

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1906t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants			
RETLW	DATA0	;Index0	data
RETLW	DATA1	;Index1	data
RETLW	DATA2		
RETLW	DATA3		
my_functi	on		
;… LOI	IS OF CODE		
MOVLW	LOW consta	ints	
MOVWF	FSR1L		
MOVLW	HIGH const	ants	
MOVWF	FSR1H		
MOVIW	0[FSR1]		
; THE PROG	RAM MEMORY I	S IN W	

3.2.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-4 can be addressed from any Bank.

TABLE 3-4:	CORE FUNCTION REGISTERS SUMMARY

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Bank 0-31												
x00h or x80h	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)										
x01h or x81h	INDF1	Addressing (not a phys	this locatior	uses conte	nts of FSR1H	/FSR1L to a	ddress data i	memory		xxxx xxxx	uuuu uuuu	
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000	
x03h or x83h	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu	
x04h or x84h	FSR0L	Indirect Da	ta Memory A	ddress 0 Lo	w Pointer					0000 0000	uuuu uuuu	
x05h or x85h	FSR0H	Indirect Da	ta Memory A	ddress 0 Hig	gh Pointer					0000 0000	0000 0000	
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu	
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000	
x08h or x88h	BSR	_	—		BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000	
x09h or x89h	WREG	Working Re	egister		0000 0000	uuuu uuuu						
x0Ahor x8Ah	PCLATH	_	Write Buffer	for the upp	er 7 bits of the	e Program C	ounter			-000 0000	-000 0000	
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', <math>r = reserved. Shaded locations are unimplemented, read as '0'.

						•					
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 2		-								
10Ch	LATA	PORTA Da	PORTA Data Latch								uuuu uuuu
10Dh	LATB	PORTB Da	ta Latch							xxxx xxxx	uuuu uuuu
10Eh	LATC	PORTC Da	ita Latch							xxxx xxxx	uuuu uuuu
10Eh	LATD ⁽³⁾	PORTD Da	ta Latch							xxxx xxxx	uuuu uuuu
10Eh	LATE ⁽³⁾	—	—	_	_	_	LATE2	LATE1	LATE0	xxx	uuu
111h to 115h	_	Unimpleme	ented							_	_
116h	BORCON	SBOREN	BORFS	_	_	_	_	_	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVR1	ADFVR0	0q0000	0q0000
118h to 11Fh	_	Unimpleme	ented							-	_
Ban	ik 3										
18Ch	ANSELA	_	_	ANSA5	_	ANSA3	ANSA2	ANSA1	ANSA0	1- 1111	11 1111
18Dh	ANSELB		_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
18Eh	—	Unimpleme	ented							—	—
18Fh	—	Unimpleme	ented							_	_
190h	ANSELE ⁽³⁾		—	_		—	ANSE2	ANSE1	ANSE0	111	111
191h	PMADRL	Program M	emory Addre	ess Register	Low Byte					0000 0000	0000 0000
192h	PMADRH	(2)	Program M	emory Addre	ess Register I	High Byte				1000 0000	1000 0000
193h	PMDATL	Program M	emory Read	Data Regis	ter Low Byte					xxxx xxxx	uuuu uuuu
194h	PMDATH	—	—	Program M	lemory Read	Data Registe	r High Byte			xx xxxx	uu uuuu
195h	PMCON1	(2)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Program M	emory Contr	ol Register	2					0000 0000	0000 0000
197h	—	Unimpleme	ented							—	—
198h	—	Unimpleme	ented							_	_
199h	RCREG	USART Re	ceive Data F	Register						0000 0000	0000 0000
19Ah	TXREG	USART Tra	ansmit Data I	Register						0000 0000	0000 0000
19Bh	SPBRG				BRG	<7:0>				0000 0000	0000 0000
19Ch	SPBRGH				BRG<	:15:8>				0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00
Ban	ik 4										
20Ch	—	Unimpleme	ented							_	_
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	—	Unimpleme	ented							_	_
20Fh	—	Unimpleme	ented							_	_
210h	WPUE		_	_		WPUE3	_	_	_	1	1

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-5

Bank 5

211h to 21Fh

29Fh

28Ch

_ _

Bank 6

Dali	K U			
30Ch	_	Unimplemented	_	_
21Eb				
SIFI				
Legen	d: x = unkr Shaded	wh, $u = unchanged$, $q = value depends on condition, - = unimplemented, read as '0', r = reserved.$		

These registers can be addressed from any bank. Unimplemented, read as '1'. PIC16LF1904/7 only. Note 1:

Unimplemented

Unimplemented

2:

3:

PIC16LF1904/6/7

		0x0F		
		0x0E		
		0x0D		-
		0x0C		-
		0x0B		_
		0x0A		_
		0x09		This figure shows the stack configuration
		0x08		after the first CALL or a single interrupt.
		0x07		return address will be placed in the Program Counter and the Stack Pointer
		0x06		decremented to the empty state (0x1F).
		0x05		_
		0x04		_
		0x03		-
		0x02		-
		0x01		
TOSH:TOSL		0x00	Return Address	STKPTR = 0x00
: 3-7: ACC	ESSING THE	E STA	CK EXAMPLE	3
E 3-7: ACC	ESSING THE	<u>=</u> STA	CK EXAMPLE	3
: 3-7: ACC	ESSING THE	<u>5</u> STA 0x0F	CK EXAMPLE	<u>3</u>
: 3-7: ACC	ESSING THE	5 STA 0x0F [0x0E]	CK EXAMPLE	3
: 3-7: ACC	ESSING THE	<u>5</u> STA 0x0F 0x0E 0x0D	CK EXAMPLE	3
3-7: ACC	ESSING THE	E STA 0x0F 0x0F 0x0D 0x0D 0x0C 0x0C		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure
: 3-7: ACC	ESSING THE	E STA 0x0F 0x0E 0x0D 0x0D 0x0D 0x0D 0x0D 0x0D	SCK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will reported the return instructions
3-7: ACC	ESSING THE	E STA 0x0F 0x0E 0x0D 0x0D 0x0D 0x0D 0x0A		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
3-7: ACC	ESSING THE	E STA 0x0F 0x0D		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
: 3-7: ACC	ESSING THE	E STA 0x0F 0x0D 0x0A 0x0B 0x0A		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
3-7: ACC		0x0F 0x0E 0x0D 0x0D 0x0D 0x0D 0x0A	ACK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
3-7: ACC		E STA 0x0F 0x0E 0x0D 0x0C 0x0A 0x0A 0x0A 0x0A 0x0A 0x0A 0x07 0x06 0x05	Return Address	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
3-7: ACC TOSH:TOSL		E STA 0x0F 0x0D 0x0D 0x0D 0x0A 0x0A 0x04 0x07 0x06 0x05 0x04	Return Address Return Address Return Address	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
<u>3-7: ACC</u> TOSH:TOSL		0x0F 0x0D 0x0D 0x0D 0x0D 0x0D 0x0A 0x0A	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
3-7: ACC		E STA 0x0F 0x0E 0x0D 0x0C 0x0A 0x0A 0x0A 0x03 0x06 0x05 0x04 0x03 0x04	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
3-7: ACC TOSH:TOSL		E STA 0x0F 0x0D 0x0D 0x0A 0x0A 0x03 0x04 0x04 0x03 0x04 0x03 0x04 0x03 0x02 0x01	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.

 $\ensuremath{\textcircled{}^{\odot}}$ 2011-2016 Microchip Technology Inc.

PIC16LF1904/6/7

		_	_			-	_		-
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	BORFS			—	_		BORRDY	45
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	49
STATUS	—	_		TO	PD	Z	DC	С	21
WDTCON	—			V	VDTPS<4:0	>		SWDTEN	75

TABLE 5-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

6.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Word 1
- Secondary oscillator 32 kHz crystal
- Internal Oscillator Block (INTOSC)

6.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<1:0> bits in the Configuration Word 1.
- When the SCS bits of the OSCCON register = 01, the system clock source is the secondary oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 6-2.

6.3.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<1:0> bits in the Configuration Word 1, or from the internal clock source. The OST does not reflect the status of the secondary oscillator.

6.3.3 SECONDARY OSCILLATOR

The secondary oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSI and T1CKI/T1OSO device pins.

The secondary oscillator is enabled using the T1OSCEN control bit in the T1CON register. See **Section 17.0 "Timer1 Module with Gate Control"** for more information about the Timer1 peripheral.

6.3.4 SECONDARY OSCILLATOR READY (T1OSCR) BIT

The user must ensure that the secondary oscillator is ready to be used before it is selected as a system clock source. The Secondary Oscillator Ready (T1OSCR) bit of the OSCSTAT register indicates whether the secondary oscillator is ready to be used. After the T1OSCR bit is set, the SCS bits can be configured to select the secondary oscillator.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- · Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce Interrupts. Refer to the corresponding chapters for details.

FIGURE 7-1: INTERRUPT LOGIC

TMR0IF Wake-up TMR0IE (If in Sleep mode) INTE Peripheral Interrupts INTE (TMR1IF) PIR1<0> **IOCIF** Interrupt (TMR1IF) PIR1<0> IOCIE to CPU PEIE PIRn<7> GIE PIEn<7>

A block diagram of the interrupt logic is shown in Figure 7.1.

7.6.5 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 7-5.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 7-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

U-0	U-0	U-0	U-0	U-0	R/W-0/0	U-0	U-0
—	—	—	—	—	LCDIF	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-3 Unimplemented: Read as '0'
- bit 2 LCDIF: LCD Module Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending
- bit 1-0 Unimplemented: Read as '0'

9.6 Watchdog Control Register

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_	—			WDTPS<4:02	>		SWDTEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	i as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-m/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set	-	'0' = Bit is clea	ared				
							I
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-1	WDTPS<4:0:	>: Watchdog Ti	mer Period Se	elect bits ⁽¹⁾			
	Bit Value = F	Prescale Rate					
	00000 = 1:3	32 (Interval 1 m	s nominal)				
	00001 = 1:6	64 (Interval 2 m	s nominal)				
	00010 = 1:1	28 (Interval 4 r	ns nominal)				
	00011 = 1:2	256 (Interval 8 r	ns nominal)				
	00100 = 1:5	512 (Interval 16	ms nominal)				
	00101 = 1:1	024 (Interval 3	2 ms nominal)			
	00110 = 1:2	2048 (Interval 6	4 ms nominal)			
	00111 = 1.4 01000 = 1.8	1090 (Interval 1.	20 ms nomina 56 ms nomina	41 <i>)</i>			
	01000 = 1.0 01001 = 1.1	16384 (Interval	512 ms nomir	nal)			
	01010 = 1:3	32768 (Interval	1s nominal)				
	01011 = 1:6	5536 (Interval	2s nominal) (Reset value)			
	01100 = 1:1	l31072 (2 ¹⁷) (Ir	nterval 4s non	ninal)			
	01101 = 1:2	262144 (2 ¹⁸) (Ir	nterval 8s nom	ninal)			
	01110 = 1:5	524288 (2 ¹⁹) (Ir	nterval 16s no	minal)			
	01111 = 1:1	1048576 (2 ²⁰) (1	Interval 32s n	ominal)			
	10000 = 1:2	2097152 (2 ²¹) (Interval 64s n	ominal)			
	10001 = 1:4	194304 (2 ²²) (Interval 128s	nominal)			
	10010 = 1:8	3388608 (223) (Interval 256s	nominal)			
	10011 = Re	served. Result	s in minimum	interval (1:32)			
	•			, , , , , , , , , , , , , , , , , , ,			
	•						
	•						
	11111 = Re	served. Result	s in minimum	interval (1:32)			
bit 0	SWDTEN: So	oftware Enable/	Disable for W	atchdog Timer	bit		
	<u>If WDTE<1:0</u>	> = <u>00</u> :					
	This bit is ign	ored.					
	If WDTE<1:0	> = 01:					
	1 = WDT is t	urned on					
	This bit is ion	$\sim -1x$.					
	i ilis bit is igri						

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.

11.5 PORTE Registers

 $\frac{\text{RE3}}{\text{MCLR}}$ is input only, and also functions as $\overline{\text{MCLR}}$. The $\overline{\text{MCLR}}$ feature can be disabled via a configuration fuse. RE3 also supplies the programming voltage. The TRIS bit for RE3 (TRISE3) always reads '1'.

REGISTER 11-16: PORTE: PORTE REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R-x/u RE2⁽¹⁾ RE1⁽¹⁾ RE0⁽¹⁾ RE3 ___ _ bit 7 bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **RE<3:0>**: PORTE Input Pin bit⁽¹⁾

- 1 = Port pin is > VIH
- 0 = Port pin is < VIL
- 2: RE<2:0> are not implemented on the PIC16LF1906. Read as '0'. Writes to RE<2:0> are actually written to the corresponding LATE register. Reads from the PORTE register is the return of actual I/O pin values.

REGISTER 11-17: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1 ⁽¹⁾	R/W-1/1 ⁽²⁾	R/W-1/1 ⁽²⁾	R/W-1/1 ⁽²⁾
—	—	_	—	_	TRISE2	TRISE1	TRISE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3 Unimplemented: Read as '1'

- bit 2-0 TRISE<2:0>: PORTE Tri-State Control bits⁽²⁾
 - 1 = Port output driver is disabled
 - 0 = Port output driver is enabled

Note 1: Unimplemented, read as '1'.

2: TRISE<2:0> are not implemented on the PIC16LF1906. Read as '0'.

No output priorities, RE3 is an input only pin.

12.6 Interrupt-On-Change Registers

REGISTER 12-1: IOCBP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0		
bit 7							bit 0		
Legend:									
R = Readable b	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	inged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other R			ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0

IOCBP<7:0>: Interrupt-on-Change Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-2: IOCBN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 IOCBN<7:0>: Interrupt-on-Change Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-3: IOCBF: INTERRUPT-ON-CHANGE FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCBF<7:0>: Interrupt-on-Change Flag bits

- 1 = An enabled change was detected on the associated pin.
 Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

15.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 15-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

FIGURE 15-1: ADC BLOCK DIAGRAM

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ADCON0	—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	121	
ADCON1	ADFM	ADCS2	ADCS1	ADCS0	-		ADPREF1	ADPREF0	122	
ADRESH	A/D Result Register High									
ADRESL	A/D Result I	Register Low							123, 124	
ANSELA	—	-	ANSA5	-	ANSA3	ANSA2	ANSA1	ANSA0	96	
ANSELB	—	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	99	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	65	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	-	-	—	TMR1IE	66	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	_	_	—	TMR1IF	68	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	95	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	98	
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	—	ADFVR1	ADFVR0	113	

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

18.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- · Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- · Programmable clock and data polarity

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 18-1 and Figure 18-2.

FIGURE 18-1: EUSART TRANSMIT BLOCK DIAGRAM

19.2 LCD Clock Source Selection

The LCD module has three possible clock sources:

- Fosc/256
- T10SC
- LFINTOSC

The first clock source is the system clock divided by 256 (Fosc/256). This divider ratio is chosen to provide about 1 kHz output when the system clock is 8 MHz. The divider is not programmable. Instead, the LCD prescaler bits LP<3:0> of the LCDPS register are used to set the LCD frame clock rate.

The second clock source is the T1OSC. This also gives about 1 kHz when a 32.768 kHz crystal is used with the Timer1 oscillator. To use the Timer1 oscillator as a clock source, the T1OSCEN bit of the T1CON register should be set.

The third clock source is the 31 kHz LFINTOSC, which provides approximately 1 kHz output.

The second and third clock sources may be used to continue running the LCD while the processor is in Sleep.

Using bits CS<1:0> of the LCDCON register can select any of these clock sources.

19.2.1 LCD PRESCALER

A 4-bit counter is available as a prescaler for the LCD clock. The prescaler is not directly readable or writable; its value is set by the LP<3:0> bits of the LCDPS register, which determine the prescaler assignment and prescale ratio.

The prescale values are selectable from 1:1 through 1:16.

FIGURE 19-2: LCD CLOCK GENERATION

PIC16LF1904/6/7

FIGURE 19-9: TYPE-A WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE

S
S

Standar	rd Operating	g Conditions (unless otherwise stated)					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—	_	70	ns	VDD = 3.3-5.0V
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	_	72	ns	VDD = 3.3-5.0V
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—		20	ns	
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns			ns	
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	_	_	ns	VDD = 3.3-5.0V
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	_	ns	
OS18	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V
			—	15	32		VDD = 3.3-5.0V
OS19	TioF	Port output fall time	_	28	55	ns	VDD = 1.8V
			—	15	30		VDD = 3.3-5.0V
OS20*	Tinp	INT pin input high or low time	25			ns	
OS21*	Tioc	Interrupt-on-change new input level time	25	_		ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EC mode where CLKOUT output is 4 x Tosc.

23.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

Graphs and charts are not available at this time.

25.0 PACKAGING INFORMATION

25.1 Package Marking Information

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ ₋ Ț Tape and Reel Option	X Temperature Range	/XX Package	XXX Pattern	Ex a)	cample PIC Tape Indu UQF	25: 16LF1904T - I/MV 301 e and Reel, istrial temperature, FN package,
Device:	PIC16LF1904, F	PIC16LF1906, P	IC16LF1907		b)	QTF PIC Indu PDI	² pattern #301 16LF1906 - I/P Istrial temperature P package
Tape and Reel Option:	Blank = Stand T = Tape a	ard packaging (ti and Reel ⁽¹⁾	ube or tray)		c)	PIC Exte SSC	16LF1906 - E/SS ended temperature,)P package
Temperature Range:	$ = -40^{\circ}(2)$ E = -40^{\circ}(2)	C to +85°C (C to +125°C (Industrial) Extended)				
Package:	MV = UQF P = PDIP PT = TQFI SO = SOIC SS = SSO	N (4x4x0.5) P (44-pin) P			No	ote 1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check
Pattern:	QTP, SQTP, Co (blank otherwise	de or Special Re e)	quirements				with your Microchip Sales Office for package availability with the Tape and Reel option.