

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

ĿХF

Detalls	
Product Status	Obsolete
Applications	HB LED Controller
Core Processor	M8C
Program Memory Type	FLASH (16KB)
Controller Series	CY8CLED
RAM Size	1K x 8
Interface	I ² C, SPI, UART/USART, USB
Number of I/O	56
Voltage - Supply	3V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8cled04-68ltxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CY8CLED04

Contents

EZ-Color™ Functional Overview	. 4
Target Applications	4
The PSoC Core	. 4
The Digital System	4
The Analog System	
The Analog Multiplexer System	. 6
Additional System Resources	
EZ-Color Device Characteristics	. 6
Getting Started	7
Application Notes	7
Development Kits	7
Training	
CYPros Consultants	7
Solutions Library	7
Technical Support	7
Development Tools	
PSoC Designer Software Subsystems	
Designing with PSoC Designer	
Select User Modules	
Configure User Modules	
Organize and Connect	
Generate, Verify, and Debug	.9
Pin Information	
68-Pin Part Pinout	
Register Conventions	
Abbreviations Used	
Register Mapping Tables	
Electrical Specifications	
Absolute Maximum Ratings	
Operating Temperature	
DC Electrical Characteristics	
AC Electrical Characteristics	29

37
38
38
39
39
39
40
40
40
40
41
41
41
42
42
42
43
43
43
43
48
49
49
49
49

EZ-Color™ Functional Overview

Cypress's EZ-Color family of devices offers the ideal control solution for high brightness LED applications requiring intelligent dimming control. EZ-Color devices combine the power and flexibility of Programmable System-on-Chip (PSoC[®]); with Cypress's precise illumination signal modulation (PrISM[™]) modulation technology providing lighting designers a fully customizable and integrated lighting solution platform.

The EZ-Color family supports a range of independent LED channels from 4 channels at 32 bits of resolution each, up to 16 channels at 8 bits of resolution each. This enables lighting designers the flexibility to choose the LED array size and color quality. PSoC Designer software, with lighting specific drivers, can significantly cut development time and simplify implementation of fixed color points through temperature, optical, and LED binning compensation. EZ-Color's virtually limitless analog and digital customization enable simple integration of features in addition to intelligent lighting, such as CapSense, battery charging, image stabilization, and motor control during the development process. These features, along with Cypress's best-in-class quality and design support, make EZ-Color the ideal choice for intelligent HB LED control applications.

Target Applications

- LCD Backlight
- Large Signs
- General Lighting
- Architectural Lighting
- Camera/Cell Phone Flash
- Flashlights

The PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable General Purpose I/O (GPIO).

The M8C CPU core is a powerful processor with speeds up to 68 MHz, providing a four MIPS 8-bit Harvard-architecture microprocessor. The CPU uses an interrupt controller with up to 20 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and watchdog timers (WDT).

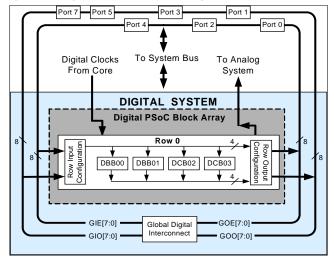
Memory encompasses 16K of flash for program storage, 1K of SRAM for data storage, and up to 2K of EEPROM emulated using the flash. Program flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The EZ-Color family incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to 8 percent over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz internal low speed oscillator (ILO) is provided for the sleep timer and WDT. The clocks, together with programmable clock dividers (as a system resource), provide the flexibility to integrate almost any timing requirement into the EZ-Color device. In USB systems, the IMO self-tunes to $\pm 0.25\%$ accuracy for USB communication.

EZ-Color GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin can also generate a system interrupt on high level, low level, and change from last read.

The Digital System

The digital system is composed of four digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are called user module references.

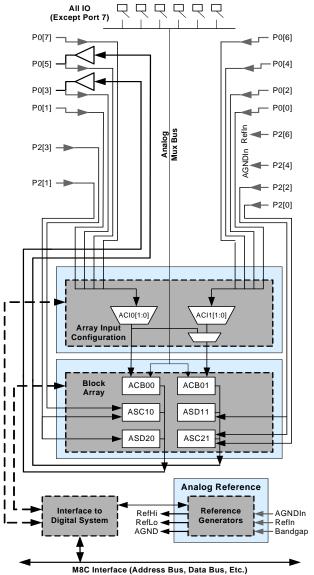

Digital peripheral configurations include:

- PrISM (8- to 32-bit)
- Full speed USB (12 Mbps)
- PWMs (8- to 32-bit)
- PWMs with Dead band (8- to 24-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- UART 8-bit with selectable parity
- SPI master and slave
- I²C slave and multi-master
- Cyclical Redundancy Checker (CRC)/Generator (8- to 32-bit)
- IrDA
- Generators (8- to 32-bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by EZ-Color device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled EZ-Color Device Characteristics.

Figure 1. Digital System Block Diagram


The Analog System

The Analog System is composed of six configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common EZ-Color analog functions (most available as user modules) are listed below.

- Analog-to-digital converters (up to 2, with 6- to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (2 and 4 pole band-pass, low-pass, and notch)
- Amplifiers (up to 2, with selectable gain to 48x)
- Instrumentation amplifiers (1 with selectable gain to 93x)
- Comparators (up to 2, with 16 selectable thresholds)
- DACs (up to 2, with 6- to 9-bit resolution)
- Multiplying DACs (up to 2, with 6- to 9-bit resolution)
- High current output drivers (two with 30 mA drive as a PSoC Core Resource)
- 1.3-V reference (as a system resource)
- DTMF Dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Analog blocks are arranged in a column of three, which includes one Continuous Time (CT) and two Switched Capacitor (SC) blocks, as shown in the figure below.

Figure 2. Analog System Block Diagram

Getting Started

The quickest way to understand PSoC silicon is to read this data sheet and then use the PSoC Designer integrated development environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the *PSoC® Programmable System-on-Chip Technical Reference Manual*.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device data sheets on the web at http://www.cypress.com/ez-color.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
 - □ Hardware and software I²C slaves and masters
 - □ Full-speed USB 2.0
 - Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Register Conventions

This section lists the registers of the CY8CLED04 EZ-Color device.

Abbreviations Used

The register conventions specific to this section are listed in the following table.

Convention	Description					
R	Read register or bit(s)					
W	Write register or bit(s)					
L	Logical register or bit(s)					
С	Clearable register or bit(s)					
#	Access is bit specific					

Register Mapping Tables

The device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks., Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and should not be accessed.

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW	PMA0_DR	40	RW	ASC10CR0	80	RW		C0	
PRT0IE	01	RW	PMA1_DR	41	RW	ASC10CR1	81	RW		C1	
PRT0GS	02	RW	PMA2_DR	42	RW	ASC10CR2	82	RW		C2	
PRT0DM2	03	RW	PMA3_DR	43	RW	ASC10CR3	83	RW		C3	
PRT1DR	04	RW	PMA4_DR	44	RW	ASD11CR0	84	RW		C4	
PRT1IE	05	RW	PMA5_DR	45	RW	ASD11CR1	85	RW		C5	
PRT1GS	06	RW	PMA6_DR	46	RW	ASD11CR2	86	RW		C6	
PRT1DM2	07	RW	PMA7_DR	47	RW	ASD11CR3	87	RW		C7	
PRT2DR	08	RW	USB_SOF0	48	R		88			C8	
PRT2IE	09	RW	USB_SOF1	49	R		89			C9	
PRT2GS	0A	RW	USB_CR0	4A	RW		8A			CA	
PRT2DM2	0B	RW	USBI/O_CR 0	4B	#		8B			СВ	
PRT3DR	0C	RW	USBI/O_CR 1	4C	RW		8C			CC	
PRT3IE	0D	RW		4D			8D			CD	
PRT3GS	0E	RW	EP1_CNT1	4E	#		8E			CE	
PRT3DM2	0F	RW	EP1_CNT	4F	RW		8F			CF	
PRT4DR	10	RW	EP2_CNT1	50	#	ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW	EP2_CNT	51	RW	ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW	EP3_CNT1	52	#	ASD20CR2	92	RW		D2	
PRT4DM2	13	RW	EP3_CNT	53	RW	ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW	EP4_CNT1	54	#	ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW	EP4_CNT	55	RW	ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW	EP0_CR	56	#	ASC21CR2	96	RW	I2C_CFG	D6	RW
PRT5DM2	17	RW	EP0_CNT	57	#	ASC21CR3	97	RW	I2C_SCR	D7	#
	18		EP0_DR0	58	RW		98		I2C_DR	D8	RW
	19		EP0_DR1	59	RW		99		I2C_MSCR	D9	#
	1A		EP0_DR2	5A	RW		9A		INT_CLR0	DA	RW
	1B		EP0_DR3	5B	RW		9B		INT_CLR1	DB	RW
PRT7DR	1C	RW	EP0_DR4	5C	RW		9C		INT_CLR2	DC	RW
PRT7IE	1D	RW	EP0_DR5	5D	RW		9D		INT_CLR3	DD	RW
PRT7GS	1E	RW	EP0_DR6	5E	RW	Ī	9E		INT_MSK3	DE	RW
PRT7DM2	1F	RW	EP0_DR7	5F	RW	I	9F		INT_MSK2	DF	RW
DBB00DR0	20	#	AMX_IN	60	RW	Ī	A0		INT_MSK0	E0	RW
DBB00DR1	21	W	AMUXCFG	61	RW		A1		INT_MSK1	E1	RW

Table 3. Register Map Bank 0 Table: User Space

Blank fields are Reserved and should not be accessed.

Access is bit specific.

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT4DM1	11	RW	PMA1_RA	51	RW	ASD20CR 1		RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW	PMA2_RA	52	RW	ASD20CR	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW	PMA3_RA	53	RW	ASD20CR	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW	PMA4_RA	54	RW	ASC21CR	94	RW		D4	
PRT5DM1	15	RW	PMA5_RA	55	RW	ASC21CR	95	RW		D5	
PRT5IC0	16	RW	PMA6_RA	56	RW	ASC21CR 2	96	RW		D6	
PRT5IC1	17	RW	PMA7_RA	57	RW	ASC21CR 3	97	RW		D7	
	18			58		-	98		MUX_CR0	D8	RW
	19			59			99		MUX_CR1	D9	RW
	1A			5A			9A		MUX_CR2	DA	RW
	1B			5B			9B		MUX_CR3	DB	RW
PRT7DM0	1C	RW		5C			9C			DC	
PRT7DM1	1D	RW		5D			9D		OSC_GO_EN	DD	RW
PRT7IC0	1E	RW		5E			9E		OSC_CR4	DE	RW
PRT7IC1	1F	RW		5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	CMP_GO_E	64	RW		A4		VLT_CMP	E4	R
DBB01IN	25	RW	CMP_GO_E N1	65	RW		A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC		MUX_CR4	EC	RW
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD		MUX_CR5	ED	RW
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
	30		ACB00CR3	70	RW	RDIORI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	1
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79	1	1	B9			F9	1
	3A			7A			BA			FA	
	3B			7B	1	1	BB			FB	1
	3C			7C			BC			FC	
	3D			7D			BD		DAC_CR	FD	RW
	3E			7E			BE		CPU SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Table 4. Register Map Bank 1 Table: Configuration Space (continued)

Blank fields are Reserved and should not be accessed.

Access is bit specific.

Table 5. DC GPI/O Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
I _{OH}	High level source current	10	_	-	mA	$V_{OH} = V_{DD}$ -1.0 V. See the limitations of the total current in the Note for V _{OH} .
I _{OL}	Low level sink current	25	-	-	mA	V_{OL} = 0.75 V. See the limitations of the total current in the Note for V_{OL} .
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25.
V _{IH}	Input high level	2.1	-		V	V _{DD} = 3.0 to 5.25.
V _H	Input hysterisis	-	60	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	_	3.5	10	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C.

DC Full-Speed USB Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-10 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-10 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 6. DC Full-Speed (12 Mbps) USB Specification	Table 6.	DC Full-Speed	(12 Mbps) USB	Specifications
--	----------	---------------	---------------	-----------------------

Symbol	Description	Min	Тур	Max	Units	Notes
USB Inter	rface					
V _{DI}	Differential input sensitivity	0.2	-	-	V	(D+) - (D-)
V _{CM}	Differential input common mode range	0.8	-	2.5	V	
V _{SE}	Single ended receiver threshold	0.8	-	2.0	V	
C _{IN}	Transceiver capacitance	-	-	20	pF	
I _{I/O}	High-Z State data line leakage	-10	-	10	μΑ	0 V < V _{IN} < 3.3 V.
R _{EXT}	External USB series resistor	23	-	25	W	In series with each USB pin.
V _{UOH}	Static output high, driven	2.8	-	3.6	V	15 kΩ ± 5% to Ground. Internal pull-up enabled.
V _{UOHI}	Static output high, idle	2.7	-	3.6	V	15 k $\Omega \pm 5\%$ to Ground. Internal pull-up enabled.
V _{UOL}	Static output low	-	-	0.3	V	15 kΩ ± 5% to Ground. Internal pull-up enabled.
ZO	USB driver output impedance	28	-	44	W	Including R _{EXT} resistor.
V _{CRS}	D+/D- crossover voltage	1.3	-	2.0	V	

Table 8. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, opamp bias = high Power = medium, opamp bias = high Power = high, opamp bias = high		1.65 1.32	10 8	mV mV mV	Power = high, opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
TCV _{OSOA}	Average input offset voltage drift	_	7.0	35.0	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	_	20	-	pA	Gross tested to 1 µA.
C _{INOA}	Input capacitance (port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range	0.2	_	V _{DD} – 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, opamp bias = low Power = medium, opamp bias = low Power = high, opamp bias = low	60 60 80		- - -	dB dB dB	Specification is applicable at Low opamp bias. For high opamp bias mode (except high power, High opamp bias), minimum is 60 dB.
V _{OHIGHO} A	High output voltage swing (internal signals) Power = low, opamp bias = low Power = medium, opamp bias = low Power = high, opamp bias = low	$V_{DD} - 0.2$ $V_{DD} - 0.2$ $V_{DD} - 0.2$		- - -	> > >	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, opamp bias = low Power = medium, opamp bias = low Power = high, opamp bias = low	 		0.2 0.2 0.2	V V V	Power = high, opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
I _{SOA}	Supply current (including associated AGND buffer) Power = low, opamp bias = low Power = low, opamp bias = high Power = medium, opamp bias = low Power = medium, opamp bias = high Power = high, opamp bias = low Power = high, opamp bias = high	- - - - -	400 500 800 1200 2400 -	800 900 1000 1600 3200 -	μΑ μΑ μΑ μΑ μΑ	Power = high, opamp bias = high setting is not allowed for 3.3 V V _{DD} operation
PSRR _{OA}	Supply voltage rejection ratio	65	80	_	dB	$V_{SS} \pounds V_{IN} \pounds (V_{DD} - 2.25) \text{ or} \\ (V_{DD} - 1.25 \text{ V}) \pounds V_{IN} \pounds V_{DD}$

Table 12	5-V DC Analog	Reference Specifications	(continued)
----------	---------------	--------------------------	-------------

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b010	RefPower = high	V _{REFHI}	Ref High	V _{DD}	V _{DD} - 0.037	V _{DD} - 0.007	V _{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.036$	V _{DD} /2 - 0.001	$V_{DD}/2 + 0.036$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.029	V
	RefPower = high	V _{REFHI}	Ref High	V _{DD}	V _{DD} - 0.034	$V_{DD} - 0.006$	V _{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.036$	V _{DD} /2 - 0.001	$V_{DD}/2 + 0.035$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.024	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD}	V _{DD} - 0.032	$V_{DD} - 0.005$	V _{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2-0.036	V _{DD} /2 - 0.001	$V_{DD}/2 + 0.035$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.022	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.031	$V_{DD} - 0.005$	V _{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.037$	V _{DD} /2 - 0.001	$V_{DD}/2 + 0.035$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.020	V
0b011	RefPower = high	V _{REFHI}	Ref High	3 × Bandgap	3.760	3.884	4.006	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.522	2.593	2.669	V
		V _{REFLO}	Ref Low	Bandgap	1.252	1.299	1.342	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	3 × Bandgap	3.766	3.887	4.010	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.670	V
		V _{REFLO}	Ref Low	Bandgap	1.252	1.297	1.342	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	3 × Bandgap	3.769	3.888	4.013	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.671	V
		V _{REFLO}	Ref Low	Bandgap	1.251	1.296	1.343	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	3 × Bandgap	3.769	3.889	4.015	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.595	2.671	V
		V _{REFLO}	Ref Low	Bandgap	1.251	1.296	1.344	V
0b100	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.483 – P2[6]	2.582 – P2[6]	2.674 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.522	2.593	2.669	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.524 – P2[6]	2.600 – P2[6]	2.676 – P2[6]	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.490 – P2[6]	2.586 – P2[6]	2.679 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.669	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.523 – P2[6]	2.598 – P2[6]	2.675 – P2[6]	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.493 – P2[6]	2.588 – P2[6]	2.682 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.594	2.670	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.523 – P2[6]	2.597 – P2[6]	2.675 – P2[6]	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.494 – P2[6]	2.589 – P2[6]	2.685 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.523	2.595	2.671	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.522 – P2[6]	2.596 – P2[6]	2.676 – P2[6]	V

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 16.	DC Programming Specifications	
-----------	--------------------------------------	--

Symbol	Description	Min	Тур	Max	Units	Notes
I _{DDP}	Supply current during programming or verify	-	15	30	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.1	-	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	_	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or Verify	-	_	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output low voltage during programming or verify	-	-	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENP}	Flash endurance (per block)	50,000 ^[6]	-	-	-	Erase/write cycles per block.
В						
Flash _{ENT}	Flash endurance (total) ^[7]	1,800,000	_	_	_	Erase/write cycles.
Flash _{DR}	Flash data retention	10	-	_	Years	

DC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 17. DC I²C Specifications^[8]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	_	-	$0.3 \times V_{DD}$	V	3.0 V £ V _{DD} £ 3.6 V
		-	-	$0.25 \times V_{DD}$	V	4.75 V £ V _{DD} £ 5.25 V
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	-	-	V	3.0 V £ V _{DD} £ 5.25 V

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

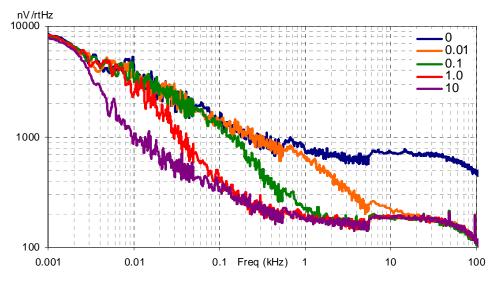
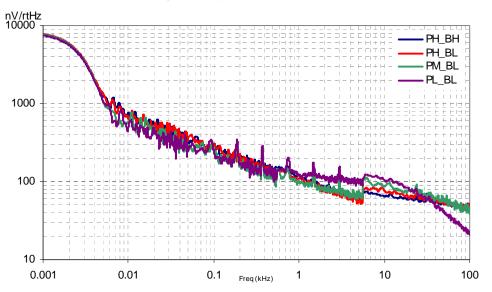



Figure 6. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

Figure 7. Typical Opamp Noise

Table 24. AC Digital Block Specifications (continued)

Function	Description	Min	Тур	Max	Unit	Notes
Transmitter	Input clock frequency					The baud rate is equal to the input clock frequency
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	49.92	MHz	divided by 8.
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	24.6	MHz	
	V _{DD} < 4.75 V	-	-	24.6	MHz	
Receiver	Input clock frequency					The baud rate is equal to the input clock frequency
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	49.92	MHz	divided by 8.
	$V_{DD} \ge 4.75 \text{ V}, 1 \text{ stop bit}$	-	-	24.6	MHz	
	V _{DD} < 4.75 V	-	_	24.6	MHz	

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 25. AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency for USB applications	23.94	24	24.06	MHz	
-	Duty cycle	47	50	53	%	
-	Power up to IMO switch	150	-	-	μS	

AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 26. 5-V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = Low Power = High	_		2.5 2.5	μs μs	
Т _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = Low Power = High	_		2.2 2.2	μs μs	
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = Low Power = High	0.65 0.65		-	V/μs V/μs	
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = Low Power = High	0.65 0.65		-	V/μs V/μs	
BW _{OBSS}	Small signal bandwidth, 20 mV _{pp} , 3 dB BW, 100 pF load Power = Low Power = High	0.8 0.8		_	MHz MHz	
BW _{OBLS}	Large signal bandwidth, 1 V _{pp} , 3 dB BW, 100 pF load Power = Low Power = High	300 300		-	kHz kHz	

Table 27. 3.3-V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = Low Power = High	_	-	3.8 3.8	μs μs	
Т _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = Low Power = High	_		2.6 2.6	μs μs	
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = Low Power = High	0.5 0.5			V/μs V/μs	
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = Low Power = High	0.5 0.5			V/μs V/μs	
BW _{OBSS}	Small signal bandwidth, 20 mV _{pp} , 3 dB BW, 100 pF load Power = Low Power = High	0.7 0.7			MHz MHz	
BW _{OBLS}	Large signal bandwidth, 1 V _{pp} , 3 dB BW, 100 pF load Power = Low Power = High	200 200	_ _	_ _	kHz kHz	

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 28. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall time of SCLK	1	-	20	ns	
T _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
T _{ERASEB}	Flash erase time (Block)	-	10	-	ms	
T _{WRITE}	Flash block write time	-	40	_	ms	
T _{DSCLK}	Data out delay from falling edge of SCLK	-	-	45	ns	V _{DD} > 3.6
T _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
T _{ERASEALL}	Flash erase time (Bulk)	-	40	-	ms	Erase all blocks and protection fields at once.
T _{PROGRAM_HOT}	Flash block erase + flash block write time	-	-	100 ^[12]	ms	$0~^{\circ}C \leq T_{J} \leq 100~^{\circ}C$
T _{PROGRAM_COLD}	Flash block erase + flash block write time	-	-	200 ^[12]	ms	$-40~^{\circ}C \leq T_{J} \leq 0~^{\circ}C$

Note

^{12.} For the full industrial range, you must employ a Temperature Sensor User Module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note, AN2015 - PSoC® 1 - Reading and Writing PSoC Flash for more information.

AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V and 3.3 V at 25 °C and are for design guidance only.

Symbol	Description	Standar	Standard-Mode		Fast-Mode		Notes
Symbol	Description	Min	Max	Min	Max	Units	NOLES
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz	
T _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	Ι	μS	
T _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μS	
T _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	0.6	-	μS	
T _{SUSTAI2C}	Setup time for a repeated START condition.	4.7	-	0.6	-	μS	
T _{HDDATI2C}	Data hold time	0	-	0	-	μS	
T _{SUDATI2C}	Data setup time	250	-	100 ^[13]	-	ns	
T _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μS	
T _{BUFI2C}	Bus free time between a STOP and START condition	4.7	-	1.3	-	μS	
T _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	_	-	0	50	ns	

Table 29. AC Characteristics of the I^2C SDA and SCL Pins for V_{DD}

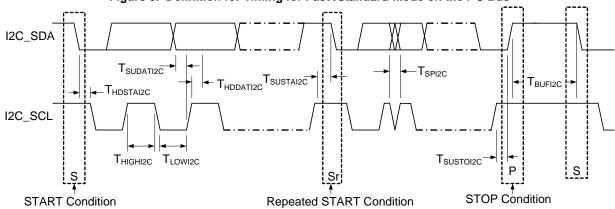


Figure 8. Definition for Timing for Fast-/Standard-Mode on the I²C Bus

Note

^{13.} A Fast-Mode I²C-bus device can be used in a Standard-Mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Development Tools

Software

This section presents the development tools available for all current PSoC device families including the CY8CLED04 EZ-Color.

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at

http://www.cypress.com/psocdesigner and includes a free C compiler.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com/psocprogrammer.

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes

an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- 3 Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment. **Note** CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Accessories (Emulation and Programming)

Table 30. Emulation and Programming Accessories

Part #	Pin Package	Flex-Pod Kit ^[16]	Adapter ^[17]
CY8CLED04-68LTXI	68-pin QFN		Adapters can be found at http://www.emulation.com.

Third Party Tools

Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Design Support >> Development Kits/Boards.

Build a PSoC Emulator into Your Board

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, see Application Note *Debugging - Build a PSoC Emulator into Your Board - AN2323.*

Document Conventions

Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	mV	millivolts
dB	decibels	mVpp	millivolts peak-to-peak
fF	femtofarads	nA	nanoamperes
kHz	kilohertz	ns	nanoseconds
kΩ	kilohm	nV	nanovolts
MHz	megahertz	рА	picoamperes
μΑ	microamperes	pF	picofarads
μs	microseconds	ps	picoseconds
μV	microvolts	%	percent
mA	milliamperes	rt-Hz	root hertz
mm	millimeter	V	volts
ms	milliseconds	W	watts

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, '01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are switched capacitor (SC) and continuous time (CT) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application Programming Interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.
bias	 A systematic deviation of a value from a reference value. The amount by which the average of a set of values departs from a reference value. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

Glossary (continued)

emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.
external reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
flash	An electrically programmable and erasable, non-volatile technology that provides users with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off.
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I ² C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I ² C uses only two bi-directional pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .

Glossary (continued)

microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.
modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
phase-locked loop (PLL)	An electronic circuit that controls an <i>oscillator</i> so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
power-on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is one type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on- Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse-width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	 Pertaining to a process in which all events occur one after the other. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.

Glossary (continued)

settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device allowing users to store and retrieve data at a high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform flash operations. The functions of the SROM may be accessed in normal user code, operating from flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level <i>API</i> for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.