by device is bit should be	ed via LVP. development to e maintained as	ools including a '1'.

4.5 **Device ID and Revision ID**

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See Section 10.4 "User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

REGISTER 4-3: DEVICEID: DEVICE ID REGISTER

		R	R	R	R	R	R		
				DEV	<8:3>				
		bit 13					bit 8		
R	R	R	R	R	R	R	R		
	DEV<2:0>			REV<4:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			:	U = Unimplemented bit, read as '1'					
u = Bit is unchanged x = Bit is unknown			wn	-n/n = Value at POR and BOR/Value at all other Resets					

P = Programmable bit

bit 13-5 DEV<8:0>: Device ID bits

'1' = Bit is set

Dovico	DEVICEID<13:0> Values						
Device	DEV<8:0>	REV<4:0>					
PIC16LF1904	10 1100 100	x xxxx					
PIC16LF1906	10 1100 011	x xxxx					
PIC16LF1907	10 1100 010	x xxxx					

'0' = Bit is cleared

bit 4-0 REV<4:0>: Revision ID bits These bits are used to identify the revision (see Table under DEV<8:0> above).

R-1/q	U-0	R-q/q	R-0/q	U-0	U-0	R-0/0	R-0/q
T1OSCR		OSTS	HFIOFR	_	—	LFIOFR	HFIOFS
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Condition	nal		
bit 7	T1OSCR: Tin	ner1 Oscillator	Ready bit				
	If T1OSCEN	<u>= 1</u> :					
	1 = Timer1 c	scillator is rea	dy .				
	0 = 1 imer1 c	scillator is not	ready				
	If I1OSCEN	<u>= 0</u> : Nock cource in	alwaya raady				
			always leady				
DIT 6	Unimplemen	ted: Read as	0.				
bit 5	OSTS: Oscilla	ator Start-up Ti	me-out Status	bit			
	1 = Running 0 = Running	from the exter	nal clock soure al oscillator (F	ce (EC) OSC<1:0> = 0	0)		
bit 4	HFIOFR: Hig	h-Frequency Ir	ternal Oscillat	or Ready bit	,		
	1 = HFINTOS	SC is ready		,			
	0 = HFINTOS	SC is not ready	,				
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	LFIOFR: Low	-Frequency In	ernal Oscillato	or Ready bit			
	1 = LFINTOS	SC is ready					
	0 = LFINTOS	SC is not ready					
bit 0	HFIOFS: High	h-Frequency Ir	ternal Oscillate	or Stable bit			
	1 = HFINTOS	SC 16 MHz os	cillator is stable	e and is driving	the INTOSC		
	0 = HFINTOS	SC 16 MHz os	cillator is not st	able, the start-	up oscillator is o	driving INTOSC	2

REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER

TABLE 6-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF	<3:0>			SCS	<1:0>	58
OSCSTAT	T1OSCR	—	OSTS	HFIOFR	_	-	LFIOFR	HFIOFS	59
T1CON	TMR10	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC		TMR10N	139

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 6-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	—	CLKOUTEN	BOREI	N<1:0>	—	20
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>		FOSC	C<1:0>	39

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

15.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 15-3 shows the two output formats.

FIGURE 15-3: 10-BIT A/D CONVERSION RESULT FORMAT

PIC16LF1904/6/7

FIGURE 17-4: TIMER1 GATE TOGGLE MODE

PIC16LF1904/6/7

FIGURE 17-6:	TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GTM	
T1GG <u>O/</u> DONE	Cleared by hardware on falling edge of T1GVAL
T1G_IN	
т1СКІ	
T1GVAL	
Timer1	N N + 1 N + 2 N + 3 N + 4
TMR1GIF	- Cleared by software falling edge of T1GVAL

17.9 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 17-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 17-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u
TMR1C	S<1:0>	T1CKF	'S<1:0>	T1OSCEN	T1SYNC	_	TMR10N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	it POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	TMR1CS<1:0 11 = Reserve 10 = Timer1 o <u>If T10S0</u> External <u>If T10S0</u> Crystal o 01 = Timer1 o 00 = Timer1 o	b : Timer1 Cloc d clock source is <u>CEN = 0</u> : clock from T10 <u>CEN = 1</u> : bscillator on T1 clock source is clock source is	ck Source Sele pin or oscillato CKI pin (on the OSI/T1OSO p system clock (instruction clo	ect bits or: e rising edge) ins (Fosc) ck (Fosc/4)			
bit 5-4	T1CKPS<1:0 11 = 1:8 Pres 10 = 1:4 Pres 01 = 1:2 Pres 00 = 1:1 Pres	>: Timer1 Inpu scale value scale value scale value scale value	t Clock Presca	ale Select bits			
bit 3	T1OSCEN: L 1 = Dedicate 0 = Dedicate	P Oscillator En d Timer1 oscill d Timer1 oscill	able Control b ator circuit ena ator circuit dis	bit abled abled			
bit 2	t 2 T1SYNC: Timer1 External Clock Input Synchronization Control bit $\frac{\text{TMR1CS} < 1:0> = 1X}{1 = \text{ Do not synchronize external clock input}}$ 0 = Synchronize external clock input with system clock (Fosc)						
bit 1 bit 0	IMR1CS<1:0 This bit is igno Unimplemen TMR1ON: Tir 1 = Enables 0 = Stops Tin Clears Ti	<u>i> = 0X</u> ored. Timer1 u: ted: Read as ' ner1 On bit Timer1 ner1 mer1 gate flip-1	ses the interna 0' flop	al clock when TI	MR1CS<1:0> =	= 1x.	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	RG16 —		ABDEN	153
BAUD2CON	ABDOVF	RCIDL	—	SCKP	BRG16	BRG16 —		ABDEN	153
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	65
PIE1	TMR1GIE	ADIE	RCIE ⁽¹⁾	TXIE ⁽¹⁾	—	—	—	TMR1IE	66
PIR1	TMR1GIF	ADIF	RCIF ⁽¹⁾	TXIF ⁽¹⁾	—	—	—	TMR1IF	68
RCREG	EUSART Receive Register								147*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	152
SPBRGL	EUSART Baud Rate Generator, Low Byte								154*
SPBRGH	EUSART Baud Rate Generator, High Byte								154*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	101
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	151

TABLE 18-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for asynchronous reception.

* Page provides register information.

Note 1: PIC16LF1904/7 only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 7	SPEN: Serial	Port Enable bi	t							
	1 = Serial por	rt enabled (con	figures RX/D	T and TX/CK p	oins as serial poi	rt pins)				
hit C		nt disabled (nei	a in Reset)							
DIT 6		ceive Enable b	It							
	0 = Selects 8	-bit reception								
bit 5	SREN: Single	Receive Enab	le bit							
	Asynchronous	<u>s mode</u> :								
	Don't care									
	Synchronous	mode – Maste	<u>r</u> :							
	1 = Enables	single receive								
	This bit is clea	ared after receive	otion is comp	lete.						
	Synchronous	<u>mode – Slave</u>	·							
	Don't care									
bit 4	CREN: Contir	nuous Receive	Enable bit							
	Asynchronous	<u>s mode</u> :								
	1 = Enables	receiver								
	Synchronous	mode:								
1 = Enables continuous receive until enable bit CREN is cleared (CREN over						l overrides SR	EN)			
	0 = Disables	continuous rec	eive							
bit 3	ADDEN: Add	ress Detect En	able bit							
	Asynchronous	s mode 9-bit (R	<u>X9 = 1)</u> :							
	1 = Enables	address detect	ion, enable in	iterrupt and loa	d the receive bu	Iffer when RSF	<8> is set			
	Asvnchronous	s mode 8-bit (R	X9 = 0):	ale leceiveu a		be used as pa				
	Don't care	· · · · · · · · · · · · · · · · · · ·	,							
bit 2	FERR: Framin	ng Error bit								
	1 = Framing	error (can be u	pdated by rea	ading RCREG	register and rec	eive next valid	byte)			
	0 = No framir	ng error								
bit 1	OERR: Overr	R: Overrun Error bit								
	1 = Overrun e	error (can be cl	eared by clea	aring bit CREN)					
bit 0	RX9D. Ninth I	hit of Received	Data							
	This can be a	ddress/data bit	or a parity bi	it and must be	calculated by us	er firmware.				

REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

18.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH:SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Example 18-1 provides a sample calculation for determining the desired baud rate, actual baud rate, and baud rate % error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 18-5. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate. If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 18-1: CALCULATING BAUD RATE ERROR

Configuration Bits				Devel Data Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode			
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]		
0	0	1	8-bit/Asynchronous	Fosc/[16 (n+1)]		
0	1	0	16-bit/Asynchronous			
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]		
1	1	x	16-bit/Synchronous			

TABLE 18-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH, SPBRGL register pair

18.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 18-9 for the timing of the Break character sequence.

18.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

18.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the Received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 18.4.3** "Auto-Wake-up on **Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

FIGURE 18-9: SEND BREAK CHARACTER SEQUENCE

PIC16LF1904/6/7		Standard Operating Conditions (unless otherwise stated)							
Param	Device Characteristics	Min	Тур†	Max. +85°C	Max. +125°C	Unite	Conditions		
No.		WIII.				Units	Vdd	Note	
	Power-down Base Current	(IPD) ⁽²⁾							
D023			0.15	1.0	3.0	μA	1.8	WDT, BOR, FVR, and T1OSC	
		_	0.16	2.0	4.0	μA	3.0	disabled, all Peripherals Inactive	
			0.65	3.0	5.0	μA	3.6		
D024			0.27	2.0	4.0	μA	1.8	WDT Current (Note 1)	
			0.56	3.0	5.0	μA	3.0		
			0.75	4.0	6.0	μA	3.6		
D025			17.5	31	35	μA	1.8	FVR current	
			17.7	33	38	μA	3.0		
			17.8	35	41	μA	3.6		
D026			0.15	2.30	3.56	μA	3.0	LPBOR current	
		—	0.21	3.40	4.70	μA	3.6		
D027			7.0	10	12	μA	3.0	BOR Current	
			7.5	12	14	μA	3.6		
D028			0.50	2.0	4.0	μA	1.8	T1OSC Current	
			0.60	3.0	5.0	μA	3.0		
		—	0.70	4.0	6.0	μA	3.6		
D029			0.40	2.0	4.0	μA	1.8	ADC Current (Note 1, Note 3),	
			0.70	3.0	5.0	μA	3.0	no conversion in progress	
			0.90	4.0	6.0	μA	3.6		
D030		_	_	250		μA	1.8	ADC Current (Note 1, Note 3),	
			_	250	—	μA	3.0	conversion in progress	
				250	—	μA	3.6		
D031	LCD Bias Ladder								
	Low power	_	1	2	6	μA	1.8		
	Medium Power	_	10	13	21	μA	3.0		
	High Power	—	100	111	120	μA	3.6		

TABLE 22-3: POWER-DOWN CURRENTS (IPD)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ ₋ Ț Tape and Reel Option	X Temperature Range	/XX Package	XXX Pattern	Ex a)	cample PIC Tape Indu UQF	25: 16LF1904T - I/MV 301 e and Reel, istrial temperature, FN package,
Device:	PIC16LF1904, F	PIC16LF1906, P	IC16LF1907		b)	QTF PIC Indu PDI	² pattern #301 16LF1906 - I/P Istrial temperature P package
Tape and Reel Option:	Blank = Stand T = Tape a	ard packaging (ti and Reel ⁽¹⁾	ube or tray)		c)	PIC Exte SSC	16LF1906 - E/SS ended temperature,)P package
Temperature Range:	$ = -40^{\circ}(2)$ E = -40^{\circ}(2)	C to +85°C (C to +125°C (Industrial) Extended)				
Package:	MV = UQF P = PDIP PT = TQFI SO = SOIC SS = SSO	N (4x4x0.5) > (44-pin) P			No	ote 1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check
Pattern:	QTP, SQTP, Co (blank otherwise	de or Special Re e)	quirements				with your Microchip Sales Office for package availability with the Tape and Reel option.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0545-0