

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	8MHz
Connectivity	LINbus, SIO, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	12
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f212j0snsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

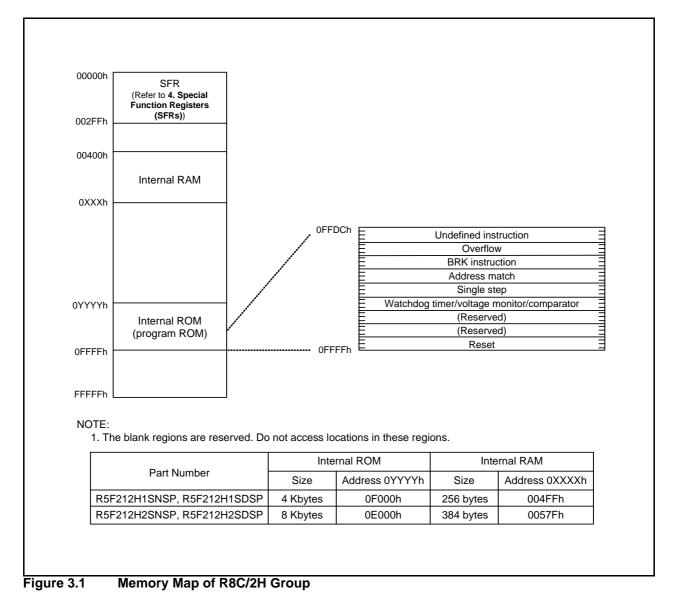
Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

	•	
Item	Function	Specification
CPU	Central processing	R8C/Tiny series core
	unit	 Number of fundamental instructions: 89
		Minimum instruction execution time:
		125 ns (System clock = 8 MHz, VCC = 2.7 to 5.5 V)
		250 ns (System clock = 4 MHz, VCC = 2.2 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		 Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits
		 Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM	Refer to Table 1.4 Product List for R8C/2J Group.
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3
Detection		
Comparator		 2 circuits (shared with voltage monitor 1 and voltage monitor 2)
		 External reference voltage input is available
I/O Ports		CMOS I/O ports: 12, selectable pull-up resistor
Clock	Clock generation	 1 circuits: On-chip oscillator (high-speed, low-speed)
	circuits	(high-speed on-chip oscillator has a frequency adjustment function),
		 Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		 Low power consumption modes:
		Standard operating mode (high-speed on-chip oscillator, low-speed on-chip
		oscillator), wait mode, stop mode
Interrupts		 External: 3 sources, Internal: 14 sources, Software: 4 sources
		Priority levels: 7 levels
Watchdog Time		15 bits \times 1 (with prescaler), reset start selectable
Timer	Timer RA	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RE	Not implemented
	Timer RF	16 bits x 1 (with capture/compare register pin and compare register pin)
		Input capture mode, output compare mode
Serial	UART0	Clock synchronous serial I/O/UART × 1
Interface		
LIN Module		Hardware LIN: 1 (timer RA, UART0)
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V
		 Programming and erasure endurance: 100 times
		 Program security: ROM code protect, ID code check
		 Debug functions: On-chip debug, on-board flash rewrite function
Operating Free	uency/Supply	System clock = 8 MHz (VCC = 2.7 to 5.5 V)
Voltage		System clock = 4 MHz (VCC = 2.2 to 5.5 V)
Current consur	nption	5 mA (VCC = 5 V, system clock = 8 MHz)
		23 μ A (VCC = 3 V, wait mode (low-speed on-chip oscillator on))
		0.7 μ A (VCC = 3 V, stop mode, BGR trimming circuit disabled)
Operating Amb	pient Temperature	-20 to 85°C (N version)
		-40 to 85°C (D version) ⁽¹⁾
Package		20-pin LSSOP
5		Package code: PLSP0020JB-A (previous code: 20P2F-A)

Table 1.2	Specifications for R8C/2J Group
-----------	---------------------------------

NOTE: 1. Specify the D version if D version functions are to be used.


Figure 3.1 is a Memory Map of R8C/2H Group and Figure 3.2 is a Memory Map of R8C/2J Group. The R8C/2H group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 4-Kbyte internal ROM area is allocated addresses 0F000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 256-bytes internal RAM area is allocated addresses 00400h to 004FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

RENESAS

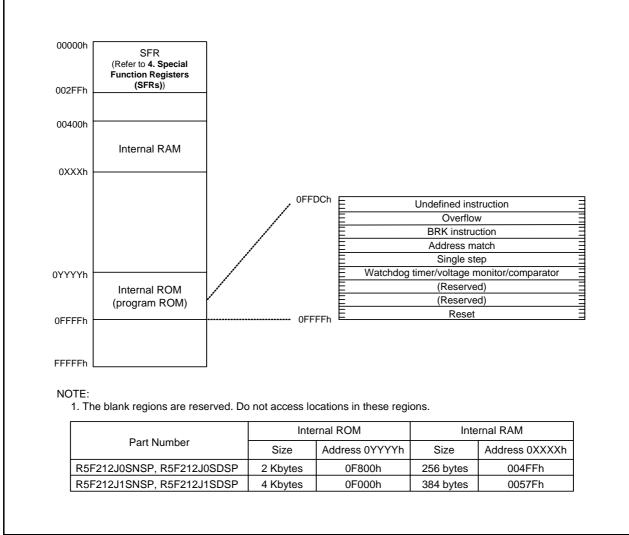


Figure 3.2

Memory Map of R8C/2J Group

Address	Register	Symbol	After reset
00F0h 00F1h			
00F1h			
00F2h			
00F4h			
00F5h			
00F6h	Pin Select Register 2	PINSR2	00h
00F7h			0011
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00FAh	INT Input Filter Select Register	INTE	00h
00FBh	Key Input Enable Register	KIEN	00h
00FCh	Pull-Up Control Register 0	PUR0	00h
00FDh	Pull-Up Control Register 1	PUR1	00h
00FEh			
00FFh			
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h			
0106h	LIN Control Register	LINCR	00h
0107h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h			
0118h	Timer RE Second Data Register / Counter Data Register ⁽²⁾	TRESEC	XXh
0119h	Timer RE Minute Data Register / Compare Data Register ⁽²⁾	TREMIN	XXh
011Ah	Timer RE Hour Data Register ⁽²⁾	TREHR	X0XXXXXXb
011Bh	Timer RE Day of Week Data Register ⁽²⁾	TREWK	X0000XXXb
011Ch	Timer RE Control Register 1 ⁽²⁾	TRECR1	XXX0X0X0b
011Dh	Timer RE Control Register 2 ⁽²⁾	TRECR2	00XXXXXXb
011Eh	Timer RE Count Source Select Register ⁽²⁾	TRECSR	00001000b
011Fh	Timer RE Real-Time Clock Precision Adjust Register ⁽²⁾	TREOPR	00h
0120h			
0121h			
0122h			
0123h			
0124h			
0125h			
0126h			
0127h			
0128h			
0129h			
012Ah			
012Bh			

SFR Information (5)⁽¹⁾ Table 4.5

012Fh X: Undefined

012Ch 012Dh 012Eh

NOTES: 1. The blank regions are reserved. Do not access locations in these regions

2. This register is not implemented in the R8C/2J Group.

RENESAS

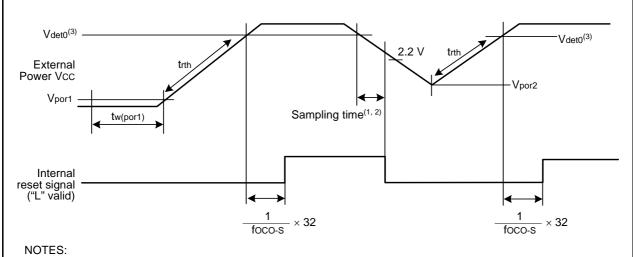
Address	Register	Symbol	After reset
0130h			
0131h			
0132h			
0133h			
0134h			
0135h			
0136h			
0137h			
0138h			
0139h			
013Ah			
013Bh			
013Ch			
013Dh			-
013Eh			
013Fh 0140h			
0140h 0141h			
0141h 0142h			
014211 0143h			
0143h			
0145h			
0146h		1	1
0147h		1	
0148h			
0149h			
014Ah			
014Bh			
014Ch			
014Dh			
014Eh			-
014Fh			
0150h 0151h			
0151h			
0152h			
0154h			
0155h			
0156h			
0157h			
0158h			
0159h			
015Ah			
015Bh			
015Ch			
015Dh			
015Eh			
015Fh			0.01
0160h	UART2 Transmit/Receive Mode Register ⁽²⁾	U2MR	00h
0161h	UART2 Bit Rate Register ⁽²⁾	U2BRG	XXh
0162h	UART2 Transmit Buffer Register ⁽²⁾	U2TB	XXh
0163h		11000	XXh
0164h	UART2 Transmit/Receive Control Register 0 ⁽²⁾	U2C0	00001000b
0165h	UART2 Transmit/Receive Control Register 1 ⁽²⁾	U2C1	00000010b
0166h	UART2 Receive Buffer Register ⁽²⁾	U2RB	XXh
0167h			XXh
0168h			
0169h			
016Ah			
016Bh 016Ch			
016Ch 016Dh			
016Dh 016Eh			
016Fh		ł	
010111	l	1	1

SFR Information (6)⁽¹⁾ Table 4.6

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions.
This register is not implemented in the R8C/2J Group.

Address	Desister	Cumphiel	After reset
Address	Register	Symbol	Alter Teset
01B0h			
01B1h			
01B2h	Flack Manager Constant Descister A	EMD 4	0400000h
01B3h	Flash Memory Control Register 4	FMR4	0100000b
01B4h	Fleeh Memory Control Desister 1	FMR1	1000000
01B5h	Flash Memory Control Register 1	FINIR	1000000Xb
01B6h		EMD:	000000011
01B7h	Flash Memory Control Register 0	FMR0	0000001b
01B8h			
01B9h			
01BAh 01BBh			
01BBh 01BCh			
01BDh			
01BDh			
01BEh			
01C0h			
01C1h			
01C1h			
01C2h		<u> </u>	
01C3h		<u> </u>	
01C411 01C5h		<u> </u>	
01C5h			
01C7h			
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h			
01D2h			
01D3h			
01D4h			
01D5h			
01D6h			
01D7h			
01D8h			
01D9h			
01DAh			
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			
01E0h			
01E1h			
01E2h			
01E3h			
01E4h			
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh			
01EBh			
01ECh			
01EDh			
01EEh			
01EFh			
e		•	


SFR Information (8)⁽¹⁾ Table 4.8

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Unit
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec

NOTES:

- 1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power Vcc rise gradient) does not apply if Vcc \ge 1.0 V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain tw(por1) for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

- 1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.
- The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
 Vdet0 indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.2 Reset Circuit Electrical Characteristics

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.14XCIN Input

Symbol	Nol Parameter XCIN input cycle time	Standard		Unit
Symbol		Min.	Max.	Unit
tc(XCIN)	XCIN input cycle time	14	-	μS
tWH(XCIN)	XCIN input "H" width	7	-	μS
tWL(XCIN)	XCIN input "L" width	7	-	μS

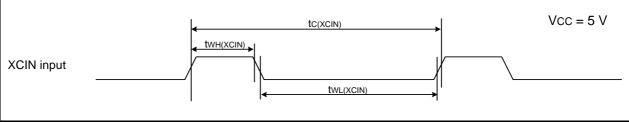


Figure 5.3 XCIN Input Timing Diagram when Vcc = 5 V

Table 5.15 TRAIO Input

Symbol		Standard		Unit
Symbol		Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width	40	-	ns
twl(traio)	TRAIO input "L" width	40	-	ns

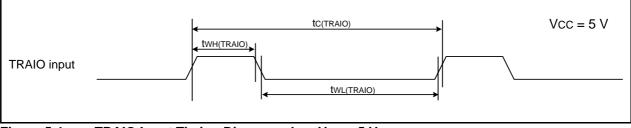
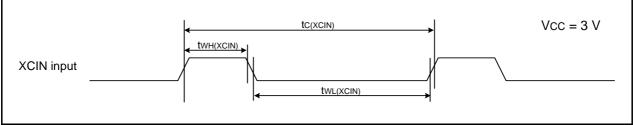



Figure 5.4 TRAIO Input Timing Diagram when Vcc = 5 V

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.20XCIN Input

Symbol Parameter	Deromotor	Standard		Unit
	Min.	Max.		
tc(XCIN)	XCIN input cycle time	14	-	μS
tWH(XCIN)	XCIN input "H" width	7	-	μS
twl(xcin)	XCIN input "L" width	7	-	μS

Figure 5.7 XCIN Input Timing Diagram when Vcc = 3 V

Table 5.21 TRAIO Input

Symbol	Symbol Parameter	Standard		Unit
Symbol		Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	300	-	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	120	-	ns

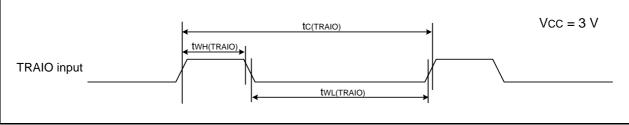
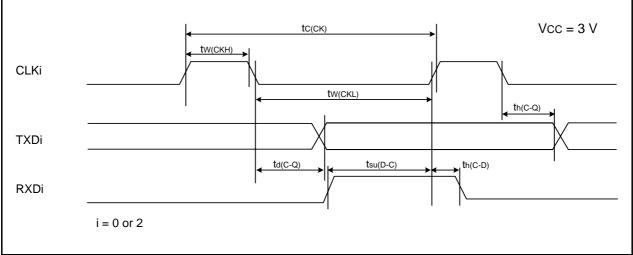



Figure 5.8 TRAIO Input Timing Diagram when Vcc = 3 V

Symbol	Parameter		Standard		
			Max.	Unit	
tc(CK)	CLKi input cycle time	300	-	ns	
tW(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 2

Table 5.23 External Interrupt INTi (i = 0 or 1) Input

Symbol	Symbol Parameter	Stan	Unit	
Symbol		Min.	Max.	Unit
tw(INH)	INTi input "H" width	380 ⁽¹⁾	-	ns
tw(INL)	INTi input "L" width	380(2)	I	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

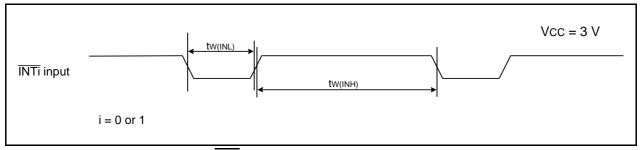
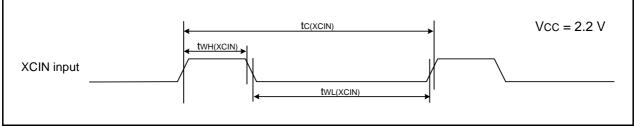



Figure 5.10 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) [Vcc = 2.2 V]

Table 5.26XCIN Input

Symbol	Symbol Parameter -		Standard	
Symbol			Max.	Unit
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	-	μS
twl(xcin)	XCIN input "L" width	7	-	μS

Figure 5.11 XCIN Input Timing Diagram when Vcc = 2.2 V

Table 5.27 TRAIO Input

Symbol	Symbol Parameter		Standard		
Symbol		Min.	Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	500	-	ns	
twh(traio)	TRAIO input "H" width	200	-	ns	
twl(traio)	TRAIO input "L" width	200	-	ns	

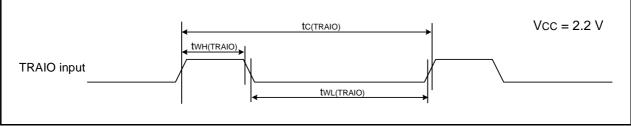
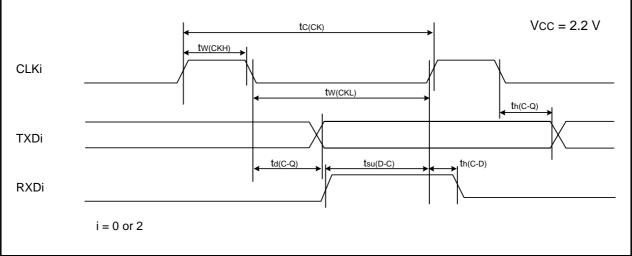



Figure 5.12 TRAIO Input Timing Diagram when Vcc = 2.2 V

Table 5.28Serial Interface

Symbol	Parameter		Standard		
	Faidhelei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	800	-	ns	
tW(CKH)	CLKi input "H" width	400	-	ns	
tW(CKL)	CLKi input "L" width	400	-	ns	
td(C-Q)	TXDi output delay time	-	200	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	150	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 2

Table 5.29 External Interrupt INTi (i = 0 or 1) Input

Symbol	Symbol Parameter		Standard		
Symbol	Symbol	Min.	Max.	Unit	
tw(INH)	INTi input "H" width	1000(1)	-	ns	
tw(INL)	INTi input "L" width	1000(2)	I	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

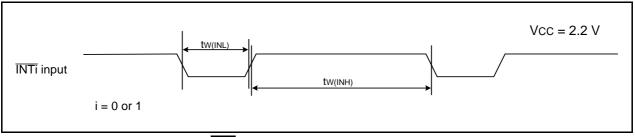


Figure 5.14 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

5.2 R8C/2J Group

Table 5.30 A	Absolute	Maximum	Ratings
--------------	----------	---------	---------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc	Supply voltage		-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	Topr = 25°C	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.31 Recommended Operating Conditions

Cumbal	Param	otor	Conditions		Standard		Unit
Symbol	Paran	leter	Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply voltage			2.2	-	5.5	V
Vss	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8 Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	-	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		-	-	-80	mA
IOH(peak)	Peak output "H" current	All pins		-	-	-10	mA
IOH(avg)	Average output "H" current	All pins		-	-	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL(peak)		-	_	160	mA
IOL(sum)	Average sum output "L" currents	Sum of all pins IOL(avg)		-	_	80	mA
OL(peak)	Peak output "L" currents	All pins		-	-	10	mA
IOL(avg)	Average output "L" current	All pins		-	-	5	mA
-	System clock		HRA01 = 0 Low-speed on-chip oscillator selected	-	125	-	kHz
			$\begin{array}{l} \text{HRA01 = 1} \\ \text{High-speed on-chip} \\ \text{oscillator selected} \\ \text{2.7 V} \leq \text{Vcc} \leq 5.5 \text{ V} \end{array}$	-	_	8	MHz
			$\label{eq:HRA01 = 1} \begin{array}{l} \text{HRA01 = 1} \\ \text{High-speed on-chip} \\ \text{oscillator selected} \\ \text{2.2 V} \leq \text{Vcc} \leq 5.5 \text{ V} \end{array}$	_	-	4	MHz

NOTES:

1. Vcc = 2.2 to 5.5 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

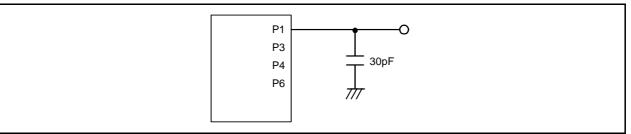


Figure 5.15 Ports P1, P3, P4, and P6 Timing Measurement Circuit

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		100 ⁽³⁾	-	-	times
-	Byte program time		-	50	400	μs
-	Block erase time		=	0.4	9	S
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	_	_	year

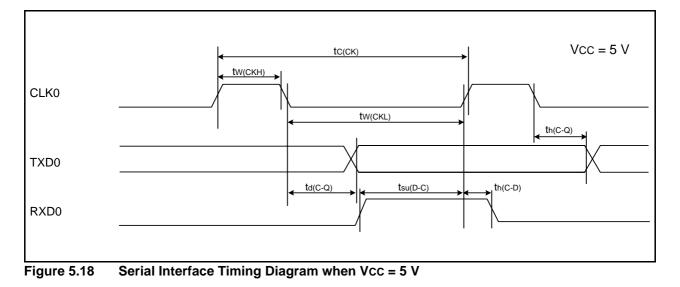
Table 5.32 Flash Memory (Program ROM) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at $T_{opr} = 0$ to 60°C, unless otherwise specified.

 Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

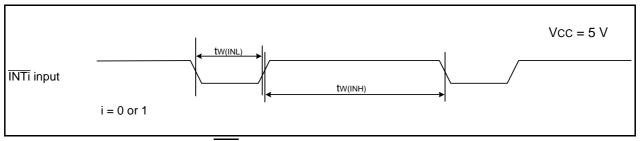

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
 In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

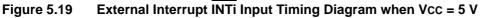
5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter		Standard		
	Falailletei	Min.	Max.	Unit	
tc(CK)	CLK0 input cycle time	-	ns		
tw(CKH)	CLK0 input "H" width	100	-	ns	
tw(CKL)	CLK0 input "L" width 100 –				
td(C-Q)	TXD0 output delay time - 50				
th(C-Q)	TXD0 hold time 0 -				
tsu(D-C)	RXD0 input setup time 50 -				
th(C-D)	RXD0 input hold time 90 -				


Table 5.45 External Interrupt INTi (i = 0 or 1) Input


Symbol	Parameter		Standard	
Symbol	Falanielei	Min.	Max.	Unit
tw(INH)	INTi input "H" width	250 ⁽¹⁾	-	ns
tw(INL)	INTi input "L" width	250(2)	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

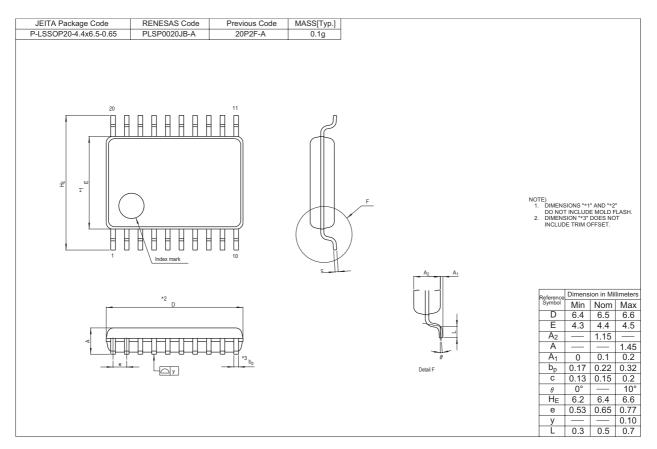
2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Symbol	Parameter		Condition	S	Unit		
Symbol			Condition	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage		Iон = -1 mA	Vcc - 0.5	-	Vcc	V
Vol	Output "L" voltage		IoL = 1 mA	-	-	0.5	V
VT+-VT-	Hysteresis	ÎNTO, ÎNTI, KIO, KII, KI2, KI3, RXDO, CLKO		0.05	0.3	-	V
		RESET		0.05	0.15	-	V
Ін	Input "H" current		VI = 2.2 V	-	-	4.0	μΑ
lı∟	Input "L" current		VI = 0 V	-	-	-4.0	μΑ
Rpullup	Pull-up resistance		VI = 0 V	100	200	600	kΩ
RfXCIN	Feedback resistance	XCIN		-	35	-	MΩ
Vram	RAM hold voltage		During stop mode	1.8	-	-	V

Table 5.51 Electrical Characteristics (5) [Vcc = 2.2 V]

NOTE:

1. Vcc = 2.2 V at T_{opr} = -20 to 85° C (N version) / -40 to 85° C (D version), unless otherwise specified.


Table 5.52Electrical Characteristics (6) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard			Unit
				Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode,	High-speed on-chip oscillator mode	High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	-	mA
	output pins are open, other pins are Vss		High-speed on-chip oscillator on = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	-	mA
		Low-speed on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	100	230	μA
		Wait mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μA
			High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	20	55	μA
		Stop mode	Topr = 25° CHigh-speed on-chip oscillator offLow-speed on-chip oscillator offCM10 = 1Peripheral clock offVCA27 = VCA26 = VCA25 = 0BGR trimming circuit disabled (BGRCR0 = 1)	_	0.7	3	μA
			Topr = 85° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit disabled (BGRCR0 = 1)	_	1.1	_	μΑ
			Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	_	5	7	μΑ
			Topr = 85° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0 BGR trimming circuit enabled (BGRCR0 = 0)	_	5.5	_	μΑ

RENESAS

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

REVISION HISTORY	R8C/2F

R8C/2H Group, R8C/2J Group Datasheet

		Description		
Rev.	Date	Page	Summary	
0.01	Jun 18, 2007	_	First Edition issued	
0.10	Jul 20, 2007	20	Table 4.2: 0038h After reset;	
			"0000X010b" → "1000X010b", "0100X011b" → "1100X011b"	
		31 to 64	5. Electrical Characteristics added	
0.20	Nov 12, 2007	2	Table 1.1 I/O Ports: "• Output-only: 1" added "• CMOS I/O ports: 16" \rightarrow "• CMOS I/O ports: 15"	
		6	Figure 1.3 revised	
		8	Figure 1.5 revised	
		9	Table 1.5 Pin Number: 4, 6, 16 revised	
		12	Table 1.7 I/O port: "P4_3 to P4_5" \rightarrow "P4_3, P4_5" Timer RE, Output port added	
		19	Table 4.1 0006h "01001000b" → "01011000b"	
		23	Table 4.5 0118h to 011Dh: After reset revised 011Fh "Timer RE Real-Time Clock Precision Adjust Register" added	
		31, 48	Table 5.2, Table 5.31 NOTE2 revised	
		54, 58	Table 5.42, Table 5.47 revised	
		62	Table 5.52 revised	
1.00	Mar 28, 2008	All pages	"Under development" deleted	
		2, 3	Table 1.1, Table 1.2 revised	
		4, 5	Table 1.3, Table 1.4; "(D): Under development" deleted	
		17, 18	Figure 3.1, Figure 3.2; "Expanded area" deleted	
		19	Table 4.1 "002Eh" "002Fh" revised	
		20	Table 4.2 "003Eh" "003Fh" revised	
		32	Table 5.3 revised Old Figure 5.2 deleted	
		35	Table 5.8, Table 5.11 revised Table 5.9 revised, NOTE3 added	
		37	Table 5.13 revised	
		41	Table 5.19 revised	
		45	Table 5.25 revised	
		49	Table 5.32 revised Old Figure 5.17 deleted	
		52	Table 5.37, Table 5.40 revised Table 5.38 revised, NOTE3 added	
		54	Table 5.42 revised	
		58	Table 5.47 revised	