

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	8MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	15
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212h1snsp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

R8C/2H Group, R8C/2J Group RENESAS MCU

1. Overview

1.1 Features

The R8C/2H Group and R8C/2J Group of single-chip MCUs incorporate the R8C/Tiny Series CPU core, employing sophisticated instructions for a high level of efficiency. With 1 Mbyte of address space, and it is capable of executing instructions at high speed. In addition, the CPU core boasts a multiplier for high-speed operation processing.

Power consumption is low, and the supported operating modes allow additional power control. These MCUs also use an anti-noise configuration to reduce emissions of electromagnetic noise and are designed to withstand EMI. Integration of many peripheral functions, including multifunction timer and serial interface, reduces the number of system components.

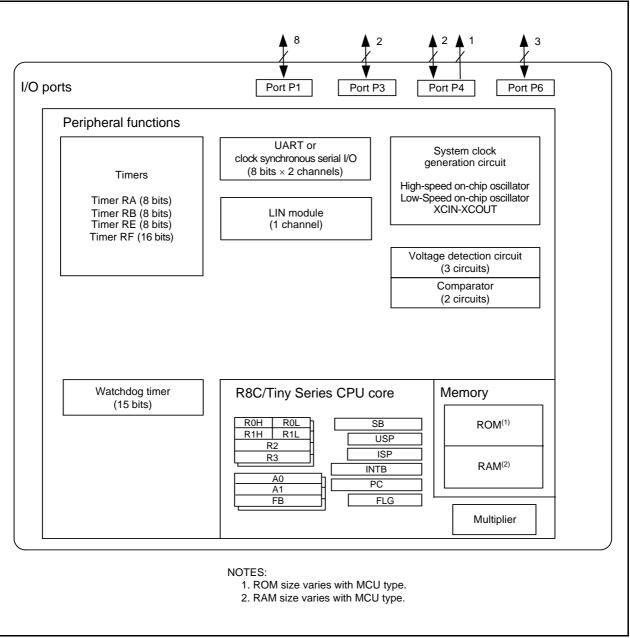
1.1.1 Applications

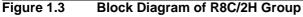
Electric power meters, electronic household appliances, office equipment, audio equipment, consumer equipment, etc.

1.1.2 Specifications

Table 1.1 outlines the Specifications for R8C/2H Group and Table 1.2 outlines the Specifications for R8C/2J Group.

	•	
Item	Function	Specification
CPU	Central processing	R8C/Tiny series core
	unit	 Number of fundamental instructions: 89
		Minimum instruction execution time:
		125 ns (System clock = 8 MHz, VCC = 2.7 to 5.5 V)
		250 ns (System clock = 4 MHz, VCC = 2.2 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		 Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits
		 Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM	Refer to Table 1.4 Product List for R8C/2J Group.
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3
Detection		
Comparator		 2 circuits (shared with voltage monitor 1 and voltage monitor 2)
		 External reference voltage input is available
I/O Ports		CMOS I/O ports: 12, selectable pull-up resistor
Clock	Clock generation	 1 circuits: On-chip oscillator (high-speed, low-speed)
	circuits	(high-speed on-chip oscillator has a frequency adjustment function),
		 Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		 Low power consumption modes:
		Standard operating mode (high-speed on-chip oscillator, low-speed on-chip
		oscillator), wait mode, stop mode
Interrupts		 External: 3 sources, Internal: 14 sources, Software: 4 sources
		Priority levels: 7 levels
Watchdog Time		15 bits \times 1 (with prescaler), reset start selectable
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RE	Not implemented
	Timer RF	16 bits x 1 (with capture/compare register pin and compare register pin)
		Input capture mode, output compare mode
Serial	UART0	Clock synchronous serial I/O/UART × 1
Interface		
LIN Module		Hardware LIN: 1 (timer RA, UART0)
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V
		 Programming and erasure endurance: 100 times
		 Program security: ROM code protect, ID code check
		 Debug functions: On-chip debug, on-board flash rewrite function
Operating Frequency/Supply		System clock = 8 MHz (VCC = 2.7 to 5.5 V)
Voltage		System clock = 4 MHz (VCC = 2.2 to 5.5 V)
Current consumption		5 mA (VCC = 5 V, system clock = 8 MHz)
		23 μ A (VCC = 3 V, wait mode (low-speed on-chip oscillator on))
		0.7 μ A (VCC = 3 V, stop mode, BGR trimming circuit disabled)
Operating Amb	pient Temperature	-20 to 85°C (N version)
		-40 to 85°C (D version) ⁽¹⁾
Package		20-pin LSSOP
5		Package code: PLSP0020JB-A (previous code: 20P2F-A)


Table 1.2	Specifications for R8C/2J Group
-----------	---------------------------------


NOTE: 1. Specify the D version if D version functions are to be used.

1.3 Block Diagram

Figure 1.3 shows a Block Diagram of R8C/2H Group and Figure 1.4 shows a Block Diagram of R8C/2J Group.

1.5 Pin Functions

Table 1.7 lists Pin Functions of R8C/2H Group and Table 1.8 lists Pin Functions of R8C/2J Group.

		-	
Туре	Symbol	I/O Type	Description
Power supply input	VCC, VSS	_	Apply 2.2 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XCIN clock input	XCIN	Ι	These pins are provided for XCIN clock generation circuit I/O. Connect a crystal oscillator between the XCIN and XCOUT
XCIN clock output	XCOUT	0	pins. ⁽¹⁾ To use an external clock, input it to the XCIN pin and leave the XCOUT pin open.
INT interrupt input	INTO, INT1	I	INT interrupt input pins
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RE	TREO	0	Divided clock output pin
Timer RF	TRFI	I	Timer RF input pin
	TRFO00 to TRFO02, TRFO10 to TRFO11	0	Timer RF output pins
Serial interface	CLK0, CLK2	I/O	Clock I/O pin
	RXD0, RXD2	I	Serial data input pin
	TXD0, TXD2	0	Serial data output pin
Comparator	VCMP1, VCMP2	I	Analog input pins to comparator
	CVREF	I	Reference voltage input pin to comparator
	VCOUT1, VCOUT2	0	Comparator output pins
I/O port	P1_0 to P1_7,	I/O	CMOS I/O ports. Each port has an I/O select direction
	P3_3, P3_7,		register, allowing each pin in the port to be directed for input
	P4_3, P4_5,		or output individually.
	P6_3 to P6_5		Any port set to input can be set to use a pull-up resistor or not by a program.
Output port	P4_4	0	Output-only port

Table 1.7 Pin Functions of R8C/2H Group

I: Input O: Output I/O: Input and output

NOTE:

Refer to the oscillator manufacturer for oscillation characteristics.

Туре	Symbol	I/O Type	Description
Power supply input	VCC, VSS	_	Apply 2.2 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
INT interrupt input	INTO, INT1	I	INT interrupt input pins
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RF	TRFI	I	Timer RF input pin
	TRFO00 to TRFO02, TRFO10 to TRFO11	0	Timer RF output pins
Serial interface	CLK0	I/O	Clock I/O pin
	RXD0	I	Serial data input pin
	TXD0	0	Serial data output pin
Comparator	VCMP1, VCMP2	I	Analog input pins to comparator
	CVREF	I	Reference voltage input pin to comparator
	VCOUT1, VCOUT2	0	Comparator output pins
I/O port	P1_0 to P1_7, P3_3, P3_7, P4_5, P6_5	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program.

Table 1.8 Pin Functions of R8C/2J Group

I: Input O: Output

I/O: Input and output

1. Overview

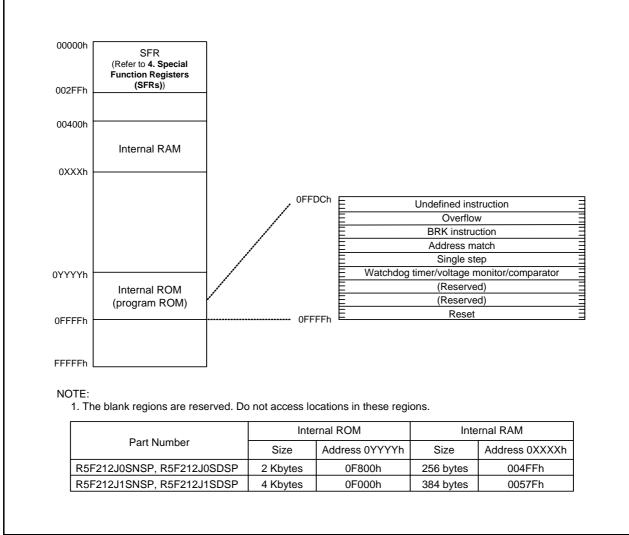


Figure 3.2

Memory Map of R8C/2J Group

Table 4.2	SFR Information (2) ⁽¹⁾
-----------	------------------------------------

Address 0030h	Register	Symbol	After reset
0030h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	0000100000 00h ⁽³⁾
		VONZ	0010000b ⁽⁴⁾
0033h			
0034h			
0035h		1100/40	000040405
0036h	Voltage Monitor 1 Circuit Control Register ⁽⁵⁾	VW1C	00001010b
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	0000010b
0038h	Voltage Monitor 0 Circuit Control Register ⁽²⁾	VW0C	1000X010b ⁽³⁾ 1100X011b ⁽⁴⁾
0039h			
003Ah			
003Bh	Voltage Detection Circuit External Input Control Register	VCAB	00h
003Ch	Comparator Mode Register	ALCMR	00h
003Dh	Voltage Monitor Circuit Edge Select Register	VCAC	00h
003Eh 003Fh	BGR Control Register	BGRCR BGRTRM	00h
	BGR Trimming Register	BGRTRM	When Shipping
0040h 0041h	Comparator 1 Interrupt Control Register	VCMP1IC	XXXXX000b
0041h 0042h	Comparator 1 Interrupt Control Register	VCMP1IC VCMP2IC	XXXXX000b
0042h 0043h	Comparator 2 Interrupt Control Register	VCIVIFZIC	
0043h 0044h			
004411 0045h			
0045h			
0040h			
004711 0048h			
0049h			
0045h	Timer RE Interrupt Control Register ⁽⁶⁾	TREIC	XXXXX000b
004Bh	UART2 Transmit Interrupt Control Register ⁽⁶⁾	S2TIC	XXXXX000b
004Dh	UART2 Receive Interrupt Control Register ⁽⁶⁾	S2RIC	XXXXX000b
004Ch	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Dh		KUFIC	~~~~000b
004En			
0041 h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0050h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h		00110	70000000
0054h			
0055h			
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah			
005Bh	Timer RF Interrupt Control Register	TRFIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INT0 Interrupt Control Register	INTOIC	XX00X000b
005Eh			
005Fh	Capture Interrupt Control Register	CAPIC	XXXXX000b
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
0000		1	
006Ch			
006Ch 006Dh 006Eh			

X: Undefined

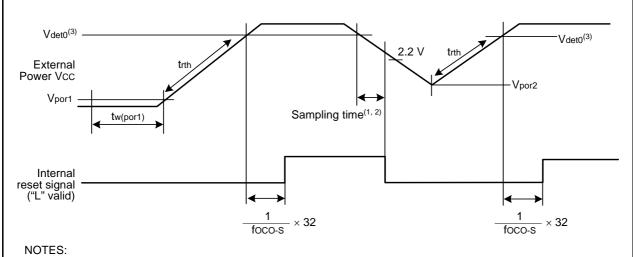
NOTES:

The blank regions are reserved. Do not access locations in these regions.

Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect this register. The LVDOON bit in the OFS register is set to 1 and hardware reset. Power-on reset, voltage monitor 0 reset, or the LVDOON bit in the OFS register is set to 0 and hardware reset. Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect b2 and b3. This register is not implemented in the R8C/2J Group.

1. 2. 3. 4. 5. 6.

Address	Register	Symbol	After reset
00B0h		Cymie C	
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			
00B6h			
00B7h			
00B8h			
00B9h			
00BAh			
00BBh			
00BCh			
00BDh 00BEh			
00BEh			
00BFI			
00C0h			
00C2h			
00C2h			
00C3h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			1
00CDh			
00CEh			
00CFh			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h			
00D5h			
00D6h			
00D7h			
00D8h			
00D9h			
00DAh			
00DBh			
00DCh 00DDh			
00DDh 00DEh			
00DEn 00DFh			
00E0h		<u> </u>	
00E1h	Port P1 Register	P1	00h
00E111			
00E2h	Port P1 Direction Register	PD1	00h
00E4h			
00E5h	Port P3 Register	P3	00h
00E6h			
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	00h
00E9h			
00EAh	Port P4 Direction Register	PD4	00h
00EBh			
00ECh	Port P6 Register	P6	00h
00EDh			
00EEh	Port P6 Direction Register	PD6	00h
00EFh			
Y: Undofined			


SFR Information (4)⁽¹⁾ Table 4.4

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Symbol	Parameter	Condition	Standard			Unit
			Min.	Тур.	Max.	Unit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec

NOTES:

- 1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power Vcc rise gradient) does not apply if Vcc \ge 1.0 V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain tw(por1) for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

- 1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.
- The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
 Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.2 Reset Circuit Electrical Characteristics

Symbol	Parameter	Star	Standard	
		Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200	-	ns
tW(CKH)	CLKi input "H" width	100	-	ns
tW(CKL)	CLKi input "L" width	100	-	ns
td(C-Q)	TXDi output delay time	-	50	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	50	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 2

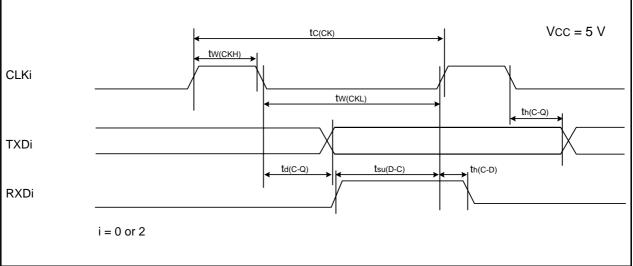


Figure 5.5 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.17 External Interrupt INTi (i = 0 or 1) Input

Symbol	Parameter	Stan	Standard	
Symbol	Falanielei	Min.	Max.	Unit
tw(INH)	INTi input "H" width	250(1)	-	ns
tw(INL)	INTi input "L" width	250 ⁽²⁾	-	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

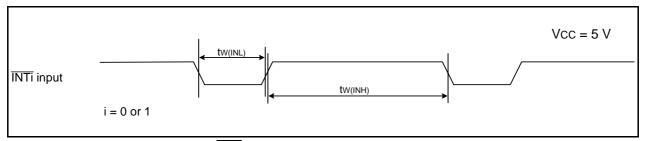
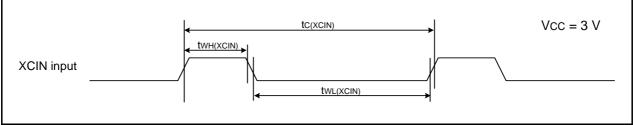



Figure 5.6 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.20XCIN Input

Symbol	Parameter	Standard		
Symbol			Max.	Unit
tc(XCIN)	XCIN input cycle time	14	-	μS
tWH(XCIN)	XCIN input "H" width	7	-	μS
twl(xcin)	XCIN input "L" width	7	-	μS

Figure 5.7 XCIN Input Timing Diagram when Vcc = 3 V

Table 5.21 TRAIO Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanielei	Min. Max.	Onit	
tc(TRAIO)	TRAIO input cycle time	300	-	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	120	-	ns

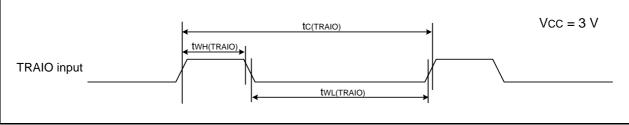


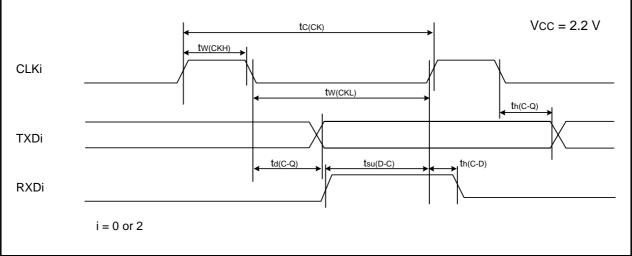
Figure 5.8 TRAIO Input Timing Diagram when Vcc = 3 V

Cumhal	Doro	meter	Condition		Standard		Unit
Symbol Para		neter	Condition		Тур.	Max.	Unit
Vон	Output "H" voltage		Iон = -1 mA	Vcc - 0.5	-	Vcc	V
Vol	Output "L" voltage		IOL = 1 mA	-	_	0.5	V
Vt+-Vt-	Hysteresis	INT0, INT1, KI0, KI1, KI2, KI3, RXD0, RXD2, CLK0, CLK2		0.05	0.3	_	V
		RESET		0.05	0.15	-	V
Ін	Input "H" current		VI = 2.2 V	-	_	4.0	μΑ
lı∟	Input "L" current		VI = 0 V	-	-	-4.0	μΑ
Rpullup	Pull-up resistance		VI = 0 V	100	200	600	kΩ
Rfxcin	Feedback resistance	XCIN		-	35	-	MΩ
Vram	RAM hold voltage	•	During stop mode	1.8	-	-	V

Electrical Characteristics (5) [Vcc = 2.2 V] Table 5.24

NOTE: 1. Vcc = 2.2 V at T_{opr} = -20 to 85° C (N version) / -40 to 85° C (D version), unless otherwise specified.

Table 5.25Electrical Characteristics (6) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)


Symbol	Doromotor		Condition		Standar	d	Lloi	
Symbol	Parameter		Condition	Min.	Тур.	Max.	Uni	
Icc	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode,	High-speed on-chip oscillator mode	High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	-	mA	
	output pins are open, other pins are Vss		High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA	
		Low-speed on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	100	230	μA	
		Low-speed clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) FMR47 = 1	-	100	230	μA	
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) Program operation on RAM Flash memory off, FMSTP = 1	_	25	_	μA	
		Wait mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	22	60	μA	
			High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	20	55	μA	
				High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	-	3	-	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	-	1.8	-	μA	
			High-speed on-chip oscillator off – Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	7	-	μA	
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	6	_	μA	
		Stop mode	XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	-	0.7	3	μA	
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	-	1.1	-	μA	
			XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	_	5	7	μA	
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	-	5.5	-	μA	

RENESAS

Table 5.28Serial Interface

Symbol	Parameter	Standard		Unit
Symbol	Faidhelei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	800	-	ns
tW(CKH)	CLKi input "H" width	400	-	ns
tW(CKL)	CLKi input "L" width	400	-	ns
td(C-Q)	TXDi output delay time	-	200	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	150	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 2

Table 5.29 External Interrupt INTi (i = 0 or 1) Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falameter	Min.	Max.	Unit
tw(INH)	INTi input "H" width	1000(1)	-	ns
tw(INL)	INTi input "L" width	1000(2)	I	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

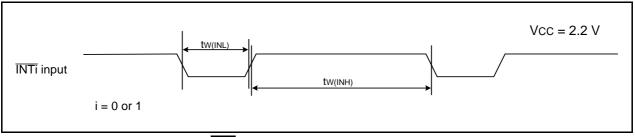


Figure 5.14 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

Symbol	Parameter	Conditions		Unit		
Symbol	Faranielei	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		100 ⁽³⁾	-	-	times
-	Byte program time		-	50	400	μs
-	Block erase time		=	0.4	9	S
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	_	_	year

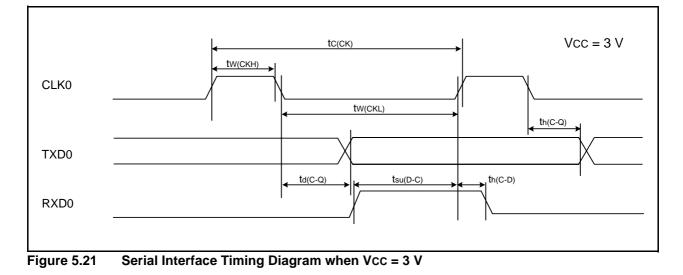
Table 5.32 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at $T_{opr} = 0$ to 60°C, unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

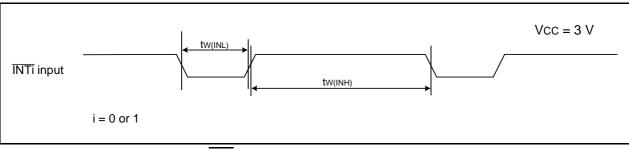

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
 In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Standard	dard	Unit
Symbol	Falanletei	Min.	Min. Max.	Unit
tc(CK)	CLK0 input cycle time	300	-	ns
tW(CKH)	CLK0 input "H" width	150	-	ns
tW(CKL)	CLK0 Input "L" width	150	-	ns
td(C-Q)	TXD0 output delay time	-	80	ns
th(C-Q)	TXD0 hold time	0	-	ns
tsu(D-C)	RXD0 input setup time	70	-	ns
th(C-D)	RXD0 input hold time	90	-	ns


Table 5.50 External Interrupt INTi (i = 0 or 1) Input

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	Unit
tw(INH)	INTi input "H" width	380(1)	-	ns
tw(INL)	INTi input "L" width	380(2)	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

RENESAS

Figure 5.22 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Table 5.52Electrical Characteristics (6) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition	Standard			Unit	
		Condition		Min.	Тур.	Max.	Onit
Icc	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode,	High-speed on-chip oscillator mode	High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	-	mA
	output pins are open, other pins are Vss		High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	-	mA
		Low-speed on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	100	230	μA
		Wait mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	20	55	μA
		Stop mode	Topr = 25° CHigh-speed on-chip oscillator offLow-speed on-chip oscillator offCM10 = 1Peripheral clock offVCA27 = VCA26 = VCA25 = 0BGR trimming circuit disabled (BGRCR0 = 1)	_	0.7	3	μA
			Topr = 85° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	_	1.1	_	μA
			Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	_	5	7	μA
			Topr = 85° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	_	5.5	_	μΑ

RENESAS

Symbol	Parameter	Stan	Unit	
	Parameter		Max.	Unit
tc(CK)	CLK0 input cycle time	800	-	ns
tw(CKH)	CLK0 input "H" width		-	ns
tw(CKL)	CLK0 input "L" width	400	-	ns
td(C-Q)	TXD0 output delay time		200	ns
th(C-Q)	TXD0 hold time		-	ns
tsu(D-C)	RXD0 input setup time		-	ns
th(C-D)	RXD0 input hold time	90	-	ns

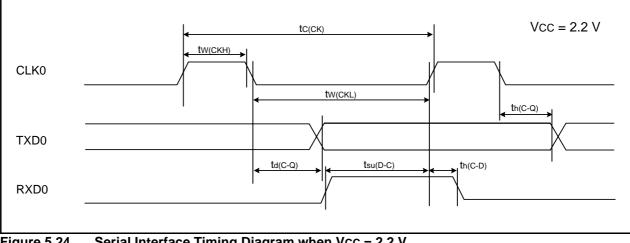
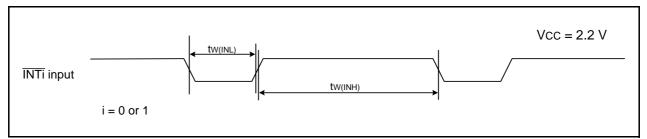


Figure 5.24 Serial Interface Timing Diagram when Vcc = 2.2 V


External Interrupt INTi (i = 0 or 1) Input **Table 5.55**

Symbol	Parameter	Stan	Unit	
	Farameter			Max.
tw(INH)	INTi input "H" width	1000(1)	-	ns
tw(INL)	INTi input "L" width	1000 ⁽²⁾	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency \times 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

External Interrupt INTi Input Timing Diagram when VCC = 2.2 V Figure 5.25

REVISION HISTORY R8C/2H Group, R8C/2J Group Datasheet

Rev.	Date	Description		
		Page	Summary	
1.00	Mar 28, 2008	62	Table 5.52 revised	

All trademarks and registered trademarks are the property of their respective owners.