

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1906-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 5:	40-PIN UQFN (5X5) I	PACKAGE DIAGRAM FOR PIC16	6LF1904/7
		RC6/TX/CK/SEG9 RC5/SEG10 RC4/T16/SEG11 RD3/SEG16 RD2/SEG28 RD1/SEG27 RD0/COM3 RC3/SEG6 RC3/SEG6 RC2/SEG3 RC1/T1OS1	
	SEG8/DT/RX/RC7	1 337 337 337 337 338 333 337 337 337 337	
	SEG17/RD4 SEG18/RD5 SEG19/RD6 SEG20/RD7 VSS VDD SEG0/INT/AN12/RB0 VLCD1/SEG24/AN10/RB1 VLCD2/SEG25/AN8/RB2	2 30 F 3 29 F 4 28 F 5 27 V 6 PIC16LF1904/7 26 V 7 25 F 8 24 F 9 23 F 10 22 F 10 22 F 10 22 F	RC0/T10S0/T1CKI RA6/CLKOUT/SEG1 RA7/CLKIN/SEG2 /ss /pd RE2/AN7/SEG23 RE1/AN6/SEG22 RE0/AN5/SEG21 RA5/AN4/SEG5 RA4/T0CKI/SEG4
		VLCD3/SEG26/AN9/RB3 COM0/AN11/RB4 COM1/AN13/RB5 SEG14/ICDCLK/ICSPCLK/RB6 SEG13/ICDDAT/ICSPDAT/RB7 VPP/MCLR/RE3 SEG12/AN0/RA0 SEG12/AN1/RA1 COM2/AN1/RA1 COM2/AN1/RA1	

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW	DATA0	;Index0	data
RETLW	DATA1	;Index1	data
RETLW	DATA2		
RETLW	DATA3		
my_functi	on		
;… LOI	IS OF CODE		
MOVLW	LOW consta	ints	
MOVWF	FSR1L		
MOVLW	HIGH const	ants	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
; THE PROG	RAM MEMORY I	S IN W	

FIGURE 3-8: ACCESSING THE STACK EXAMPLE 4

3.4.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Word 2 is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.5 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

3.5.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

9.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

FIGURE 9-1: WATCHDOG TIMER BLOCK DIAGRAM

REGISTER 11-8: ANSELB: PORTB ANALOG S	ELECT REGISTER
---------------------------------------	----------------

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
—	—	ANSB5 ANSB4		ANSB3	ANSB2	ANSB1	ANSB0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clear	ed						
bit 7-6	Unimplemente	ed: Read as '0'							
bit 5-0	ANSB<5:0>: A	nalog Select bet	ween Analog or	Digital Function	on pins RB<5:0>	respectively			

ANSB<5:0>: Analog Select between Analog or Digital Function on pins RB<5:0>, respectively
 0 = Digital I/O. Pin is assigned to port or digital special function.

1 = Analog input. Pin is assigned to port of digital special function.
 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 11-9: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

WPUB<7:0>: Weak Pull-up Register bits

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	99
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	98
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	98
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	98
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	99

TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

13.3 FVR Control Registers

|--|

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
FVREN	FVRRDY ⁽¹⁾	TSEN	TSRNG	_	—	ADFVR<1:0>				
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets			
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value de	pends on conditi	ion				
bit 7	FVREN: Fixe	d Voltage Refe	rence Enable	bit						
0 = Fixed Voltage Reference is disabled										
	1 = Fixed Voltage Reference is enabled									
bit 6	FVRRDY: Fix	ed Voltage Ref	erence Ready	y Flag bit ⁽¹⁾						
	0 = Fixed Vo	Itage Referenc	e output is no	t ready or not e	enabled					
		lage Relefenc		ady for use						
DIT 5	ISEN: lempe	erature Indicato	or Enable bit							
 U = Temperature Indicator is enabled 1 = Temperature Indicator is enabled 										
hit 4	TSRNG. Tem	perature Indica	tor Range Se	lection hit						
	0 = VOUT = V	יסס - 2Vד (I ow	Range)							
1 = VOUT = VDD - 4VT (High Range)										
bit 3-2	Unimplemen	ted: Read as '	0'							
bit 1-0	ADFVR<1:0>	: ADC Fixed V	oltage Refere	nce Selection I	bit					
	00 = ADC Fix	00 = ADC Fixed Voltage Reference Peripheral output is off.								
	01 = ADC Fix	ed Voltage Re	ference Peripl	heral output is	1x (1.024V)					
	10 = ADC Fix	ed Voltage Re	ference Peripl	heral output is	2x (2.048V) ⁽²⁾					
	11 = Reserve	D								
Note 1: F	VRRDY will output	ut the true state	e of the band	gap.						

^{2:} Fixed Voltage Reference output cannot exceed VDD.

TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	—	—	ADFVR1	ADFVR0	113

Legend: Shaded cells are not used with the Fixed Voltage Reference.

FIGURE 17-6:	TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GTM	
T1GG <u>O/</u> DONE	Cleared by hardware on falling edge of T1GVAL
T1G_IN	
т1СКІ	
T1GVAL	
Timer1	N N + 1 N + 2 N + 3 N + 4
TMR1GIF	- Cleared by software falling edge of T1GVAL

TABLE 18-4: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	153
BAUD2CON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	153
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	152
SPBRGL	EUSART Baud Rate Generator, Low Byte								154*
SPBRGH		EUSART Baud Rate Generator, High Byte							154*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	151

Legend: — = unimplemented, read as '0'. Shaded bits are not used by the BRG.

* Page provides register information.

FIGURE 18-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

15 165 62 (1) (Bit set by user immed		n an an an a The The			(119 (11) 119 1 1	r al 12 al 12 r - 1 r - 1			Georad
A981 688 (· · · · ·			·/·····	···/··································	.,	:		, 	
er ek					; 	: 		in firm. S		
: - 22039: L.	:	: 				3 3		· · · · · · · · · · · · · · · · · · ·	: 	
		5	3 5	3 3		pared doe	No Şister Head	et fill	886 <u>(</u>	

FIGURE 18-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

) Konstant											0.3KX N (11	(030) A A	803(0.8) 75 75 7		
	- 332 Set by 3		···· ··· ··· ··· ···	(,		•••	··· ··· ··; 	····	····			, /	Activ	08880	
(266-3697V 1		\$ 2		: : :			· ·				2	1 1. 1.	·····		<u>-</u>
2003 YONRA -		· · · · · · · · · · · · · · · · · · ·				S 4	·····;					1799 (,		
SCH.	 894	Sep Commoni	i Executed		 argo Eroxás	4	ĊŔ.	ineed d	98 K) (Geor Re	ned of	28-0358	13 <i>2</i>	·	·····¢
98860 St - 3 9	Cidae weekkeele Bellaadeereele TB	p aveat regain te sequence :	es leng esoli lectic not sa	ator warra-up it pend on the pre	es. Es s sacca cé	6000 0-00	රාග දර්ශයාන මාල	g of its	5 XXX 8	e og og	3 6505	a witi	e 336 e c	yosa sq	zes is

2. The SSBARS remains is the while the WORL bit is set.

Mnemonic, Operands		Description	Cycles		14-Bit	Opcode	e	Status	Notos
		Description		MSb			LSb	Affected	Hotes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPER	ATIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	_	Software device Reset	1	00	0000	0000	0001		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 21-3: PIC16LF1904/6/7 ENHANCED INSTRUCTION SET (CONTINUED)

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{array}{l} W \rightarrow INDFn \\ Effective address is determined by \\ \bullet \ FSR + 1 \ (preincrement) \\ \bullet \ FSR + 1 \ (predecrement) \\ \bullet \ FSR + k \ (relative offset) \\ After the Move, the FSR value will be \\ either: \\ \bullet \ FSR + 1 \ (all increments) \\ \bullet \ FSR - 1 \ (all decrements) \\ Unchanged \end{array}$

Status Affected:

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

None

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the RI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

NOTES:

22.3 AC Characteristics

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 22-4: LOAD CONDITIONS

TABLE 22-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard	Operating	Conditions	(unless	otherwise	stated)
otanuaru	operating	Contaitions	unicaa	other wise	Sucuj

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC		0.5	MHz	External Clock (ECL)
			DC	—	4	MHz	External Clock (ECM)
			DC	—	20	MHz	External Clock (ECH)
OS02	Tosc	External CLKIN Period ⁽¹⁾	50	_	×	ns	External Clock (EC)
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 22-8: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽²⁾	±8% ±6.5%		16 16		MHz MHz	$0^{\circ}C \le TA \le +85^{\circ}C$ VDD = 3.0V @ +25°C	
OS10A*	TIOSC ST	HFINTOSC 16 MHz Oscillator Wake-up from Sleep Start-up Time	_		5 5	15 15	μs μs	VDD = 2.0V, -40°C to +85°C VDD = 3.0V, -40°C to +85°C	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
Dimensio	Dimension Limits		NOM	MAX	
Number of Pins	Ν				
Pitch	е				
Top to Seating Plane	Α	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	—	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.980	-	2.095	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	С	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	_	.023	
Overall Row Spacing §	eB	_	_	.700	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B