

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1907-e-mv

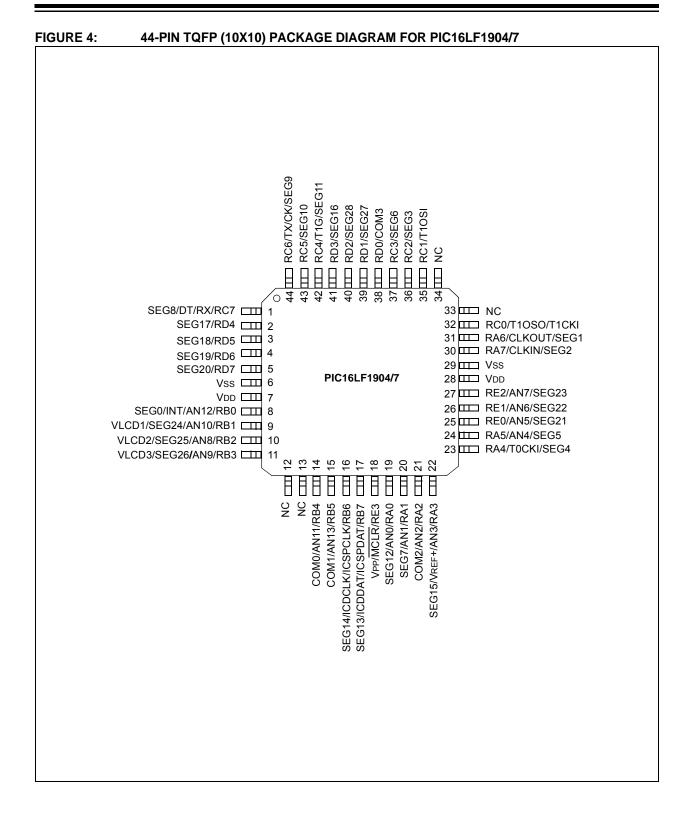
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Dedicated low-power 32 kHz oscillator driver
- Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART):
 - RS-232, RS-485 and LIN compatible
 - Auto-Baud Detect
 - Auto-wake-up on start

PIC16LF190X Family Types

	×	>		Flash						LCD			
Device	Data Sheet Index	Program Memory Flash (words)	Data SRAM (bytes)	High-Endurance Fl (bytes)	I/O's ⁽²⁾	10-bit ADC (ch)	Timers (8/16-bit)	EUSART	Common Pins	Segment Pins	Total Segments	Debug ⁽¹⁾	ХГР
PIC16LF1902	(1)	2048	128	128	25	11	1/1		4	19	72 ⁽³⁾	Н	Y
PIC16LF1903	(1)	4096	256	128	25	11	1/1	_	4	19	72 ⁽³⁾	Н	Y
PIC16LF1904	(2)	4096	256	128	36	14	1/1	1	4	29	116	I/H	Y
PIC16LF1906	(2)	8192	512	128	25	11	1/1	1	4	19	72 ⁽³⁾	I/H	Y
PIC16LF1907	(2)	8192	512	128	36	14	1/1	1	4	29	116	I/H	Y


Note 1: Debugging Methods: (I) – Integrated on Chip; (H) – using Debug Header; (E) – using Emulation Header.
2: One pin is input-only.

3: COM3 and SEG15 share a pin, so the total segments are limited to 72 for 28-pin devices.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS40001455 PIC16LF1902/3 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.
- 2: DS40001569 PIC16LF1904/6/7 Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

Table of Contents

1.0	Device Overview	
2.0	Enhanced Mid-range CPU	15
3.0	Memory Organization	16
4.0	Device Configuration	38
5.0	Resets	43
6.0	Oscillator Module	51
7.0	Interrupts	60
8.0	Power-Down Mode (Sleep)	71
9.0	Watchdog Timer	73
10.0	Flash Program Memory Control	77
11.0	I/O Ports	93
12.0	Interrupt-On-Change	. 109
13.0	Fixed Voltage Reference (FVR)	. 112
14.0	Temperature Indicator Module	. 114
15.0	Analog-to-Digital Converter (ADC) Module	. 115
16.0	Timer0 Module	. 128
17.0	Timer1 Module with Gate Control	
18.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	. 142
19.0	Liquid Crystal Display (LCD) Driver Module	. 171
20.0	In-Circuit Serial Programming™ (ICSP™)	. 205
21.0	Instruction Set Summary	. 207
22.0	Electrical Specifications	. 221
23.0	DC and AC Characteristics Graphs and Charts	. 238
24.0	Development Support	. 239
25.0	Packaging Information	. 243
Appe	ndix A: Data Sheet Revision History	. 261
The N	/icrochip WebSite	. 262
Custo	omer Change Notification Service	. 262
Custo	mer Support	. 262
Produ	uct Identification System	. 263

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

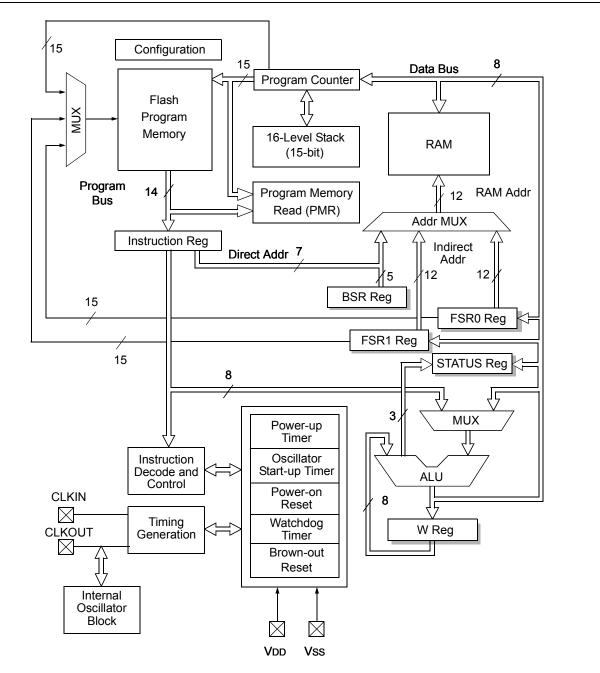
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

Name	Function	Input Type	Output Type	Description			
RB3 ⁽¹⁾ /AN9/SEG26/VLCD3	RB3	TTL	CMOS	General purpose I/O.			
	AN9	AN	—	A/D Channel 9 input.			
	• SEG26		AN	LCD Analog output.			
	VLCD3	AN	—	LCD analog input.			
RB4 ⁽¹⁾ /AN11/COM0	RB4	TTL	CMOS	General purpose I/O.			
	AN11	AN	—	A/D Channel 11 input.			
	COM0		AN	LCD Analog output.			
RB5 ⁽¹⁾ /AN13/COM1	RB5	TTL	CMOS	General purpose I/O.			
	AN13	AN	—	A/D Channel 13 input.			
	COM1	_	AN	LCD Analog output.			
RB6 ⁽¹⁾ /ICSPCLK/ICDCLK/	RB6	TTL	CMOS	General purpose I/O.			
SEG14	ICSPCLK	ST	—	Serial Programming Clock.			
	ICDCLK	ST	—	In-Circuit Debug Clock.			
	SEG14	_	AN	LCD Analog output.			
RB7 ⁽¹⁾ /ICSPDAT/ICDDAT/	RB7	TTL	CMOS	General purpose I/O.			
SEG13	ICSPDAT	ST	_	Serial Programming Clock.			
	ICDDAT	ST	CMOS	In-Circuit Data I/O.			
	SEG13		AN	LCD Analog output.			
RC0/T1OSO/T1CKI	RC0	TTL	CMOS	General purpose I/O.			
	T10S0	XTAL	XTAL	Timer1 oscillator connection.			
	T1CKI	ST	—	Timer1 clock input.			
RC1/T10SI	RC1	TTL	CMOS	General purpose I/O.			
	T10SI	XTAL	XTAL	Timer1 oscillator connection.			
RC2/SEG3	RC2	TTL	CMOS	General purpose I/O.			
	SEG3	_	AN	LCD Analog output.			
RC3/SEG6	RC3	TTL	CMOS	General purpose I/O.			
	SEG6		AN	LCD Analog output.			
RC4/T1G/SEG11	RC4	TTL	CMOS	General purpose I/O.			
	T1G	XTAL	XTAL	Timer1 oscillator connection.			
	SEG11		AN	LCD Analog output.			
RC5/SEG10	RC5	TTL	CMOS	General purpose I/O.			
	SEG10		AN	LCD Analog output.			
RC6/TX/CK/SEG9	RC6	TTL	CMOS	General purpose I/O.			
RC0/17/CR/3EG9	TX	116	CMOS	USART asynchronous transmit.			
	СК	ST	CMOS	USART synchronous clock.			
	SEG9		AN	LCD Analog output.			
RC7/RX/DT/SEG8	RC7 RX	TTL ST	CMOS	General purpose I/O.			
	DT	ST	- CMOS	USART asynchronous input. USART synchronous data.			
	SEG8	31	AN	LCD Analog output.			

PIC16LF1904/6/7 PINOUT DESCRIPTION (CONTINUED) **TABLE 1-2:**


XTAL = Crystal HV = High Voltage

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C levels

Note 1: These pins have interrupt-on-change functionality.

2: PIC16LF1906/7 only.

5.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 5-3 and Table 5-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	x	0	Illegal, \overline{PD} is set on \overline{POR}
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 5-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 5-4: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00-1 110x
MCLR Reset during normal operation	0000h	u uuuu	uu-u Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu-u Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
Brown-out Reset	0000h	1 luuu	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate interrupt enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 8.0** "**Power-Down Mode (Sleep)**" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- · BSR register
- · FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1ms. See **Section 22.0 "Electrical Specifications"** for the LFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word 1. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word 1 are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word 1 are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word 1 are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode	
11	х	Х	Active	
10	37	Awake	Active	
10	х	Sleep	Disabled	
01	1	х	Active	
01	0	~	Disabled	
00	х	Х	Disabled	

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	7
Change INTOSC divider (IRCF bits)	Unaffected

9.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail event
- WDT is disabled
- Oscillator Start-up TImer (OST) is running

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 6.0** "Oscillator **Module**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the <u>device</u> wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See **Section 3.0 "Memory Organization"** and STATUS register (**Register 3-1**) for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF	<3:0>		_	SCS<1:0>		58
STATUS	—	_	—	TO	PD	Z	DC	С	21
WDTCON	—	_			SWDTEN	75			

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	_	_	CLKOUTEN	BORE	N<1:0>	_	20
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>		—	FOSC<1:0>		39

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

10.0 FLASH PROGRAM MEMORY CONTROL

The Flash Program Memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 15-bit address of the program memory location being read.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

The Flash Program Memory can be protected in two ways; by code protection (CP bit in Configuration Word 1) and write protection (WRT<1:0> bits in Configuration Word 2).

Code protection ($\overline{CP} = 0$)⁽¹⁾, disables access, reading and writing, to the Flash Program Memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash Program Memory, Configuration bits and User IDs.

Write protection prohibits self-write and erase to a portion or all of the Flash Program Memory as defined by the bits WRT<1:0>. Write protection does not affect a device programmers ability to read, write or erase the device.

Note 1: Code protection of the entire Flash Program Memory array is enabled by clearing the CP bit of Configuration Word 1.

10.1 PMADRL and PMADRH Registers

The PMADRH:PMADRL register pair can address up to a maximum of 32K words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register.

10.1.1 PMCON1 AND PMCON2 REGISTERS

PMCON1 is the control register for Flash Program Memory accesses.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all '0's.

To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash Program Memory.

10.2 Flash Program Memory Overview

It is important to understand the Flash Program Memory structure for erase and programming operations. Flash Program Memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair.

See Table 10-1 for Erase Row size and the number of write latches for Flash program memory.

Note: If the user wants to modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, new data and retained data can be written into the write latches to reprogram the row of Flash Program Memory. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations.

10.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2.

When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 10-2:	USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)
-------------	---

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS

* This code block will read 1 word of program memory at the memory address:

* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;

* PROG_DATA_HI, PROG_DATA_LO

BANKSEL	PMADRL	;	Select correct Bank
MOVLW	PROG_ADDR_LO	;	
MOVWF	PMADRL	;	Store LSB of address
CLRF	PMADRH	;	Clear MSB of address
BSF	PMCON1,CFGS	;	Select Configuration Space
BCF	INTCON,GIE	;	Disable interrupts
BSF	PMCON1,RD	;	Initiate read
NOP		;	Executed (See Figure 10-1)
NOP		;	Ignored (See Figure 10-1)
BSF	INTCON,GIE	;	Restore interrupts
MOVF	PMDATL,W	;	Get LSB of word
MOVWF	PROG_DATA_LO	;	Store in user location
MOVF	PMDATH,W	;	Get MSB of word
MOVWF	PROG_DATA_HI	;	Store in user location

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
		Prog	gram Memory	/ Control Regist	ter 2		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
S = Bit can only	y be set	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER

bit 7-0 Flash Memory Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PMCON1	(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	91
PMCON2			Prog	ram Memory	Control Regis	ster 2			92
PMADRL	PMADRL<7:0>							90	
PMADRH	(1)			F	MADRH<6:0	>			90
PMDATL				PMDA	۲L<7:0>				90
PMDATH	_	_	– PMDATH<5:0>					90	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	65

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Flash Program Memory module. Note 1: Unimplemented, read as '1'.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8				_	CLKOUTEN	BORE	N<1:0>	_	20
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>		FOSC	<1:0>	39
	13:8	_	_	LVP	DEBUG	LPBOR	BORV	STVREN	—	40
CONFIG2	7:0				1	_		WRT	<1:0>	40

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Flash Program Memory.

REGISTER 11-5: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTB are actually written to the corresponding LATB register. Reads from the PORTB register is return of actual I/O pin values.

REGISTER 11-6: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | • | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 11-7: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to the corresponding LATB register. Reads from the PORTB register is return of actual I/O pin values.

11.4 PORTD Registers (PIC16LF1904/7 only)

PORTD is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 11-14). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTD register (Register 11-13) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATD).

The TRISD register (Register 11-14) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.4.1 PORTD FUNCTIONS AND OUTPUT PRIORITIES

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-9.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in Table 11-9.

Pin Name	Function Priority ⁽¹⁾
RD0	RD0
RD1	RD1
RD2	RD2
RD3	RD3
RD4	RD4
RD5	RD5
RD6	RD6
RD7	RD7

TABLE 11-9: PORTD OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	121
ADCON1	ADFM	ADCS2	ADCS1	ADCS0	—	—	ADPREF1	ADPREF0	122
ADRESH	A/D Result Register High								123, 124
ADRESL	A/D Result Register Low								123, 124
ANSELA	—	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	96
ANSELB	—	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	99
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	65
PIE1	TMR1GIE	ADIE	RCIE	TXIE	_	—	—	TMR1IE	66
PIR1	TMR1GIF	ADIF	RCIF	TXIF	_	—	—	TMR1IF	68
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	95
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	98
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	—	ADFVR1	ADFVR0	113

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

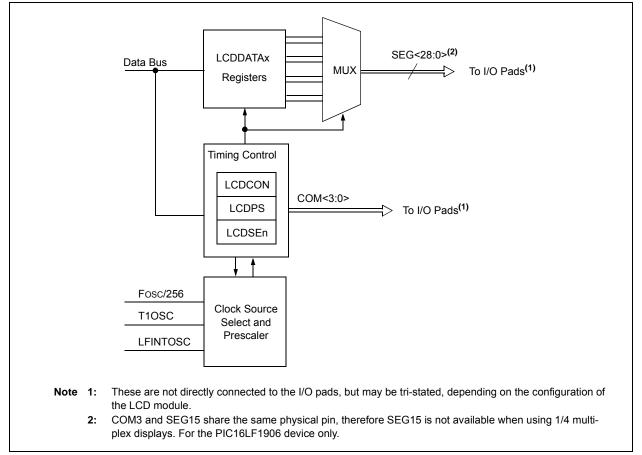
19.0 LIQUID CRYSTAL DISPLAY (LCD) DRIVER MODULE

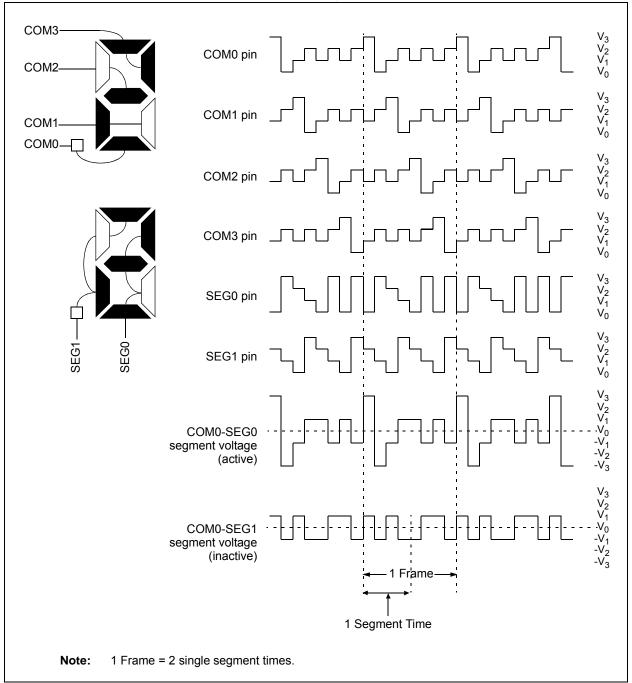
The Liquid Crystal Display (LCD) driver module generates the timing control to drive a static or multiplexed LCD panel. In the PIC16LF1904/6/7 device, the module drives the panels of up to four commons and up to 116 total segments. The LCD module also provides control of the LCD pixel data.

The LCD driver module supports:

- Direct driving of LCD panel
- · Three LCD clock sources with selectable prescaler
- Up to four common pins:
 - Static (1 common)
 - 1/2 multiplex (2 commons)
 - 1/3 multiplex (3 commons)
 - 1/4 multiplex (4 commons)
- 19 Segment pins (PIC16LF1906 only)
- 29 Segment pins (PIC16LF1904/7 only)

• Static, 1/2 or 1/3 LCD Bias


Note: COM3 and SEG15 share the same physical pin on the PIC16LF1906, therefore SEG15 is not available when using 1/4 multiplex displays.


19.1 LCD Registers

The module contains the following registers:

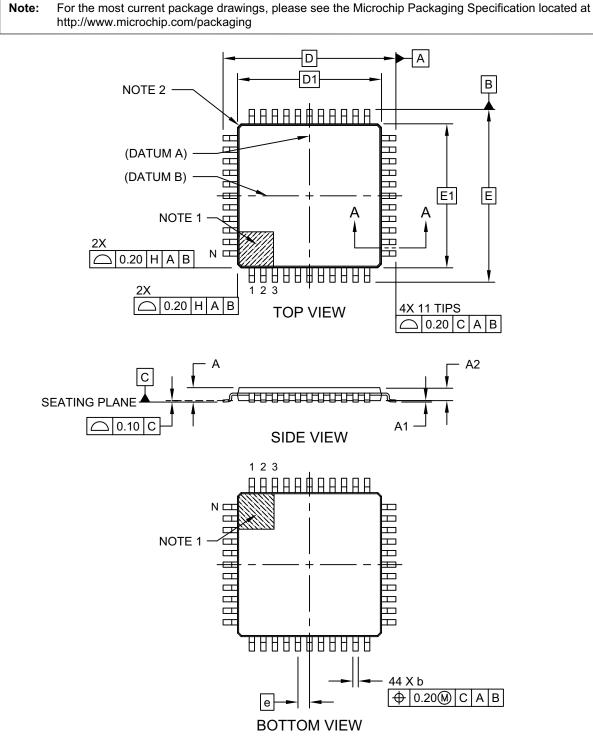
- LCD Control register (LCDCON)
- LCD Phase register (LCDPS)
- LCD Reference Ladder register (LCDRL)
- LCD Contrast Control register (LCDCST)
- LCD Reference Voltage Control register (LCDREF)
- Up to 4 LCD Segment Enable registers (LCDSEn)
- Up to 16 LCD data registers (LCDDATAn)

FIGURE 19-1: LCD DRIVER MODULE BLOCK DIAGRAM

FIGURE 19-17: TYPE-A WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE

TABLE 22-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF1904/6/7			Standard Operating Conditions (unless otherwise stated)						
Param	Device	Min.	Тур†	Max.	Units	Conditions			
No.	Characteristics					Vdd	Note		
	Supply Current (IDD) ^{(1,}	2)							
D010		—	58	75	μA	1.8	Fosc = 1 MHz		
		_	115	140	μA	3.0	EC Oscillator mode		
		—	133	176	μA	3.6	High Power mode		
D011		—	130	200	μA	1.8	Fosc = 4 MHz		
		—	245	300	μA	3.0	EC Oscillator mode High Power mode		
		—	290	350	μA	3.6			
D012		—	218	275	μA	1.8	Fosc = 500 kHz		
		—	283	375	μA	3.0	HFINTOSC mode		
		—	314	395	μA	3.6			
D013		—	233	325	μA	1.8	Fosc = 1 MHz		
		_	309	425	μA	3.0	HFINTOSC mode		
		_	347	475	μA	3.6			
D014		_	305	360	μA	1.8	Fosc = 4 MHz		
		_	433	520	μA	3.0	HFINTOSC mode		
		_	500	600	μA	3.6	-		
D015		_	395	480	μA	1.8	Fosc = 8 MHz		
		_	600	720	μA	3.0	HFINTOSC mode		
			700	850	μA	3.6	-		
D016		_	567	670	μA	1.8	Fosc = 16 MHz		
			915	1100	μA	3.0	HFINTOSC mode		
		_	1087	1300	μA	3.6	-		
D017		_	2.7	7.2	μA	1.8	Fosc = 31 kHz		
		_	4.5	9.7	μA	3.0	LFINTOSC mode		
		_	5.2	12.0	μA	3.6	$-40^{\circ}C \le TA \le +125^{\circ}C$		
D017A		_	2.7	6.5	μA	1.8	Fosc = 31 kHz		
		_	4.5	9.0	μA	3.0	LFINTOSC mode		
		_	5.2	11.0	μΑ	3.6	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D018		_	2.4	6.7	μΑ	1.8	Fosc = 32 kHz		
		_	4.2	9.2	μΑ	3.0	EC Oscillator mode, Low-Power mode		
		_	4.8	11.5	μA	3.6	$-$ -40°C \leq TA \leq +125°C		
D018A		_	2.4	6.0	μA	1.8	Fosc = 32 kHz		
		_	4.2	8.5	μΑ	3.0	EC Oscillator mode, Low-Power mode		
			4.8	10.5	μA	3.6	$-40^{\circ}C \le TA \le +85^{\circ}C$		


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: FVR and BOR are disabled.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Microchip Technology Drawing C04-076C Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15