

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	8MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	15
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212h2sdsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Item	Function	Specification		
CPU	Central processing	R8C/Tiny series core		
	unit	 Number of fundamental instructions: 89 		
		Minimum instruction execution time:		
		125 ns (System clock = 8 MHz, VCC = 2.7 to 5.5 V)		
		250 ns (System clock = 4 MHz, VCC = 2.2 to 5.5 V)		
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits		
		• Multiply-accumulate instruction: 16 bits \times 16 bits + 32 bits \rightarrow 32 bits		
		Operation mode: Single-chip mode (address space: 1 Mbyte)		
Memory	ROM. RAM	Refer to Table 1.4 Product List for R8C/2J Group.		
Power Supply	Voltage detection	Power-on reset		
Voltage	circuit	Voltage detection 3		
Detection	onoun			
Comparator		• 2 circuits (shared with voltage monitor 1 and voltage monitor 2)		
Comparator		 External reference voltage input is available 		
I/O Dorto		CMOS 1/0 porto: 12 polostoblo pull up register		
I/O FUIIS	Cleak reportion	civids i/o poils. 12, selectable pull-up resision		
CIOCK	Clock generation	• 1 circuits: On-chip oscillator (nigh-speed, low-speed)		
	CIFCUITS	(nign-speed on-cnip oscillator has a frequency adjustment function),		
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16		
		• Low power consumption modes:		
		Standard operating mode (high-speed on-chip oscillator, low-speed on-chip		
-		oscillator), wait mode, stop mode		
Interrupts		 External: 3 sources, Internal: 14 sources, Software: 4 sources 		
		Priority levels: 7 levels		
Watchdog Time	er	15 bits \times 1 (with prescaler), reset start selectable		
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)		
		Timer mode (period timer), pulse output mode (output level inverted every		
		period), event counter mode, pulse width measurement mode, pulse period		
		measurement mode		
	Timer RB	8 bits x 1 (with 8-bit prescaler)		
		Timer mode (period timer), programmable waveform generation mode (PWM		
		output), programmable one-shot generation mode, programmable wait one-		
		shot generation mode		
	Timer RE	Not implemented		
	Timer RF	16 bits x 1 (with capture/compare register pin and compare register pin)		
		Input capture mode, output compare mode		
Serial	UART0	Clock synchronous serial I/O/UART × 1		
Interface				
LIN Module		Hardware LIN: 1 (timer RA, UART0)		
Flash Memory		• Programming and erasure voltage: VCC = 2.7 to 5.5 V		
r laon mornery		Programming and erasure endurance: 100 times		
		Program security: ROM code protect, ID code check		
		Debug functions: On-chip debug, on-board flash rewrite function		
Operating Free	nuency/Supply	System clock = 8 MHz (VCC = $2.7 \text{ to } 5.5 \text{ V}$)		
Voltage	luency/Supply	System clock = $4 \text{ MHz} (\text{VCC} = 2.2 \text{ to } 5.5 \text{ V})$		
Current concur	motion	System clock = 4 MHZ (VUU = 2.2 to 5.5 V)		
Current consul	npuon	3 IIA (VCC = 3 V, system clock = 6 IVII IZ) 23 $\text{IA} (VCC = 3 \text{ V}, \text{ wait mode} (low speed on chip oscillator on))$		
		$25 \mu\text{A} (\text{VCC} = 5 \text{V}, \text{ wait mode (low-speed off-only oscillator off)})$		
Operating Ares				
Operating Amb	nent remperature	-20 to 050 C (IV Version)(1)		
Package				
		Package code: PLSP0020JB-A (previous code: 20P2F-A)		

Table 1.2	Specifications for R8C/2	J Group
-----------	--------------------------	---------

NOTE: 1. Specify the D version if D version functions are to be used.

Current of Mar. 2008

1.2 Product List

Table 1.3 lists Product List for R8C/2H Group, Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/2H Group. Table 1.4 lists Product List for R8C/2J Group, Figure 1.2 shows a Part Number, Memory Size, and Package of R8C/2J Group.

Part No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F212H1SNSP	4 Kbytes	256 bytes	PLSP0020JB-A	N version
R5F212H2SNSP	8 Kbytes	384 bytes	PLSP0020JB-A	
R5F212H1SDSP	4 Kbytes	256 bytes	PLSP0020JB-A	D version
R5F212H2SDSP	8 Kbytes	384 bytes	PLSP0020JB-A	

Figure 1.1 Part Number, Memory Size, and Package of R8C/2H Group

Pin	Control Din	Dort		I/O Pin Functions for of Peripheral Modules				
Number			Interrupt	Timer	Serial Interface	Comparator		
1		P6_4			RXD2			
2		P3_7		TRAO/TRFO11				
3	RESET							
4	XCOUT	(P4_4)						
5	VSS							
6	XCIN	(P4_3)						
7	VCC							
8	MODE							
9		P4_5	INTO					
10		P1_7	INT1	TRAIO				
11		P1_6			CLK0	VCOUT2		
12		P1_5	(INT1) ⁽¹⁾	(TRAIO) ⁽¹⁾	RXD0			
13		P1_4			TXD0			
14		P1_3	KI3	TRBO		VCOUT1		
15		P1_2	KI2	TRFO02		CVREF		
16		P6_5		TREO	CLK2			
17		P1_1	KI1	TRFO01		VCMP2		
18		P1_0	KI0	TRFO00		VCMP1		
19		P3_3		TRFO10/TRFI				
20		P6_3			TXD2			

Pin Name Information by Pin Number of R8C/2H Group Table 1.5

NOTE:

1. Can be assigned to the pin in parentheses by a program.

1. Overview

Туре	Symbol	I/O Type	Description
Power supply input	VCC, VSS	_	Apply 2.2 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
INT interrupt input	INTO, INT1	Ι	INT interrupt input pins
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RF	TRFI	I	Timer RF input pin
	TRFO00 to TRFO02, TRFO10 to TRFO11	0	Timer RF output pins
Serial interface	CLK0	I/O	Clock I/O pin
	RXD0	I	Serial data input pin
	TXD0	0	Serial data output pin
Comparator	VCMP1, VCMP2	I	Analog input pins to comparator
	CVREF	I	Reference voltage input pin to comparator
	VCOUT1, VCOUT2	0	Comparator output pins
I/O port	P1_0 to P1_7,	I/O	CMOS I/O ports. Each port has an I/O select direction
	P3_3, P3_7,		register, allowing each pin in the port to be directed for input
	P4_5, P6_5		or output individually.
			Any port set to input can be set to use a pull-up resistor or not
			by a program.

Table 1.8 Pin Functions of R8C/2J Group

I: Input O: Output

I/O: Input and output

1. Overview

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

Table 4.2	SFR Infor	mation (2) ⁽¹⁾
-----------	-----------	---------------------------

Address	Register	Symbol	After reset
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h ⁽³⁾
			0010000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽⁵⁾	VW1C	00001010b
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	0000010b
0038h	Voltage Monitor 0 Circuit Control Register ⁽²⁾	VW0C	1000X010b ⁽³⁾
			1100X011b ⁽⁴⁾
0039h			
003Ah			
003Bh	Voltage Detection Circuit External Input Control Register	VCAB	00h
003Ch	Comparator Mode Register	ALCMR	00h
003Dh	Voltage Monitor Circuit Edge Select Register	VCAC	00h
003Eh	BGR Control Register	BGRCR	00h
003Fh	BGR Trimming Register	BGRTRM	When Shipping
0040h			
0041h	Comparator 1 Interrupt Control Register	VCMP1IC	XXXXX000b
0042h	Comparator 2 Interrupt Control Register	VCMP2IC	XXXXX000b
0043h			
0044h			
0045h			
0046h			
0047h			
0048h			
0049h			
004Ah	Timer RE Interrupt Control Register ⁽⁶⁾	TREIC	XXXXX000b
004Bh	UART2 Transmit Interrupt Control Register ⁽⁶⁾	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register ⁽⁶⁾	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh			
004Fh			
0050h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h			
0054h			
0055h		TDAIO	
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXXUUUD
0057h	Time of DD laterment Original De vieter		XXXXXX000k
0050h	Innel RB Interrupt Control Register		XXXXX0000
00591		INTIC	22002000D
00586	Timer RE Interrupt Control Register	TREIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMPOIC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh			
005Fh	Capture Interrupt Control Register	CAPIC	XXXXX000b
0060h	<u></u>		
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions.

Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect this register. The LVDOON bit in the OFS register is set to 1 and hardware reset. Power-on reset, voltage monitor 0 reset, or the LVDOON bit in the OFS register is set to 0 and hardware reset. Software reset, watchdog timer reset, voltage monitor 1 reset, or voltage monitor 2 reset do not affect b2 and b3. This register is not implemented in the R8C/2J Group.

1. 2. 3. 4. 5. 6.

Address	Register	Symbol	After reset
0070h			
0071h			
0072h			
0073h			
0074h			
0075h			
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh			
007Fh			
0080h			
0081h			
0082h			
0083h			
0084h			
00850			
00860			
0087h			
0080h			
00890			
008Rb			
008Ch			
008Dh			
008Eh			
008Eh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00A7h			XXh
00A8h			
00A9h			
00AAh			
00ABh			
00ACh			
00ADh			
00AEh			
00AFh			

SFR Information (3)⁽¹⁾ Table 4.3

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Address	Register	Symbol	After reset
00F0h			
00F1h			
00F2h			
00F3h			
00F4h			
00F5h			
00F6h	Pin Select Register 2	PINSR2	00h
00F7h			
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00FAh	INT Input Filter Select Register	INTE	00h
00FBh	Key Input Enable Register	KIEN	00h
00FCh	Pull-Un Control Register 0	PLIRO	00h
00FDh	Pull-Un Control Register 1	PUR1	00h
00FEh			0011
00FEh			
0100h	Timer RA Control Register	TRACR	00h
0100h	Timer RA I/O Control Register		00h
0102h	Timer RA Mode Register	TRAME	00h
01021	Timer RA Prescaler Register		FEb
0103h	Timer RA Register		FFb
01041		TRA	1111
0105h	LIN Control Pagistor		00b
01001			00h
01071	LIN Status Register		00h
0100h	Timer PB One Shot Control Pagister		00h
01091	Timer RB I/O Control Pagister		00h
010An	Timer RB I/O Control Register		00h
010Bh	Timer RB Mode Register		
0100h	Timer RD Secondary Desister		
010Dh	Timer RD Secondary Register		
010Eh		TRBPR	FFN
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h		70,505.0	204
0118h	Timer RE Second Data Register / Counter Data Register ⁽²⁾	TRESEC	XXh
0119h	Timer RE Minute Data Register / Compare Data Register ⁽²⁾	TREMIN	XXh
011Ah	Timer RE Hour Data Register ⁽²⁾	TREHR	X0XXXXXXb
011Bh	Timer RE Day of Week Data Register ⁽²⁾	TREWK	X0000XXXb
011Ch	Timer RE Control Register 1 ⁽²⁾	TRECR1	XXX0X0X0b
011Dh	Timer RE Control Register 2 ⁽²⁾	TRECR2	00XXXXXXb
011Eh	Timer RE Count Source Select Register ⁽²⁾	TRECSR	00001000b
011Eh	Timer RE Bool Time Clock Provision Adjust Pagister ⁽²⁾	TREOPR	00b
0100h		INEOIN	0011
01200			
01210			
01220			
0123h			
0124h			
0125h			
0126h			
0127h			
0128h			
0129h			
012Ah			
012Bh			

SFR Information (5)⁽¹⁾ Table 4.5

012Fh X: Undefined

012Ch 012Dh 012Eh

NOTES: 1. The blank regions are reserved. Do not access locations in these regions

2. This register is not implemented in the R8C/2J Group.

RENESAS

Address	Register	Symbol	After reset
01F0h			
01F1h			
01F2h			
01F3h			
01F4h			
01F5h			
01F6h			
01F7h			
01F8h			
01F9h			
01FAh			
01FBh			
01FCh			
01FDh			
01FEh			
01FFh			
0200h			
0201h			
0202h			
02030			
02040			
02051			
020011			
0208h			
0209h			
020Ah			
020Bh			
020Ch			
020Dh			
020Eh			
020Fh			
0210h			
0211h			
0212h			
0213h			
0214h			
0215h			
0216h			
02170			
0218h			
021911 0214b			
021An			
021Dh			
0210h			
021Eh			
021Fh			
0220h			
0221h			
0222h			
0223h			
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
UZZEN			
UZZEN			

SFR Information (9)⁽¹⁾ Table 4.9

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Symbol	Parameter	Conditions	Standard			Linit
			Min.	Тур.	Max.	Offic
-	Program/erase endurance ⁽²⁾		100 ⁽³⁾	-	-	times
-	Byte program time		-	50	400	μs
-	Block erase time		-	0.4	9	S
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.3 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at $T_{opr} = 0$ to 60°C, unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis.
 If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
 In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the

number of erase operations to a certain number.5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.14XCIN Input

Symbol	Deromotor	Stan	Standard		
Symbol	Falallielei		Max.	Unit	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 5.3 XCIN Input Timing Diagram when Vcc = 5 V

Table 5.15 TRAIO Input

Symbol	Parameter	Standard		Unit
	Falanielei	Min.	Max.	Onit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width	40	-	ns
twl(traio)	TRAIO input "L" width	40	-	ns

Figure 5.4 TRAIO Input Timing Diagram when Vcc = 5 V

Symbol Bor		motor	Condition	S	Standard		Unit	
Symbol	Fala	lielei	Condition	Min.	Тур.	Max.	Offic	
Vон	Output "H" voltage		Iон = -1 mA	Vcc - 0.5	-	Vcc	V	
Vol	Output "L" voltage		IOL = 1 mA	-	-	0.5	V	
Vt+-Vt-	Hysteresis	INT0, INT1, KI0, KI1, KI2, KI3, RXD0, RXD2, CLK0, CLK2		0.1	0.3	1	V	
		RESET		0.1	0.4	-	V	
Ін	Input "H" current	•	VI = 3 V, Vcc = 3 V	-	-	4.0	μΑ	
lı∟	Input "L" current		VI = 0 V, Vcc = 3 V	-	-	-4.0	μΑ	
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 3 V	66	160	500	kΩ	
RfXCIN	Feedback resistance XCIN			-	18	=	MΩ	
VRAM	RAM hold voltage		During stop mode	1.8	-	-	V	

Electrical Characteristics (3) [Vcc = 3 V] Table 5.18

NOTE: 1. Vcc =2.7 to 3.3 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 5.19Electrical Characteristics (4) [Vcc = 3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition			Standar	d	Unit
Cymbol	rarameter		Condition	Min.	Тур.	Max.	Onit
Icc	Power supply current $(Vcc = 2.7 \text{ to } 3.3 \text{ V})$	High-speed on-chip oscillator mode	High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	5	-	mA
	output pins are open,		High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2	-	mA
		Low-speed on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μΑ
		Low-speed clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) FMR47 = 1	-	130	300	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) Program operation on RAM Flash memory off, FMSTP = 1	-	30	_	μA
		Wait mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	70	μΑ
			High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	23	55	μΑ
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	-	3.8	_	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	_	2	_	μA
		High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	_	8	-	μΑ	
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	6	_	μА
		Stop mode	XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	_	0.7	3	μΑ
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	-	1.1	_	μΑ
			XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	-	5	7	μA
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	-	5.5	_	μA

RENESAS

Table 5.22	Serial Interface
------------	------------------

Symbol	Parameter	Stan	dard	Lloit	
Symbol	Falameter	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	-	ns	
tW(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time 0 -				
tsu(D-C)	RXDi input setup time 70 –				
th(C-D)	RXDi input hold time 90 -				

i = 0 or 2

Table 5.23 External Interrupt INTi (i = 0 or 1) Input

Symbol	Paramatar	Stan	dard	Lloit
Symbol	Falanielei	Min.	Max.	Offic
tw(INH)	INTi input "H" width	380 ⁽¹⁾	-	ns
tw(INL)	INTi input "L" width	380(2)	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.10 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Table 5.25Electrical Characteristics (6) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard			Unit
Symbol	i arameter		Condition	Min.	Тур.	Max.	Onit
Icc	Power supply current (Vcc = 2.2 to 2.7 V)	High-speed on-chip oscillator mode	High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	-	mA
	Single-chip mode, output pins are open, other pins are Vss		High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA
		Low-speed on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	100	230	μΑ
		Low-speed clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) FMR47 = 1	-	100	230	μΑ
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) Program operation on RAM Flash memory off, FMSTP = 1	-	25	_	μA
		Wait mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μΑ
			High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	20	55	μΑ
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	_	3	_	μΑ
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit disabled (BGRCR0 = 1)	-	1.8		μΑ
		High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	7	_	μΑ	
			High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1 BGR trimming circuit enabled (BGRCR0 = 0)	-	6	_	μΑ
		Stop mode	XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	_	0.7	3	μΑ
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	-	1.1	_	μΑ
			XCIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	-	5	7	μΑ
			XCIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	-	5.5	_	μΑ

RENESAS

Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) [Vcc = 2.2 V]

Table 5.26XCIN Input

Symbol	Deromotor	Standard		Lloit
Symbol	Farameter		Max.	Unit
tc(XCIN)	XCIN input cycle time	14	-	μS
tWH(XCIN)	XCIN input "H" width	7	-	μS
twl(xcin)	XCIN input "L" width	-	μS	

Figure 5.11 XCIN Input Timing Diagram when Vcc = 2.2 V

Table 5.27 TRAIO Input

Symbol	Parameter	Stan	Standard	
	Falanielei	Min.	Max.	Onit
tc(TRAIO)	TRAIO input cycle time	500	-	ns
twh(traio)	TRAIO input "H" width	200	-	ns
twl(traio)	TRAIO input "L" width	200	-	ns

Figure 5.12 TRAIO Input Timing Diagram when Vcc = 2.2 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

REVISION HISTORY R8C/2H Group, R8C/2J Group Datasheet

Rov	Date	Date		
itev.	Dale	Page	Summary	
1.00	Mar 28, 2008	62	Table 5.52 revised	

All trademarks and registered trademarks are the property of their respective owners.

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the tendology described in this document.
 The order data. diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document with a pay with use. When exporting the products or the tendology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, but has product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date their document, when the set of the date their document in the date their document.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set descondure sequired by Renesas and the date disclosed through the set of the sectomet.
 When using or otherwise relevance the date their document.
 When using or otherwise relevance and their document.
 When using or otherwise relevance and their document.
 Were using or otherwise relevance and their document.
 Were using or otherwise relevance and their document.
 Were using or otherwise relevance and their document.
 <li

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com