
Digi - 20-101-0494 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Not For New Designs

Module/Board Type MPU Core

Core Processor Rabbit 2000

Co-Processor -

Speed 22.1MHz

Flash Size 512KB

RAM Size 512KB

Connector Type 2 IDC Headers 2x13

Size / Dimension 1.6" x 2.3" (41mm x 58mm)

Operating Temperature 0°C ~ 70°C

Purchase URL https://www.e-xfl.com/product-detail/digi-international/20-101-0494

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/20-101-0494-4509929
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

Digi International Inc.
www.rabbit.com

RabbitCore RCM2200 User’s Manual

Part Number 019-0097 • 090417–G • Printed in U.S.A.
©2001–2009 Digi International Inc. • All rights reserved.

Digi International reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Rabbit and Dynamic C are registered trademarks of Digi International Inc.

Rabbit 2000 and RabbitCore are trademarks of Digi International Inc.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International.

The latest revision of this manual is available on the Rabbit Web site, www.rabbit.com,
for free, unregistered download.
RabbitCore RCM2200

http://www.rabbit.com/
http://www.rabbit.com/
http://www.rabbit.com/

To power down the Prototyping Board, unplug the power connector from J5. You should
disconnect power before making any circuit adjustments in the prototyping area, changing
any connections to the board, or removing the RabbitCore module from the board.

2.1.4 Alternate Power Supply Connections

Development kits sold outside North America before 2009 included a header connector
that could be connected to 3-pin header J5 on the Prototyping Board. The red and black
wires from the connector could then be connected to the positive and negative connections
on your power supply. The power supply should deliver 8 V–24 V DC at 8 W.

2.2 Run a Sample Program
Once the RCM2200 is connected as described in the preceding pages, start Dynamic C by
double-clicking on the Dynamic C icon on your desktop or in your Start menu. Dynamic C
uses the serial port specified during installation.

If you are using a USB port to connect your computer to the RCM2200 module, choose
Options > Project Options and select “Use USB to Serial Converter” under the
Communications tab, then click OK.

Find the file PONG.C, which is in the Dynamic C SAMPLES folder. To run the program,
open it with the File menu (if it is not still open), then compile and run it by pressing F9 or
by selecting Run in the Run menu. The STDIO window will open and will display a small
square bouncing around in a box.

2.2.1 Troubleshooting

If Dynamic C cannot find the target system (error message "No Rabbit Processor
Detected."):

• Check that the RCM2200 is powered correctly — the red power LED on the Prototyping
Board should be lit when the RCM2200 is mounted on the Prototyping Board and the AC
adapter is plugged in.

• Check both ends of the programming cable to ensure that they are firmly plugged into
the PC and the PROG connector, not the DIAG connector, is plugged in to the program-
ming port on the RCM2200 with the marked (colored) edge of the programming cable
towards pin 1 of the programming header.

• Ensure that the RCM2200 module is firmly and correctly installed in its connectors on
the Prototyping Board.

• Dynamic C uses the COM port specified during installation. Select a different COM
port within Dynamic C. From the Options menu, select Project Options, then select
Communications. Select another COM port from the list, then click OK. Press
<Ctrl-Y> to force Dynamic C to recompile the BIOS. If Dynamic C still reports it is
unable to locate the target system, repeat the above steps until you locate the COM port
used by the programming cable.
User’s Manual 9

3. RUNNING SAMPLE PROGRAMS

To develop and debug programs for the RCM2200 (and for all
other Rabbit hardware), you must install and use Dynamic C.
This chapter provides a tour of the sample programs for the
RCM2200.

3.1 Sample Programs
To help familiarize you with the RCM2200 modules, several sample Dynamic C programs
have been included. Loading, executing and studying these programs will give you a solid
hands-on overview of the RC M2200’s capabilities, as well as a quick start with Dynamic C
as an application development tool. These programs are intended to serve as tutorials, but
then can also be used as starting points or building blocks for your own applications.

NOTE: It is assumed in this section that you have at least an elementary grasp of ANSI C.
If you do not, see the introductory pages of the Dynamic C User’s Manual for a sug-
gested reading list.

Each sample program has comments that describe the purpose and function of the program.

Before running any of these sample program, make sure that your RCM2200 is connected
to the Prototyping Board and to your PC as described in Section 2.1, “Connections.” To
run a sample program, open it with the File menu (if it is not already open), then compile
and run it by pressing F9 or by selecting Run in the Run menu.

Sample programs are provided in the Dynamic C SAMPLES folder. Two folders contain
sample programs that illustrate features unique to the RCM2200.

• RCM2200—Demonstrates the basic operation and the Ethernet functionality of the
RCM2200.

• TCPIP—Demonstrates more advanced TCP/IP programming for Rabbit’s Ethernet-
enabled Rabbit-based boards.

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.
User’s Manual 11

• KEYLCD.C—demonstrates a simple setup for a 2 × 6 keypad and a 2 × 20 LCD.

Connect the keypad to Parallel Ports B, C, and D.
PB0—Keypad Col 0
PC1—Keypad Col 1
PB2—Keypad Col 2
PB3—Keypad Col 3
PB4—Keypad Col 4
PB5—Keypad Col 5
PD3—Keypad Row 0
PD4—Keypad Row 1

Connect the LCD to Parallel Port A.

PA0—backlight (if connected)
PA1—LCD /CS
PA2—LCD RS (High = Control,
Low = Data) / LCD Contrast 0
PA3—LCD /WR/ LCD Contrast 1
PA4—LCD D4 / LCD Contrast 2
PA5—LCD D5 / LCD Contrast 3
PA6—LCD D6 / LCD Contrast 4
PA7—LCD D7 / LCD Contrast 5

Once the connections have been made and the sample program is running, the LCD
will display two rows of 6 dots, each dot representing the corresponding key. When a
key is pressed, the corresponding dot will become an asterisk.

���
���

���
���
���

���

4��

��$5�
��%)%�"�%

���������������
���	�	
��
�������

��

��

�� ��

�� ��

�

��

��

���
���

��
���

�"&$�

�"6$�
�"6$�
��
��

�"&$�
�"&$�
�"&$�
�"&$�
�"&$�

��

�

	

��

���
���

���
���
���
��

���

4��

��
$5

�

��
$5

�

�7
�$
5�

�7
�$
5�

�$
5�

��
�$

�

	
�$

�

��
�$
*8

�

�

�

��

��

��

��

�

���������������
���	�	
��
�������

��
�

� �

�

� 	

�������

2��
��
23�
��
��
�

��
��
��
��
��

4��
4��
User’s Manual 13

3.1.2 Serial Communication
The following sample programs can be found in the SAMPLES\RCM2200 folder.

One sample programs, PUTS.C is available to illustrate RS-232 communication. To run
this sample program, you will have to add an RS-232 transceiver such as the MAX232 at
location U2 and five 100 nF capacitors at C3–C7 on the Prototyping Board. Also install a
2 × 5 IDC header with a pitch of 0.1" at J6 to interface the RS-232 signals. The diagram
shows the connections.

This program writes a null terminated string over Serial Port B. Use a serial utility such as
HyperTerminal or Tera Term to view the string. Use the following configuration for your
serial utility.

Bits per second: 19200
Data bits: 8
Parity: None
Stop bits: 1
Flow control: None

Once the sample program is running, you may use a 10-
pin header to DB9 cable (for example, Part No. 540-0009) to
connect header J6 to your PC COM port (you will have to
disconnect the programming cable from both the RCM2200
and the PC if you only have one PC COM port, then press the
RESET button on the Prototyping Board). Line up the
colored edge of the cable with pin 1 on header J6 as shown in
the diagram (pin 1 is indicated by a small square on the
Prototyping Board silkscreen).

�����
�

���$*8
%�"��.�

'�,�')�"�%

�
�

!"

�
9�

�
9�

�
�
�

�"&"��:
�:.�
14 RabbitCore RCM2200

3.1.4 Sample Program Descriptions
3.1.4.1 FLASHLED.C

This program is about as simple as a Dynamic C application can get—the equivalent of
the traditional “Hello, world!” program found in most basic programming tutorials. If you
are familiar with ANSI C, you should have no trouble reading through the source code and
understanding it.

The only new element in this sample application should be Dynamic C’s handling of the
Rabbit microprocessor’s parallel ports. The program:

4. Initializes the pins of Port A as outputs.

5. Sets all of the pins of Port A high, turning off the attached LEDs.

6. Starts an endless loop with a for(;;) expression, and within that loop:

• Writes a bit to turn bit 1 off, lighting LED DS3;

• Waits through a delay loop;

• Writes a bit to turn bit 1 on, turning off the LED;

• Waits through a second delay loop;

These steps repeat as long as the program is allowed to run.

You can change the flash rate of the LED by adjusting the loop values in the two for
expressions. The first loop controls the LED’s “off” time; the second loop controls its “on”
time.

NOTE: Since the variable j is defined as type int, the range for j must be between 0
and 32767. To permit larger values and thus longer delays, change the declaration of j
to unsigned int or long.

More Information
See the section on primitive data types, and the entries for the library functions
WrPortI() and BitWrPortI() in the Dynamic C User’s Manual.
16 RabbitCore RCM2200

tion of how Dynamic C handles multitasking with costatements and cofunctions, see
Chapter 5, “Multitasking with Dynamic C,” and Chapter 6, “The Virtual Driver,” in the
Dynamic C User’s Manual.

3.1.4.3 TOGGLELED.C

One of Dynamic C’s unique and powerful aspects is its ability to efficiently multitask
using cofunctions and costatements. This simple application demonstrates how these pro-
gram elements work.

This sample program uses two costatements to set up and manage the two tasks. Costate-
ments must be contained in a loop that will “tap” each of them at regular intervals. This
program:

1. Initializes the pins of Port A as outputs.

2. Sets all the pins of Port A high, turning off the attached LEDs.

3. Sets the toggled LED status variable vswitch to 0 (LED off).

4. Starts an endless loop using a while(1) expression, and within that loop:

• Executes a costatement that flashes LED DS3;

• Executes a costatement that checks the state of switch S2 and toggles the state of
vswitch if it is pressed;

• Turns LED DS2 on or off, according to the state of vswitch.

These steps repeat as long as the program is allowed to run.

The first costatement is a compressed version of FLASHLED.c, with slightly different
flash timing. It also uses the library function DelayMs() to deliver more accurate timing
than the simple delay loops of the previous program.

The second costatement does more than check the status of S2. Switch contacts often
“bounce” open and closed several times when the switch is actuated, and each bounce can
be interpreted by fast digital logic as an independent press. To clean up this input, the code
in the second costatement “debounces” the switch signal by waiting 50 milliseconds and
checking the state of the switch again. If it is detected as being closed both times, the pro-
gram considers it a valid switch press and toggles vswitch.

Unlike most C statements, the two costatements are not executed in their entirety on each
iteration of the while(1) loop. Instead, the list of statements within each costatement is
initiated on the first loop, and then executed one “slice” at a time on each successive inter-
ation. This mode of operation is known as a state machine, a powerful concept that per-
mits a single processor to efficiently handle a number of independent tasks.

The ability of Dynamic C to manage state machine programs enables you to create very
powerful and efficient embedded systems with much greater ease than other programming
methods.

More Information
See the entries for the DelayMs() function, as well as Section 5, “Multitasking with
Dynamic C,” in the Dynamic C User’s Manual.
18 RabbitCore RCM2200

4.3.2 Standalone Operation of the RCM2200

The RCM2200 must be programmed via the RCM2200/RCM2300 Prototyping Board or
via a similar arrangement on a customer-supplied board. Once the RCM2200 has been
programmed successfully, remove the programming cable from the programming connec-
tor and reset the RCM2200. The RCM2200 may be reset by cycling the power off/on or by
pressing the RESET button on the Prototyping Board. The RCM2200 module may now be
removed from the Prototyping Board for end-use installation.

CAUTION: Power to the Prototyping Board or other boards should be disconnected
when removing or installing your RCM2200 module to protect against inadvertent
shorts across the pins or damage to the RCM2200 if the pins are not plugged in
correctly. Do not reapply power until you have verified that the RCM2200 module is
plugged in correctly.
26 RabbitCore RCM2200

Developing software with Dynamic C is simple. Users can write, compile, and test C and
assembly code without leaving the Dynamic C development environment. Debugging
occurs while the application runs on the target. Alternatively, users can compile a program
to an image file for later loading. Dynamic C runs on PCs under Windows 95 or later. Pro-
grams can be downloaded at baud rates of up to 460,800 bps after the program compiles.

Dynamic C has a number of standard features:

• Full-feature source and/or assembly-level debugger, no in-circuit emulator required.

• Royalty-free TCP/IP stack with source code and most common protocols.

• Hundreds of functions in source-code libraries and sample programs:

Exceptionally fast support for floating-point arithmetic and transcendental functions.

RS-232 and RS-485 serial communication.

Analog and digital I/O drivers.

I2C, SPI, GPS, file system.

LCD display and keypad drivers.

• Powerful language extensions for cooperative or preemptive multitasking.

• Loader utility program to load binary images into Rabbit targets in the absence of
Dynamic C.

• Provision for customers to create their own source code libraries and augment on-line
help by creating “function description” block comments using a special format for
library functions.

• Standard debugging features:
Breakpoints—Set breakpoints that can disable interrupts.

Single-stepping—Step into or over functions at a source or machine code level, µC/OS-II aware.

Code disassembly—The disassembly window displays addresses, opcodes, mnemonics, and
machine cycle times. Switch between debugging at machine-code level and source-code level by
simply opening or closing the disassembly window.

Watch expressions—Watch expressions are compiled when defined, so complex expressions
including function calls may be placed into watch expressions. Watch expressions can be updated
with or without stopping program execution.

Register window—All processor registers and flags are displayed. The contents of general registers
may be modified in the window by the user.

Stack window—shows the contents of the top of the stack.

Hex memory dump—displays the contents of memory at any address.

STDIO window—printf outputs to this window and keyboard input on the host PC can be
detected for debugging purposes. printf output may also be sent to a serial port or file.
32 RabbitCore RCM2200

The following IP addresses are set aside for local networks and are not allowed on the
Internet: 10.0.0.0 to 10.255.255.255, 172.16.0.0 to 172.31.255.255, and 192.168.0.0 to
192.168.255.255.

The RCM2200 board uses a 10Base-T type of Ethernet connection, which is the most
common scheme. The RJ-45 connectors are similar to U.S. style telephone connectors,
except they are larger and have 8 contacts.

An alternative to the direct connection using a crossover cable is a direct connection using
a hub. The hub relays packets received on any port to all of the ports on the hub. Hubs are
low in cost and are readily available. The RCM2200 board uses 10 Mbps Ethernet, so the
hub or Ethernet adapter must be either a 10 Mbps unit or a 10/100 unit that adapts to either
10 or 100 Mbps.

In a corporate setting where the Internet is brought in via a high-speed line, there are typi-
cally machines between the outside Internet and the internal network. These machines
include a combination of proxy servers and firewalls that filter and multiplex Internet traf-
fic. In the configuration below, the RCM2200 board could be given a fixed address so any
of the computers on the local network would be able to contact it. It may be possible to
configure the firewall or proxy server to allow hosts on the Internet to directly contact the
controller, but it would probably be easier to place the controller directly on the external
network outside of the firewall. This avoids some of the configuration complications by
sacrificing some security.

If your system administrator can give you an Ethernet cable along with its IP address, the
netmask and the gateway address, then you may be able to run the sample programs with-
out having to setup a direct connection between your computer and the RCM2200 board.
You will also need the IP address of the nameserver, the name or IP address of your mail
server, and your domain name for some of the sample programs.

Hub(s)

Firewall
Proxy
Server

T1 in
Adapter

Ethernet Ethernet

Network

RCM2200
BoardTypical Corporate Network
40 RabbitCore RCM2200

6.5 Dynamically Assigned Internet Addresses
In many instances, there are no fixed IP addresses. This is the case when, for example, you
are assigned an IP address dynamically by your dial-up Internet service provider (ISP) or
when you have a device that provides your IP addresses using the Dynamic Host Configu-
ration Protocol (DHCP). The RCM2200 can use such IP addresses to send and receive
packets on the Internet, but you must take into account that this IP address may only be
valid for the duration of the call or for a period of time, and could be a private IP address
that is not directly accessible to others on the Internet. These private address can be used
to perform some Internet tasks such as sending e-mail or browsing the Web, but usually
cannot be used to participate in conversations that originate elsewhere on the Internet. If
you want to find out this dynamically assigned IP address, under Windows XP you can
run the ipconfig program while you are connected and look at the interface used to con-
nect to the Internet.

Many networks use private IP addresses that are assigned using DHCP. When your com-
puter comes up, and periodically after that, it requests its networking information from a
DHCP server. The DHCP server may try to give you the same address each time, but a
fixed IP address is usually not guaranteed.

If you are not concerned about accessing the RCM2200 from the Internet, you can place
the RCM2200 on the internal network using a private address assigned either statically or
through DHCP.
User’s Manual 43

6.7 How to Set IP Addresses in the Sample Programs
We have provided a number of sample programs demonstrating various uses of TCP/IP for
networking embedded systems. These programs require that you connect your PC and the
Coyote together on the same network. This network can be a local private network (pre-
ferred for initial experimentation and debugging), or a connection via the Internet.

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run
many of our sample programs. You will see a TCPCONFIG macro. This macro tells
Dynamic C to select your configuration from a list of default configurations. You will
have three choices when you encounter a sample program with the TCPCONFIG macro.

1. You can replace the TCPCONFIG macro with individual MY_IP_ADDRESS,
MY_NETMASK, MY_GATEWAY, and MY_NAMESERVER macros in each program.

2. You can leave TCPCONFIG at the usual default of 1, which will set the IP configurations
to 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway
to 10.10.6.1. If you would like to change the default values, for example, to use an IP
address of 10.1.1.2 for the Coyote board, and 10.1.1.1 for your PC, you can edit
the values in the section that directly follows the “General Configuration” comment in
the TCP_CONFIG.LIB library. You will find this library in the LIB\TCPIP directory.

3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater
than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB
library in the LIB\TCPIP directory.

There are some other “standard” configurations for TCPCONFIG that let you select differ-
ent features such as DHCP. Their values are documented at the top of the
TCP_CONFIG.LIB library in the LIB\TCPIP directory. More information is available in
the Dynamic C TCP/IP User’s Manual.

IP Addresses Before Dynamic C 7.30

Most of the sample programs use macros to define the IP address assigned to the board and
the IP address of the gateway, if there is a gateway. Instead of the TCPCONFIG macro, you
will see a MY_IP_ADDRESS macro and other macros.

#define MY_IP_ADDRESS "10.10.6.170"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.1"
#define MY_NAMESERVER "10.10.6.1"

In order to do a direct connection, the following IP addresses can be used for the Coyote:

#define MY_IP_ADDRESS "10.1.1.2"
#define MY_NETMASK "255.255.255.0"
// #define MY_GATEWAY "10.10.6.1"
// #define MY_NAMESERVER "10.10.6.1"

In this case, the gateway and nameserver are not used, and are commented out. The IP
address of the board is defined to be 10.1.1.2. The IP address of your PC can be defined
as 10.1.1.1.
User’s Manual 45

APPENDIX A. RABBITCORE RCM2200
SPECIFICATIONS

Appendix A provides the specifications for the RCM2200, and
describes the conformal coating.
User’s Manual 49

It is recommended that you allow for an “exclusion zone” of 0.04" (1 mm) around the
RCM2200 in all directions when the RCM2200 is incorporated into an assembly that
includes other printed circuit boards. An “exclusion zone” of 0.16" (4 mm) is recom-
mended below the RCM2200 when the RCM2200 is plugged into another assembly using
the shortest connectors for headers J4 and J5. Figure A-2 shows this “exclusion zone.”

Figure A-2. RCM2200 “Exclusion Zone”

�7
�
 ?�
@

�7
�
 ?�
@

�7

� ?�
�

�7�	
?
�7�@

�7
	
?��7
@

�7

�

?�
�@

�7
��
?��7
@

�7���
?�	7�@

����

2�,�����

3�
�
User’s Manual 51

Table A-1 lists the electrical, mechanical, and environmental specifications for the RCM2200.

Table A-1. RabbitCore RCM2200 Specifications

Parameter RCM2200 RCM2210 RCM2250 RCM2260

Microprocessor Rabbit 2000® at 22.1 MHz

Ethernet Port
(10/100-compatible with
10Base-T interface)

RJ-45, 2 LEDs Raw signals only RJ-45, 2 LEDs Raw signals only

Flash Memory One 256K Two 256K Two 256K

SRAM 128K 512K 512K

Backup Battery Connection for user-supplied backup battery
(to support RTC and SRAM)

General-Purpose I/O

26 parallel I/0 lines grouped in five 8-bit ports (shared with serial ports):
• 16 configurable I/O
• 7 fixed inputs
• 3 fixed outputs

Additional Inputs 2 startup mode, reset

Additional Outputs Status, reset

Memory, I/O Interface 4 address lines, 8 data lines, I/O read/write

Serial Ports
Four 5 V CMOS-compatible ports.

Two ports are configurable as clocked ports, one is a dedicated RS-232
programming port.

Serial Rate Maximum burst rate = CLK/32
Maximum sustained rate = CLK/64

Slave Interface
A slave port allows the RCM2200 to be used as an intelligent peripheral
device slaved to a master processor, which may either be another Rabbit 2000
or any other type of processor

Real-Time Clock Yes

Timers Five 8-bit timers cascadable in pairs, one 10-bit timer with 2 match registers
that each have an interrupt

Watchdog/Supervisor Yes

Power 4.75 V to 5.25 V DC, 134 mA

Operating Temperature –40°C to +70°C

Humidity 5% to 95%, noncondensing

Connectors Two IDC headers 2 × 13, 2 mm pitch

Board Size 1.60" × 2.30" × 0.86"
(41 mm × 59 mm × 22 mm)
52 RabbitCore RCM2200

Figure A-4 shows a typical timing diagram for the Rabbit 2000 microprocessor external
I/O read and write cycles.

Figure A-4. External I/O Read and Write Cycles—No Extra Wait States

Tadr is the time required for the address output to reach 0.8 V. This time depends on the
bus loading. Tsetup is the data setup time relative to the clock. Tsetup is specified from
30%/70% of the VDD voltage level.

��:�

��:�

2�	��
���(�.������4
����	���5��	��	�	��6

���

�C��D�E

2�	��
���(�.�7��	��4
����	���5��	��	�	��6

���

�C��D�E

2/0��

�����

�� �6

�� �6 ��

�����

��

2��8��

2/0��9

2/03�

2��8��

�C�D�E �����

�%��-,

�<"&:

2��9

2/0��9

���9

�/0��9

�/0��

���8��

���9

�/0��9

�/0��

���8��

������C�D�E

2��9
���9

�/0��9

�/03�

���9

�/0��9

�/03�

���8�� ���8��

��FG4 ��4FG
User’s Manual 55

A.6 Conformal Coating
The areas around the 32 kHz real-time clock crystal oscillator has had the Dow Corning
silicone-based 1-2620 conformal coating applied. The conformally coated area is shown
in Figure A-6. The conformal coating protects these high-impedance circuits from the
effects of moisture and contaminants over time.

Figure A-6. RCM2200 Areas Receiving Conformal Coating

Any components in the conformally coated area may be replaced using standard soldering
procedures for surface-mounted components. A new conformal coating should then be
applied to offer continuing protection against the effects of moisture and contaminants.

NOTE: For more information on conformal coatings, refer to Technical Note TN303,
Conformal Coatings.

�"*H"�!�&& $'"���:$����

�� ��

�
� ��

�� �
��

�	
��

���

�
��

���

�
�	

��

�
�
 �� �� �� �	 ����

�

��

���

���

�������

��
�

���

�
�
�

��

�� �� ��

��

��
�� ��

���

�	
�

�
�� �
��

��
���

���

���
���

���
���

��

��

������ ���

��	 �
��

��	

��

��

��
�

��
�

���
��

���
���

���

���
��
User’s Manual 59

60 RabbitCore RCM2200

74 RabbitCore RCM2200

D.3 External Memory
The sample circuit can be used with an external 64K memory device. Larger SRAMs can
be written to using this scheme by using other available Rabbit 2000 ports (parallel ports
A to E) as address lines.

Figure D-4. Sample External Memory Connections

Sample Program: EXTSRAM.C in SAMPLES\RCM2200.

�������
���	�	
��
�������

����

��1��

���
��	
�
��	�

��1��
��
�

�����

23�
20�
2��

�����

���
78 RabbitCore RCM2200

