

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1907t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 5:	40-PIN UQFN (5X5) PACKAGE DIAGRAM FOR PIC16LF1904/7	
	RC6/TX/CK/SEG9 RC6/TX/CK/SEG9 RC4/T1G/SEG11 RD3/SEG16 RD2/SEG28 RD1/SEG27 RD0/COM3 RC1/T10S1 RC2/SEG3 RC1/T10S1	
	SEG8/DT/RX/RC7	
	SEG17/RD42301RC0/T1OSO/T1CKISEG18/RD53291RA6/CLKOUT/SEG1SEG19/RD64281RA7/CLKIN/SEG2SEG20/RD75271VssVss6PIC16LF1904/7261VDD7251RE2/AN7/SEG23SEG0/INT/AN12/RB08241RE1/AN6/SEG22VLCD1/SEG24/AN10/RB19231RE0/AN5/SEG21DA5/AN4/SEC5231RA5/SEC5	
	VLCD2/SEG25/AN8/RB2 10 221 RA4/T0CKI/SEG4	
	VLCD3/SEG26/AN9/RB3 COM0/AN11/RB4 COM1/AN13/RB5 SEG14/ICDCLK/ICSPCLK/RB6 SEG13/ICDDAT/ICSPCLK/RB6 SEG13/ICDDAT/ICSPCLK/RB6 SEG13/ICDDAT/ICSPCLK/RB6 SEG13/ICDDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6 SEG13/ICCDAT/ICSPCLK/RB6	

3.2.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 21.0 "Instruction Set Summary").

Note:	The C	and DC	bits	opera	te as Borrow a	nd
	Digit	Borrow	out	bits,	respectively,	in
	subtra	action.				

REGISTER 3-1: STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
—	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-Down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	1 = The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the 4th low-order bit of the result occurred
	0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order

bit of the source register.

TABI	LE 3-5:	SPECIAL	FUNCTI	ON REG	SISTER S	UMMAR	Y (CON1	INUED)			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 2										
10Ch	LATA	PORTA Dat	ta Latch							XXXX XXXX	uuuu uuuu
10Dh	LATB	PORTB Da	ta Latch							XXXX XXXX	uuuu uuuu
10Eh	LATC	PORTC Da	ta Latch							xxxx xxxx	uuuu uuuu
10Eh	LATD ⁽³⁾	PORTD Da	ta Latch							xxxx xxxx	uuuu uuuu
10Eh	LATE ⁽³⁾	-	_	_	_	_	LATE2	LATE1	LATE0	xxx	uuu
111h to 115h	_	Unimpleme	nted							_	_
116h	BORCON	SBOREN	BORFS	_	_	_		_	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFVR1	ADFVR0	0q0000	0q0000
118h to 11Fh	_	Unimpleme	nted				•	•		_	_
Ban	k 3										
18Ch	ANSELA	_	—	ANSA5	—	ANSA3	ANSA2	ANSA1	ANSA0	1- 1111	11 1111
18Dh	ANSELB	_	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
18Eh	—	Unimpleme	nted		•			•		_	_
18Fh	_	Unimpleme	nted							_	_
190h	ANSELE ⁽³⁾	_	_	_	_	_	ANSE2	ANSE1	ANSE0	111	111
191h	PMADRL	Program M	emory Addre	ess Register	Low Byte					0000 0000	0000 0000
192h	PMADRH	(2)			ess Register I	High Byte				1000 0000	1000 0000
193h	PMDATL	Program M	emory Read	I Data Regist	ter Low Byte					xxxx xxxx	uuuu uuuu
194h	PMDATH	_	_	Program M	emory Read	Data Registe	r High Byte			xx xxxx	uu uuuu
195h	PMCON1	(2)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Program M	emory Conti	rol Register 2	2					0000 0000	0000 0000
197h	_	Unimpleme	nted							_	
198h	_	Unimpleme	nted							_	_
199h	RCREG	USART Re	ceive Data F	Register						0000 0000	0000 0000
19Ah	TXREG	USART Tra	Insmit Data	Register						0000 0000	0000 0000
19Bh	SPBRG				BRG	<7:0>				0000 0000	0000 0000
19Ch	SPBRGH				BRG<	<15:8>				0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	
Ban		1	1			1	1		L		1
20Ch	_	Unimpleme	nted							_	_
	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	_	Unimpleme								_	_
20Fh	_	Unimpleme								_	_
210h	WPUE		_	_	_	WPUE3		_	_	1	1
										±	1

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-5

Bank 5

211h to 21Fh

29Fh

28Ch

_ _

Bank 6

Бап	ĸo			
30Ch	_	Unimplemented	-	_
 31Fh				
Legen		vn, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. cations are unimplemented, read as '0'.		

These registers can be addressed from any bank. Unimplemented, read as '1'. PIC16LF1904/7 only. Note 1:

Unimplemented

Unimplemented

2:

3:

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 and PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See Section 7.5 "Automatic Context Saving")
- PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	s are	e set,
	regardless	of	the	state	of	any	other
	enable bits	-					

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7.3 for more details.

8.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- If the interrupt occurs **during or after** the execution of a SLEEP instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

CLKIN ⁽¹⁾		Q1 Q2 Q3 Q4	Q1		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT ⁽²⁾	\/ 	/	\		·/	\/ !		
Interrupt flag	l		/	_	Interrupt Laten	cy ⁽¹⁾	1	i
	1				1	1	·P,	ļ
GIE bit	I		Processor in		1	<u> </u>		1
(INTCON reg.)	!— — — — !		Sleep		; !	;; ;	'	
Instruction Flow	i i		;		I		i i	i
PC	X PC	PC + 1	X PC	+ 2	χ <u>PC + 2</u>	X PC + 2	X 0004h	(0005h
Instruction { Fetched	Inst(PC) = Sleep	Inst(PC + 1)	1 1 1		Inst(PC + 2)	I I I	Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Dummy Cycle	Dummy Cycle	Inst(0004h)
Note 1: 0	GIE = 1 assumed.	In this case after	wake-up, the p	orocesso	r calls the ISR at (0004h. If GIE = 0,	execution will cont	inue in-line.

FIGURE 8-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	65
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	110
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	110
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	110
PIE1	TMR1GIE	ADIE	RCIE	TXIE	—	_	_	TMR1IE	66
PIE2	—	_	_	_	—	LCDIE	_	—	67
PIR1	TMR1GIF	ADIF	RCIF	TXIF	—	_	_	TMR1IF	68
PIR2	_	_	_	_	—	LCDIF	_	—	69
STATUS	—			TO	PD	Z	DC	С	21
WDTCON	_			١	NDTPS<4:0>	>		SWDTEN	75

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-down mode.

EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY

; This write routine assumes the following: ; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR ; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR, stored in little endian format ; ; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH: ADDRL ; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM) INTCON,GIE BCF ; Disable ints so required sequences will execute properly PMADRH ; Bank 3 BANKSEL MOVF ADDRH,W ; Load initial address MOVWF PMADRH MOVF ADDRL,W MOVWE PMADRL LOW DATA_ADDR ; Load initial data address MOVLW MOVWF FSROL MOVLW HIGH DATA_ADDR ; Load initial data address MOVWF FSROH ; PMCON1,CFGS ; Not configuration space BCF BSF PMCON1.WREN ; Enable writes BSF PMCON1,LWLO ; Only Load Write Latches LOOP MOVIW FSR0++ ; Load first data byte into lower MOVWE PMDATT. ; MOVIW FSR0++ ; Load second data byte into upper MOVWF PMDATH ; Check if lower bits of address are '00000' MOVF PMADRL,W 0x1F ; Check if we're on the last of 32 addresses XORLW ANDLW 0x1F STATUS, Z ; Exit if last of 32 words, BTFSC GOTO START_WRITE ; MOVLW 55h ; Start of required write sequence: MOVWF PMCON2 ; Write 55h Required Sequence MOVLW 0AAh MOVWF PMCON2 ; Write AAh ; Set WR bit to begin write BSF PMCON1,WR NOP ; NOP instructions are forced as processor ; loads program memory write latches NOP INCF PMADRL, F ; Still loading latches Increment address GOTO LOOP ; Write next latches START_WRITE BCF PMCON1,LWLO ; No more loading latches - Actually start Flash program ; memory write MOVLW 55h ; Start of required write sequence: MOVWF PMCON2 ; Write 55h Required Sequence MOVLW 0AAh ; MOVWF PMCON2 ; Write AAh BSF PMCON1,WR ; Set WR bit to begin write NOP ; NOP instructions are forced as processor writes ; all the program memory write latches simultaneously NOP ; to program memory. ; After NOPs, the processor ; stalls until the self-write process in complete ; after write processor continues with 3rd instruction BCF PMCON1,WREN ; Disable writes BSF INTCON, GIE ; Enable interrupts

REGISTER 11-5: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTB are actually written to the corresponding LATB register. Reads from the PORTB register is return of actual I/O pin values.

REGISTER 11-6: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | • | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 11-7: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to the corresponding LATB register. Reads from the PORTB register is return of actual I/O pin values.

REGISTER 11-18: LATE: PORTE DATA LATCH REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u
	—		—	—	LATE2 ⁽²⁾	LATE1 ⁽²⁾	LATE0 ⁽²⁾
bit 7							bit 0
Logond:							

Le	g	e	r	1	d	-

Logonal		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 LATE<2:0>: PORTE Output Latch Value bits⁽¹⁾

- Note 1: Writes to PORTE are actually written to the corresponding LATE register. Reads from the PORTE register is return of actual I/O pin values.
 - 2: LATE<2:0> are not implemented on the PIC16LF1906. Read as '0'.

REGISTER 11-19: ANSELE: PORTE ANALOG SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	—	—	ANSE2 ⁽²⁾	ANSE1 ⁽²⁾	ANSE0 ⁽²⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 2-0 ANSE<2:0>: Analog Select between Analog or Digital Function on pins RE<2:0>, respectively

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSE<2:0> are not implemented on the PIC16LF1906. Read as '0'.

15.2.5 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 15.3 "A/D Acquisition Requirements".

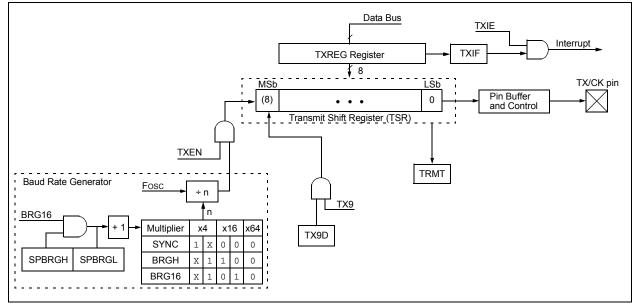
EXAMPLE 15-1: A/D CONVERSION

;This code block configures the ADC ; for polling, Vdd and Vss references, Frc ;clock and ANO input. ;Conversion start & polling for completion ; are included. BANKSEL ADCON1 ; B'11110000' ;Right justify, Frc MOVLW ;clock MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL ADCON0 B'00000001' ;Select channel ANO MOVLW ;Turn ADC On MOVWE ADCON0 SampleTime ; Acquisiton delay CALL ADCON0, ADGO ; Start conversion BSF BTFSC ADCON0, ADGO ; Is conversion done? GOTO \$-1 ;No, test again ADRESH ; BANKSEL ADRESH,W ;Read upper 2 bits MOVF MOVWF RESULTHI ;store in GPR space BANKSEL ADRESL ; ADRESL,W MOVF ;Read lower 8 bits MOVWE RESULTLO ;Store in GPR space

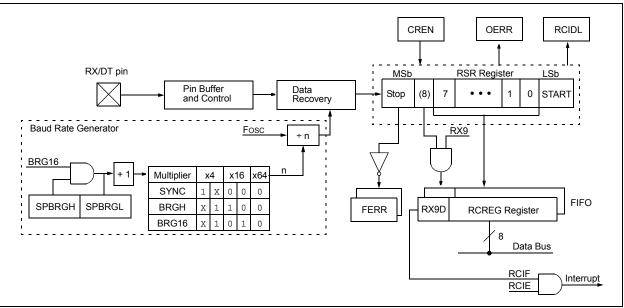
18.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:


- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- Half-duplex synchronous slave
- · Programmable clock and data polarity

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:


- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 18-1 and Figure 18-2.

FIGURE 18-1: EUSART TRANSMIT BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 18-1, Register 18-2 and Register 18-3, respectively.

For all modes of EUSART operation, the TRIS control bits corresponding to the RX/DT and TX/CK pins should be set to '1'. The EUSART control will automatically reconfigure the pin from input to output, as needed.

When the receiver or transmitter section is not enabled then the corresponding RX/DT or TX/CK pin may be used for general purpose input and output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	153
BAUD2CON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	153
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	65
PIE1	TMR1GIE	ADIE	RCIE ⁽¹⁾	TXIE ⁽¹⁾	—	_		TMR1IE	66
PIR1	TMR1GIF	ADIF	RCIF ⁽¹⁾	TXIF ⁽¹⁾	—	_	_	TMR1IF	68
RCREG			El	JSART Rec	eive Regist	er			147*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	152
SPBRGL			EUSART	Baud Rate	Generator,	Low Byte			154*
SPBRGH			EUSART	Baud Rate	Generator,	High Byte			154*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	101
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	151

TABLE 18-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for asynchronous reception.

* Page provides register information.

Note 1: PIC16LF1904/7 only.

R/W-0/0	R/W-0/0	R/C-0/0	U-0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1				
LCDEN	SLPEN	WERR	_	(CS<1:0>	LMU>	<1:0>				
bit 7	·						bit				
Legend:	. L :4			II — I heirer	lowented bit read	aa (0)					
R = Readable		W = Writable bit		•	lemented bit, read						
u = Bit is unch	•	x = Bit is unknow			e at POR and BOF	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is cleare	ed	C = Only c	learable bit						
bit 7	LCDEN: LCD	Driver Enable bi	t								
		er module is enab er module is disat									
bit 6	SLPEN: LCD	Driver Enable in	Sleep Mod	le bit							
		er module is disat									
	0 = LCD drive	er module is enab	oled in Slee	p mode	0 = LCD driver module is enabled in Sleep mode						
bit 5		er module is enab Write Failed Erro		p mode							
bit 5	WERR: LCD 1 = LCDDAT software)	Write Failed Erro An register writte	r bit		the LCDPS regist	ter = 0 (must	be cleared				
	WERR: LCD 1 = LCDDAT software) 0 = No LCD v	Write Failed Erro An register writte) vrite error	r bit		the LCDPS regist	ter = 0 (must	be cleared i				
bit 4	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen	Write Failed Erro An register writte) vrite error ted: Read as '0'	r bit en while th		the LCDPS regist	ter = 0 (must	be cleared i				
bit 5 bit 4 bit 3-2	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen CS<1:0>: Clo	Write Failed Erro An register writte) vrite error ted: Read as '0' ock Source Select	r bit en while th		the LCDPS regist	ter = 0 (must	be cleared i				
bit 4	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25	Write Failed Erro An register writte write error ted: Read as '0' ock Source Select	r bit en while th		the LCDPS regist	ter = 0 (must	be cleared i				
bit 4	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC	Write Failed Erro An register writte write error ted: Read as '0' tek Source Select 6 (Timer1)	r bit en while th		the LCDPS regist	ter = 0 (must	be cleared i				
bit 4	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO	Write Failed Erro An register writte write error ted: Read as '0' tek Source Select 6 (Timer1)	r bit en while th t bits		the LCDPS regist	ter = 0 (must	be cleared i				
bit 4 bit 3-2	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	Write Failed Erro An register writte write error ted: Read as '0' ted: Rea	r bit en while th t bits t bits	e WA bit of	the LCDPS regist		be cleared i				
bit 4 bit 3-2	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO	Write Failed Erro An register writte vrite error ted: Read as '0' ock Source Select 6 (Timer1) SC (31 kHz)	r bit en while th t bits t bits Ma	e WA bit of		ter = 0 (must	be cleared i				
bit 4 bit 3-2	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	Write Failed Erro An register writte write error ted: Read as '0' ted: Rea	r bit en while th t bits t bits Ma PIC	e WA bit of	mber of Pixels		be cleared i				
bit 4 bit 3-2	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	Write Failed Erro An register writte vrite error ted: Read as '0' ock Source Select 66 (Timer1) SC (31 kHz) Commons Selec Multiplex	r bit en while th t bits t bits Ma PIC	e WA bit of aximum Nui 216LF1906	mber of Pixels PIC16LF1904/7	Bias	be cleared i				
bit 4 bit 3-2	WERR: LCD 1 = LCDDAT software) 0 = No LCD v Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>: 00	Write Failed Erro An register writte vrite error ted: Read as '0' ted: Rea	r bit en while th t bits t bits Ma PIC ())	aximum Nur 16LF1906	mber of Pixels PIC16LF1904/7 29	Bias	be cleared i				

REGISTER 19-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER

Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 72 segments.

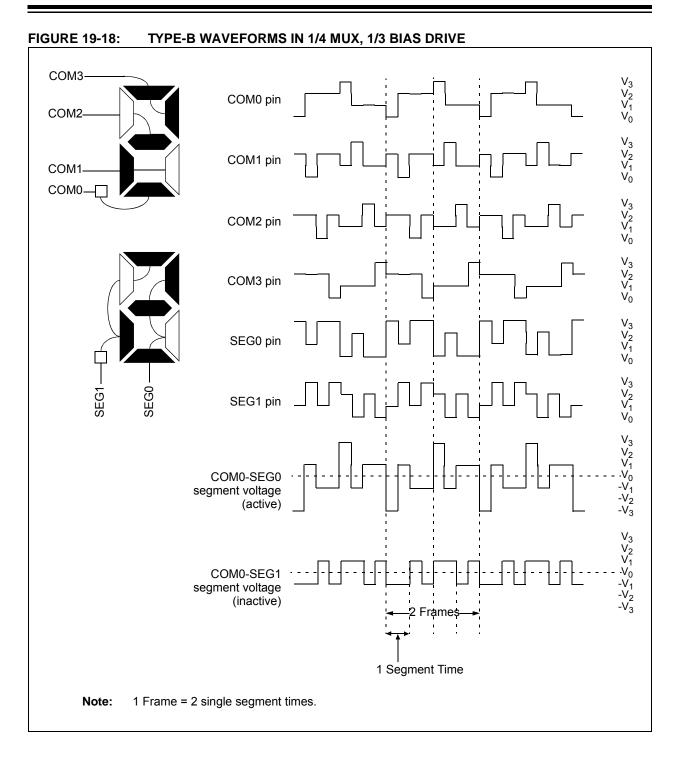
19.4 LCD Bias Internal Reference Ladder

The internal reference ladder can be used to divide the LCD bias voltage two or three equally spaced voltages that will be supplied to the LCD segment pins. To create this, the reference ladder consists of three matched resistors. Refer to Figure 19-3.

19.4.1 BIAS MODE INTERACTION

When in 1/2 Bias mode (BIASMD = 1), then the middle resistor of the ladder is shorted out so that only two voltages are generated. The current consumption of the ladder is higher in this mode, with the one resistor removed.

TABLE 19-3:LCD INTERNAL LADDERPOWER MODES (1/3 BIAS)


Power Mode	Nominal Resistance of Entire Ladder	Nominal IDD
Low	3 Mohm	1 µA
Medium	300 kohm	10 µA
High	30 kohm	100 µA

19.4.2 POWER MODES

The internal reference ladder may be operated in one of three power modes. This allows the user to trade off LCD contrast for power in the specific application. The larger the LCD glass, the more capacitance is present on a physical LCD segment, requiring more current to maintain the same contrast level.

Three different power modes are available, LP, MP and HP. The internal reference ladder can also be turned off for applications that wish to provide an external ladder or to minimize power consumption. Disabling the internal reference ladder results in all of the ladders being disconnected, allowing external voltages to be supplied.

Whenever the LCD module is inactive (LCDA = 0), the internal reference ladder will be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	65
LCDCON	LCDEN	SLPEN	WERR	_	CS1	CS0	LMUX<1:0>		173
LCDCST	—	_	_	—	—	l	_CDCST<2:0	>	176
LCDDATA0	SEG7 COM0	SEG6 COM0	SEG5 COM0	SEG4 COM0	SEG3 COM0			SEG0 COM0	177
LCDDATA1	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG9 COM0	SEG8 COM0	177
LCDDATA2 ⁽¹⁾	SEG23 COM0	SEG22 COM0	SEG21 COM0	SEG20 COM0	SEG19 COM0	SEG18 COM0	SEG17 COM0	SEG16 COM0	177
LCDDATA3	SEG7 COM1	SEG6 COM1	SEG5 COM1	SEG4 COM1	SEG3 COM1	SEG2 COM1	SEG1 COM1	SEG0 COM1	177
LCDDATA4	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG9 COM1	SEG8 COM1	177
LCDDATA5 ⁽¹⁾	SEG23 COM1	SEG22 COM1	SEG21 COM1	SEG20 COM1	SEG19 COM1	SEG18 COM1	SEG17 COM1	SEG16 COM1	177
LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	177
LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	177
LCDDATA8 ⁽¹⁾	SEG23 COM2	SEG22 COM2	SEG21 COM2	SEG20 COM2	SEG19 COM2	SEG18 COM2	SEG17 COM2	SEG16 COM2	177
LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 SEG3 SEG2 SEG1 COM3 COM3 COM3 COM3		SEG1 COM3	SEG0 COM3	177	
LCDDATA10	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 SEG11 SEG10 SEG9 COM3 COM3 COM3 COM3		SEG8 COM3	177		
LCDDATA11 ⁽¹⁾	SEG23 COM3	SEG22 COM3	SEG20 COM3	SEG19 COM3	SEG18 COM3	SEG17 COM3	SEG16 COM3	SEG15 COM3	177
LCDDATA12	—	_		SEG28 COM0	SEG27 COM0	SEG26 COM0	SEG25 COM0	SEG24 COM0	177
LCDDATA15	—	—	_	SEG28 COM1	SEG27 COM1	SEG26 COM1	SEG25 COM1	SEG24 COM1	177
LCDDATA18	—	—	_	SEG28 COM2	SEG27 COM2	SEG26 COM2	SEG25 COM2	SEG24 COM2	177
LCDDATA21	—	—	_	SEG28 COM3	SEG27 COM3	SEG26 COM3	SEG25 COM3	SEG24 COM3	177
LCDPS	WFT	BIASMD	LCDA	WA		LP<	:3:0>		174
LCDREF	LCDIRE	—	LCDIRI	—	VLCD3PE	VLCD2PE	VLCD1PE	—	175
LCDRL	LRLA	P<1:0>	LRLBP<1:0> — LRLAT<2:0>			184			
LCDSE0				SE	<7:0>				177
LCDSE1				SE	<15:8>				177
LCDSE2				SE<	:23:16>				177
LCDSE3	_	_				SE<28:24>			177
PIE2		_	_		_	LCDIE	_	_	67
PIR2				—	_	LCDIF			69
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC		TMR10N	139

 TABLE 19-8:
 SUMMARY OF REGISTERS ASSOCIATED WITH LCD OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the LCD module.

Note 1: PIC16LF1904/7 only.

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	$\begin{array}{l} n \in [0,1] \\ mm \in [00,01, 10, 11] \\ \textbf{-32} \leq k \leq 31 \end{array}$
Operation:	$\label{eq:states} \begin{array}{l} W \rightarrow INDFn \\ Effective \ address \ is \ determined \ by \\ \bullet \ FSR + 1 \ (preincrement) \\ \bullet \ FSR + 1 \ (predecrement) \\ \bullet \ FSR + k \ (relative \ offset) \\ After \ the \ Move, \ the \ FSR \ value \ will \ be \\ either: \\ \bullet \ FSR + 1 \ (all \ increments) \\ \bullet \ FSR + 1 \ (all \ increments) \\ Unchanged \\ \end{array}$

Status Affected:

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

None

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the \overline{RI} flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by software.

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$TOS \rightarrow PC,$ 1 \rightarrow GIE				
Status Affected:	None				
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.				
Words:	1				
Cycles:	2				
Example:	RETFIE				
	After Interrupt PC = TOS GIE = 1				

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS \rightarrow PC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.					

RETLW	Return with literal in W	RLF	Rotate Left f through Carry			
Syntax:	[<i>label</i>] RETLW k					
Operands:	$0 \le k \le 255$	Syntax:	[label] RLF f,d			
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Status Affected:	None	Operation:	See description below			
Description:	The W register is loaded with the 8-bit	Status Affected:	С			
Description.	literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is			
Words:	1		stored back in register 'f'.			
Cycles:	2					
Example:	CALL TABLE;W contains table	Words:	1			
	;offset value • ;W now has table value	Cycles:	1			
TABLE	•	Example:	RLF REG1,0			
	• ADDWF PC ; $W = offset$		Before Instruction			
	RETLW k1 ;Begin table		REG1 = 1110 0110			
	RETLW k2 ;		C = 0 After Instruction			
	•		REG1 = 1110 0110			
	•		W = 1100 1100			
	• RETLW kn ; End of table		C = 1			
	Before Instruction W = 0x07 After Instruction W = value of k8					

PIC16LF1904/6/7		Standard Operating Conditions (unless otherwise stated)							
Param	Device Characteristics	Min.	Typ†	Max.	Max.	Units	Conditions		
No.	Device Characteristics	IVIII.	וקעי	+85°C	+125°C	Units	Vdd	Note	
	Power-down Base Current	(IPD) ⁽²⁾							
D023		— 0.15 1.0 3.0 μA 1.8 WE	WDT, BOR, FVR, and T1OSC						
		_	0.16	2.0	4.0	μA	3.0	disabled, all Peripherals Inactive	
		_	0.65	3.0	5.0	μA	3.6		
D024			0.27	2.0	4.0	μA	1.8	WDT Current (Note 1)	
		_	0.56	3.0	5.0	μA	3.0		
		_	0.75	4.0	6.0	μA	3.6		
D025			17.5	31	35	μA	1.8	FVR current	
			17.7	33	38	μA	3.0		
		_	17.8	35	41	μA	3.6		
D026			0.15	2.30	3.56	μA	3.0	LPBOR current	
			0.21	3.40	4.70	μA	3.6		
D027			7.0	10	12	μA	3.0	BOR Current	
		—	7.5	12	14	μA	3.6		
D028			0.50	2.0	4.0	μA	1.8	T1OSC Current	
			0.60	3.0	5.0	μA	3.0		
		—	0.70	4.0	6.0	μA	3.6		
D029			0.40	2.0	4.0	μA	1.8	ADC Current (Note 1, Note 3),	
			0.70	3.0	5.0	μA	3.0	no conversion in progress	
		_	0.90	4.0	6.0	μA	3.6		
D030		_	—	250	—	μA	1.8	ADC Current (Note 1, Note 3),	
			—	250	—	μA	3.0	conversion in progress	
		—	—	250	—	μA	3.6		
D031	LCD Bias Ladder	I	I	1	T	1		1	
	Low power	—	1	2	6	μA	1.8		
	Medium Power	_	10	13	21	μA	3.0		
	High Power		100	111	120	μA	3.6		

TABLE 22-3: POWER-DOWN CURRENTS (IPD)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

TABLE 22-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2 5	_	_	μS μS	VDD = 3.0V, -40°C to +85°C VDD = 3.0V
31	FWDTLP	Low Frequency Internal Oscillator Frequency	19	33	52	kHz	
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾		1024	_	Tosc	(Note 2)
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	_	2048	_	Tosc	Clocked by LFINTOSC
34*	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset		—	2.0	μS	
35	VBOR	Brown-out Reset Voltage: BORV = 0 BORV = 1	2.55 1.80	2.70 1.90	2.85 2.05	V V	
35A*	VHYST	Brown-out Reset Hysteresis	25	50 —	75 100	mV mV	-40°C to +85°C -40°C to +125°C
35B*	TBORDC	Brown-out Reset DC Response Time	1	3	5 10	μs μs	$VDD \le VBOR$, -40°C to +85°C $VDD \le VBOR$
35C	TBORAC	Brown-out Reset AC Response Time		100	_	ns	Transient Response immunity for a noise spike that goes from VDD to VSS and back with 10 ns rise and fall times. Guidance only.
36	TFVRS	Fixed Voltage Reference Turn-on Time		—	5	μS	Turn on to specified stability
37	Vlpbor	Low-Power Brown-out Reset Voltage	1.85	1.95	2.10	V	-40°C to +85°C
38*	VZPHYST	Zero-Power Brown-out Reset Hysteresis	0	25	60	mV	-40°C to +85°C
39*	Tzpbpw	Zero-Power Brown-out Reset AC Response Time for BOR detection	10	—	500	nVs	$VDD \le VBOR$, -40°C to +85°C

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - **2:** Period of the slower clock.
 - 3: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.