

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	12
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-VQFN Exposed Pad
Supplier Device Package	16-QFN-EP (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qg44cffer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 2 External Signal Description

Pin Number			Priority						
			Lowest				Highest		
24-pin	16-pin	8-pin	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4		
24	1	1	PTA5 ¹	IRQ	TCLK		RESET		
1	2	2	PTA4		ACMPO	BKGD	MS		
2	3	3					V _{DD}		
3	4	4					V _{SS}		
4	5	_	PTB7		SCL ²	EXTAL			
5	6	_	PTB6		SDA ²	XTAL			
6	7	_	PTB5		TPMCH1	SS			
10	8	—	PTB4		MISO				
12	9	—	PTB3	KBIP7	MOSI	ADP7			
13	10	_	PTB2	KBIP6	SPSCK	ADP6			
14	11	_	PTB1	KBIP5	TxD	ADP5			
15	12	_	PTB0	KBIP4	RxD	ADP4			
16	13	5	PTA3	KBIP3	SCL ²	ADP3			
17	14	6	PTA2	KBIP2	SDA ²	ADP2			
18	15	7	PTA1	KBIP1		ADP1 ³	ACMP- ³		
20	16	8	PTA0	KBIP0	TPMCH0	ADP0 ³	ACMP+ ³		

Table 2-1. Pin Sharing Priority

¹ Pin does not contain a clamp diode to V_{DD} and should not be driven above V_{DD}. The voltage measured on the internally pulled-up RESET pin will not be pulled to V_{DD}. The internal gates connected to this pin are pulled to V_{DD}.

- ² IIC pins can be repositioned using IICPS in SOPT2; default reset locations are on PTA2 and PTA3.
- ³ If ACMP and ADC are both enabled, both will have access to the pin.

Signal Function	Example(s)	Reference
Port Pins	PTAx, PTBx	Chapter 6, "Parallel Input/Output Control"
Analog comparator	ACMPO, ACMP-, ACMP+	Chapter 8, "Analog Comparator (S08ACMPV2)"
Serial peripheral interface	SS, MISO, MOSI, SPSCK	Chapter 15, "Serial Peripheral Interface (S08SPIV3)
Keyboard interrupts	KBIPx	Chapter 12, "Keyboard Interrupt (S08KBIV2)"
Timer/PWM	TCLK, TPMCHx	Chapter 16, "Timer/Pulse-Width Modulator (S08TPMV2)"
Inter-integrated circuit	SCL, SDA	Chapter 11, "Inter-Integrated Circuit (S08IICV1)"
Serial communications interface	TxD, RxD	Chapter 14, "Serial Communications Interface (S08SCIV3)
Oscillator/clocking	EXTAL, XTAL	Chapter 10, "Internal Clock Source (S08ICSV1)"
Analog-to-digital	ADPx	Chapter 9, "Analog-to-Digital Converter (S08ADC10V1)"
Power/core	BKGD/MS, V _{DD} , V _{SS}	Chapter 2, "External Signal Description"
Reset and interrupts	RESET, IRQ	Chapter 5, "Resets, Interrupts, and General System Control"

Table 2-2. Pin Function Reference

4.3 Register Addresses and Bit Assignments

The registers in the MC9S08QG8/4 are divided into these groups:

- Direct-page registers are located in the first 96 locations in the memory map; these are accessible with efficient direct addressing mode instructions.
- High-page registers are used much less often, so they are located from 0x1800 and above in the memory map. This leaves more room in the direct page for more frequently used registers and RAM.
- The nonvolatile register area consists of a block of 16 locations in FLASH memory at 0xFFB0–0xFFBF. Nonvolatile register locations include:
 - NVPROT and NVOPT are loaded into working registers at reset.
 - An 8-byte backdoor comparison key that optionally allows a user to gain controlled access to secure memory.

Because the nonvolatile register locations are FLASH memory, they must be erased and programmed like other FLASH memory locations.

Direct-page registers can be accessed with efficient direct addressing mode instructions. Bit manipulation instructions can be used to access any bit in any direct-page register. Table 4-2 is a summary of all user-accessible direct-page registers and control bits.

The direct page registers in Table 4-2 can use the more efficient direct addressing mode that requires only the lower byte of the address. Because of this, the lower byte of the address in column one is shown in bold text. In Table 4-3 and Table 4-4, the whole address in column one is shown in bold. In Table 4-2, Table 4-3, and Table 4-4, the register names in column two are shown in bold to set them apart from the bit names to the right. Cells that are not associated with named bits are shaded. A shaded cell with a 0 indicates this unused bit always reads as a 0. Shaded cells with dashes indicate unused or reserved bit locations that could read as 1s or 0s.

Address	Register Name	Bit 7	6	5	4	3	2	1	Bit 0
0x00 00	PTAD	0	0	PTAD5	PTAD4	PTAD3	PTAD2	PTAD1	PTAD0
0x00 01	PTADD	0	0	PTADD5	PTADD4	PTADD3	PTADD2	PTADD1	PTADD0
0x00 02	PTBD	PTBD7	PTBD6	PTBD5	PTBD4	PTBD3	PTBD2	PTBD1	PTBD0
0x00 03	PTBDD	PTBDD7	PTBDD6	PTBDD5	PTBDD4	PTBDD3	PTBDD2	PTBDD1	PTBDD0
0x00 04 – 0x00 0B	Reserved				-	_		_	_
0x00 0C	KBISC	0	0	0	0	KBF	KBACK	KBIE	KBMOD
0x00 0D	KBIPE	KBIPE7	KBIPE6	KBIPE5	KBIPE4	KBIPE3	KBIPE2	KBIPE1	KBIPE0
0x00 0E	KBIES	KBEDG7	KBEDG6	KBEDG5	KBEDG4	KBEDG3	KBEDG2	KBEDG1	KBEDG0
0x00 0F	IRQSC	0	IRQPDD	0	IRQPE	IRQF	IRQACK	IRQIE	IRQMOD
0x00 10	ADCSC1	COCO	AIEN	ADCO	ADCH				
0x00 11	ADCSC2	ADACT	ADTRG	ACFE	ACFGT		-		-
0x00 12	ADCRH	0	0	0	0	0	0	ADR9	ADR8
0x00 13	ADCRL	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	ADR0

Table 4-2. Direct-Page Register Summary

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5

When the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to stop mode. The COP counter begins from zero after the MCU exits stop mode.

5.5 Interrupts

Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine (ISR), and then restore the CPU status so processing resumes where it was before the interrupt. Other than the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The CPU will not respond until and unless the local interrupt enable is a 1 to enable the interrupt. The I bit in the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset, which masks (prevents) all maskable interrupt sources. The user program initializes the stack pointer and performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction and consists of:

- Saving the CPU registers on the stack
- Setting the I bit in the CCR to mask further interrupts
- Fetching the interrupt vector for the highest-priority interrupt that is currently pending
- Filling the instruction queue with the first three bytes of program information starting from the address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other interrupts can be serviced without waiting for the first service routine to finish. This practice is not recommended for anyone other than the most experienced programmers because it can lead to subtle program errors that are difficult to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR, A, X, and PC registers to their pre-interrupt values by reading the previously saved information from the stack.

NOTE

For compatibility with M68HC08 devices, the H register is not automatically saved and restored. It is good programming practice to push H onto the stack at the start of the interrupt service routine (ISR) and restore it immediately before the RTI that is used to return from the ISR.

When two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced first (see Table 5-2).

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5

Chapter 5 Resets, Interrupts, and General System Control

5.8.2 System Reset Status Register (SRS)

This high page register includes read-only status flags to indicate the source of the most recent reset. When a debug host forces reset by writing 1 to BDFR in the SBDFR register, all of the status bits in SRS will be cleared. Writing any value to this register address clears the COP watchdog timer without affecting the contents of this register. The reset state of these bits depends on what caused the MCU to reset.

	7	6	5	4	3	2	1	0
R	POR	PIN	COP	ILOP	ILAD	0	LVD	0
w	Writing any value to SRS address clears COP watchdog timer.							
POR:	1	0	0	0	0	0	1	0
LVD:	u ⁽¹⁾	0	0	0	0	0	1	0
Any other reset:	0	Note ⁽²⁾	Note ⁽²⁾	Note ⁽²⁾	Note ⁽²⁾	0	0	0

Figure 5-3. System Reset Status (SRS)

¹ u = unaffected

² Any of these reset sources that are active at the time of reset entry will cause the corresponding bit(s) to be set; bits corresponding to sources that are not active at the time of reset entry will be cleared.

Table 5-4. SRS Register Field Descriptions

Field	Description
7 POR	 Power-On Reset — Reset was caused by the power-on detection logic. Because the internal supply voltage was ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while the internal supply was below the LVD threshold. 0 Reset not caused by POR. 1 POR caused reset.
6 PIN	 External Reset Pin — Reset was caused by an active-low level on the external reset pin. 0 Reset not caused by external reset pin. 1 Reset came from external reset pin.
5 COP	 Computer Operating Properly (COP) Watchdog — Reset was caused by the COP watchdog timer timing out. This reset source can be blocked by COPE = 0. 0 Reset not caused by COP timeout. 1 Reset caused by COP timeout.
4 ILOP	 Illegal Opcode — Reset was caused by an attempt to execute an unimplemented or illegal opcode. The STOP instruction is considered illegal if stop is disabled by STOPE = 0 in the SOPT1 register. The BGND instruction is considered illegal if active background mode is disabled by ENBDM = 0 in the BDCSC register. 0 Reset not caused by an illegal opcode. 1 Reset caused by an illegal opcode.
3 ILAD	 Illegal Address — Reset was caused by an attempt to access either data or an instruction at an unimplemented memory address. 0 Reset not caused by an illegal address 1 Reset caused by an illegal address
1 LVD	 Low Voltage Detect — If the LVDRE bit is set and the supply drops below the LVD trip voltage, an LVD reset will occur. This bit is also set by POR. 0 Reset not caused by LVD trip or POR. 1 Reset caused by LVD trip or POR.

5.8.8 System Power Management Status and Control 1 Register (SPMSC1)

This high page register contains status and control bits to support the low voltage detect function and to enable the bandgap voltage reference for use by the ADC module. To configure the low voltage detect trip voltage, see Table 5-14 for the LVDV bit description in SPMSC3.

Figure 5-10. System Power Management Status and Control 1 Register (SPMSC1)

¹ Bit 1 is a reserved bit that must always be written to 0.

² This bit can be written only one time after reset. Additional writes are ignored.

Table 5-12. SPMSC1 Register Field Descriptions

Field	Description
7 LVDF	Low-Voltage Detect Flag — Provided LVDE = 1, this read-only status bit indicates a low-voltage detect event.
6 LVDACK	Low-Voltage Detect Acknowledge — This write-only bit is used to acknowledge low voltage detection errors (write 1 to clear LVDF). Reads always return 0.
5 LVDIE	 Low-Voltage Detect Interrupt Enable — This bit enables hardware interrupt requests for LVDF. 0 Hardware interrupt disabled (use polling). 1 Request a hardware interrupt when LVDF = 1.
4 LVDRE	 Low-Voltage Detect Reset Enable — This write-once bit enables LVDF events to generate a hardware reset (provided LVDE = 1). 0 LVDF does not generate hardware resets. 1 Force an MCU reset when LVDF = 1.
3 LVDSE	 Low-Voltage Detect Stop Enable — Provided LVDE = 1, this read/write bit determines whether the low-voltage detect function operates when the MCU is in stop mode. 0 Low-voltage detect disabled during stop mode. 1 Low-voltage detect enabled during stop mode.
2 LVDE	 Low-Voltage Detect Enable — This write-once bit enables low-voltage detect logic and qualifies the operation of other bits in this register. 0 LVD logic disabled. 1 LVD logic enabled.
0 BGBE	 Bandgap Buffer Enable — This bit enables an internal buffer for the bandgap voltage reference for use by the ADC module on one of its internal channels or as a voltage reference for ACMP module. 0 Bandgap buffer disabled. 1 Bandgap buffer enabled.

Chapter 7 Central Processor Unit (S08CPUV2)

7.2 Programmer's Model and CPU Registers

Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.

Figure 7-1. CPU Registers

7.2.1 Accumulator (A)

The A accumulator is a general-purpose 8-bit register. One operand input to the arithmetic logic unit (ALU) is connected to the accumulator and the ALU results are often stored into the A accumulator after arithmetic and logical operations. The accumulator can be loaded from memory using various addressing modes to specify the address where the loaded data comes from, or the contents of A can be stored to memory using various addressing modes to specify the address where the specify the address where data from A will be stored.

Reset has no effect on the contents of the A accumulator.

7.2.2 Index Register (H:X)

This 16-bit register is actually two separate 8-bit registers (H and X), which often work together as a 16-bit address pointer where H holds the upper byte of an address and X holds the lower byte of the address. All indexed addressing mode instructions use the full 16-bit value in H:X as an index reference pointer; however, for compatibility with the earlier M68HC05 Family, some instructions operate only on the low-order 8-bit half (X).

Many instructions treat X as a second general-purpose 8-bit register that can be used to hold 8-bit data values. X can be cleared, incremented, decremented, complemented, negated, shifted, or rotated. Transfer instructions allow data to be transferred from A or transferred to A where arithmetic and logical operations can then be performed.

For compatibility with the earlier M68HC05 Family, H is forced to 0x00 during reset. Reset has no effect on the contents of X.

Source	Operation	dress ode	Object Code	/cles	Cyc-by-Cyc	Affect on CCR	
1 Onin		Ρq M		ර	Details	VH	INZC
BCLR <i>n,opr8a</i>	Clear Bit n in Memory (Mn ← 0)	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	11 dd 13 dd 15 dd 17 dd 19 dd 1B dd 1D dd 1F dd	5 5 5 5 5 5 5 5 5	rfwpp rfwpp rfwpp rfwpp rfwpp rfwpp rfwpp rfwpp		
BCS rel	Branch if Carry Bit Set (if C = 1) (Same as BLO)	REL	25 rr	3	qqq		
BEQ rel	Branch if Equal (if Z = 1)	REL	27 rr	3	ppp	1	
BGE <i>rel</i>	Branch if Greater Than or Equal To (if $N \oplus V = 0$) (Signed)	REL	90 rr	3	qqq		
BGND	Enter active background if ENBDM=1 Waits for and processes BDM commands until GO, TRACE1, or TAGGO	INH	82	5+	fpppp		
BGT rel	Branch if Greater Than (if Z I (N \oplus V) = 0) (Signed)	REL	92 rr	3	qqq		
BHCC rel	Branch if Half Carry Bit Clear (if $H = 0$)	REL	28 rr	3	ppp		
BHCS rel	Branch if Half Carry Bit Set (if H = 1)	REL	29 rr	3	ррр		
BHI rel	Branch if Higher (if C Z = 0)	REL	22 rr	3	ррр		
BHS rel	Branch if Higher or Same (if C = 0) (Same as BCC)	REL	24 rr	3	qqq		
BIH <i>rel</i>	Branch if IRQ Pin High (if IRQ pin = 1)	REL	2F rr	3	ppp		
BIL rel	Branch if IRQ Pin Low (if IRQ pin = 0)	REL	2E rr	3	ppp		
BIT #opr8i BIT opr8a BIT opr16a BIT oprx16,X BIT oprx8,X BIT ,X BIT oprx16,SP BIT oprx8,SP	Bit Test (A) & (M) (CCR Updated but Operands Not Changed)	IMM DIR EXT IX2 IX1 IX SP2 SP1	A5 ii B5 dd C5 hh ll D5 ee ff E5 ff F5 9E D5 ee ff 9E E5 ff	2 3 4 3 3 5 4	pp rpp prpp prpp rpp rfp pprpp prpp	0 -	- \$ \$ -
BLE rel	Branch if Less Than or Equal To (if $Z \mid (N \oplus V) = 1$) (Signed)	REL	93 rr	3	qqq	[_ -
BLO <i>rel</i>	Branch if Lower (if $C = 1$) (Same as BCS)	REL	25 rr	3	ppp		
BLS <i>rel</i>	Branch if Lower or Same (if $C \mid Z = 1$)	REL	23 rr	3	ppp		
BLT rel	Branch if Less Than (if $N \oplus V = 1$) (Signed)	REL	91 rr	3	ррр		
BMC rel	Branch if Interrupt Mask Clear (if I = 0)	REL	2C rr	3	ppp		
BMI <i>rel</i>	Branch if Minus (if N = 1)	REL	2B rr	3	ррр		
BMS rel	Branch if Interrupt Mask Set (if I = 1)	REL	2D rr	3	ppp		
BNE rel	Branch if Not Equal (if Z = 0)	REL	26 rr	3	ppp	1	
BPL <i>rel</i>	Branch if Plus (if N = 0)	REL	2A rr	3	qqq		

Table 7-2 Instruction Set Summary	(Sheet 2 of 9)
-----------------------------------	----------------

8.1.3 Features

The ACMP has the following features:

- Full rail-to-rail supply operation.
- Less than 40 mV of input offset.
- Less than 15 mV of hysteresis.
- Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output.
- Option to compare to fixed internal bandgap reference voltage.
- Option to allow comparator output to be visible on a pin, ACMPO.

8.1.4 Modes of Operation

This section defines the ACMP operation in wait, stop, and background debug modes.

8.1.4.1 ACMP in Wait Mode

The ACMP continues to run in wait mode if enabled before executing the WAIT instruction. Therefore, the ACMP can be used to bring the MCU out of wait mode if the ACMP interrupt, ACIE, is enabled. For lowest possible current consumption, the ACMP should be disabled by software if not required as an interrupt source during wait mode.

8.1.4.2 ACMP in Stop Modes

The ACMP is disabled in all stop modes, regardless of the settings before executing the STOP instruction. Therefore, the ACMP cannot be used as a wake up source from stop modes.

During either stop1 or stop2 mode, the ACMP module will be fully powered down. Upon wake-up from stop1 or stop2 mode, the ACMP module will be in the reset state.

During stop3 mode, clocks to the ACMP module are halted. No registers are affected. In addition, the ACMP comparator circuit will enter a low power state. No compare operation will occur while in stop3.

If stop3 is exited with a reset, the ACMP will be put into its reset state. If stop3 is exited with an interrupt, the ACMP continues from the state it was in when stop3 was entered.

8.1.4.3 ACMP in Active Background Mode

When the microcontroller is in active background mode, the ACMP will continue to operate normally.

8.1.5 Block Diagram

The block diagram for the analog comparator module is shown Figure 8-2.

Figure 9-7. Data Result Low Register (ADCRL)

9.3.5 Compare Value High Register (ADCCVH)

This register holds the upper two bits of the 10-bit compare value. These bits are compared to the upper two bits of the result following a conversion in 10-bit mode when the compare function is enabled. In 8-bit operation, ADCCVH is not used during compare.

Figure 9-8. Compare Value High Register (ADCCVH)

9.3.6 Compare Value Low Register (ADCCVL)

This register holds the lower 8 bits of the 10-bit compare value, or all 8 bits of the 8-bit compare value. Bits ADCV7:ADCV0 are compared to the lower 8 bits of the result following a conversion in either 10-bit or 8-bit mode.

Figure 9-9. Compare Value Low Register(ADCCVL)

9.3.7 Configuration Register (ADCCFG)

ADCCFG is used to select the mode of operation, clock source, clock divide, and configure for low power or long sample time.

10.3.3 ICS Trim Register (ICSTRM)

Figure 10-5. ICS Trim Register (ICSTRM)

	Table 10-3.	ICS Trim	Register Field	Descriptions
--	-------------	-----------------	-----------------------	---------------------

Field	Description
7:0 TRIM	ICS Trim Setting — The TRIM bits control the internal reference clock frequency by controlling the internal reference clock period. The bits' effect are binary weighted (i.e., bit 1 will adjust twice as much as bit 0). Increasing the binary value in TRIM will increase the period, and decreasing the value will decrease the period.
	An additional fine trim bit is available in ICSSC as the FTRIM bit.

10.3.4 ICS Status and Control (ICSSC)

	7	6	5	4	3	2	1	0
R	0	0	0	0	CLK	ST	OSCINIT	ETDIM
w								
POR:	0	0	0	0	0	0	0	0
Reset:	0	0	0	0	0	0	0	U

Figure 10-6. ICS Status and Control Register (ICSSC)

Table 10-4. ICS Status and Contro	I Register Field	Descriptions
-----------------------------------	------------------	--------------

Field	Description
3:2 CLKST	 Clock Mode Status — The CLKST bits indicate the current clock mode. The CLKST bits don't update immediately after a write to the CLKS bits due to internal synchronization between clock domains. Output of FLL is selected. FLL Bypassed, Internal reference clock is selected.10FLL Bypassed, External reference clock is selected. Reserved.
1	OSC Initialization — If the external reference clock is selected by ERCLKEN or by the ICS being in FEE, FBE, or FBELP mode, and if EREFS is set, then this bit is set after the initialization cycles of the external oscillator clock have completed. This bit is only cleared when either ERCLKEN or EREFS are cleared.
FTRIM 0	ICS Fine Trim — The FTRIM bit controls the smallest adjustment of the internal reference clock frequency. Setting FTRIM will increase the period and clearing FTRIM will decrease the period by the smallest amount possible.

ICR (hex)	SCL Divider	SDA Hold Value
00	20	7
01	22	7
02	24	8
03	26	8
04	28	9
05	30	9
06	34	10
07	40	10
08	28	7
09	32	7
0A	36	9
0B	40	9
0C	44	11
0D	48	11
0E	56	13
0F	68	13
10	48	9
11	56	9
12	64	13
13	72	13
14	80	17
15	88	17
16	104	21
17	128	21
18	80	9
19	96	9
1A	112	17
1B	128	17
1C	144	25
1D	160	25
1E	192	33
1F	240	33

ICR (hex)	SCL Divider	SDA Hold Value
20	160	17
21	192	17
22	224	33
23	256	33
24	288	49
25	320	49
26	384	65
27	480	65
28	320	33
29	384	33
2A	448	65
2B	512	65
2C	576	97
2D	640	97
2E	768	129
2F	960	129
30	640	65
31	768	65
32	896	129
33	1024	129
34	1152	193
35	1280	193
36	1536	257
37	1920	257
38	1280	129
39	1536	129
ЗA	1792	257
3B	2048	257
3C	2304	385
3D	2560	385
3E	3072	513
3F	3840	513

Table 11-4. IIC Divider and Hold Values

KBISC provided all enabled keyboard inputs are at their deasserted levels. KBF will remain set if any enabled KBI pin is asserted while attempting to clear by writing a 1 to KBACK.

12.4.3 KBI Pullup/Pulldown Resistors

The KBI pins can be configured to use an internal pullup/pulldown resistor using the associated I/O port pullup enable register. If an internal resistor is enabled, the KBIES register is used to select whether the resistor is a pullup (KBEDGn = 0) or a pulldown (KBEDGn = 1).

12.4.4 KBI Initialization

When a keyboard interrupt pin is first enabled it is possible to get a false keyboard interrupt flag. To prevent a false interrupt request during keyboard initialization, the user should do the following:

- 1. Mask keyboard interrupts by clearing KBIE in KBISC.
- 2. Enable the KBI polarity by setting the appropriate KBEDGn bits in KBIES.
- 3. If using internal pullup/pulldown device, configure the associated pullup enable bits in PTxPE.
- 4. Enable the KBI pins by setting the appropriate KBIPEn bits in KBIPE.
- 5. Write to KBACK in KBISC to clear any false interrupts.
- 6. Set KBIE in KBISC to enable interrupts.

Modulo Timer (S08MTIMV1)

13.1.4 Block Diagram

The block diagram for the modulo timer module is shown Figure 13-2.

13.2 External Signal Description

The MTIM includes one external signal, TCLK, used to input an external clock when selected as the MTIM clock source. The signal properties of TCLK are shown in Table 13-1.

Table 13-1. Signal Properties

Signal	Function	I/O
TCLK	External clock source input into MTIM	Ι

The TCLK input must be synchronized by the bus clock. Also, variations in duty cycle and clock jitter must be accommodated. Therefore, the TCLK signal must be limited to one-fourth of the bus frequency.

The TCLK pin can be muxed with a general-purpose port pin. See the Pins and Connections chapter for the pin location and priority of this function.

13.3 Register Definition

Figure 13-3 is a summary of MTIM registers.

13.3.2 MTIM Clock Configuration Register (MTIMCLK)

MTIMCLK contains the clock select bits (CLKS) and the prescaler select bits (PS).

Figure 13-5. MTIM Clock Configuration Register

Table 13-3. MTIM Clock Configuration Register Field Description

Field	Description
7:6	Unused register bits, always read 0.
5:4 CLKS	Clock Source Select — These two read/write bits select one of four different clock sources as the input to the MTIM prescaler. Changing the clock source while the counter is active does not clear the counter. The count continues with the new clock source. Reset clears CLKS to 000. 00 Encoding 0. Bus clock (BUSCLK) 01 Encoding 1. Fixed-frequency clock (XCLK) 10 Encoding 3. External source (TCLK pin), falling edge 11 Encoding 4. External source (TCLK pin), rising edge All other encodings default to the bus clock (BUSCLK).
3:0 PS	Clock Source Prescaler — These four read/write bits select one of nine outputs from the 8-bit prescaler. Changing the prescaler value while the counter is active does not clear the counter. The count continues with the new prescaler value. Reset clears PS to 0000. 0000 Encoding 0. MTIM clock source ÷ 1 0001 Encoding 1. MTIM clock source ÷ 2 0010 Encoding 2. MTIM clock source ÷ 4 0011 Encoding 3. MTIM clock source ÷ 8 0100 Encoding 4. MTIM clock source ÷ 16 0101 Encoding 5. MTIM clock source ÷ 32 0110 Encoding 6. MTIM clock source ÷ 64 0111 Encoding 7. MTIM clock source ÷ 128 1000 Encoding 8. MTIM clock source ÷ 256 All other encodings default to MTIM clock source ÷ 256.

13.4 Functional Description

The MTIM is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector, and a prescaler block with nine selectable values. The module also contains software selectable interrupt logic.

The MTIM counter (MTIMCNT) has three modes of operation: stopped, free-running, and modulo. Out of reset, the counter is stopped. If the counter is started without writing a new value to the modulo register, then the counter will be in free-running mode. The counter is in modulo mode when a value other than \$00 is in the modulo register while the counter is running.

After any MCU reset, the counter is stopped and reset to \$00, and the modulus is set to \$00. The bus clock is selected as the default clock source and the prescale value is divide by 1. To start the MTIM in free-running mode, simply write to the MTIM status and control register (MTIMSC) and clear the MTIM stop bit (TSTP).

Four clock sources are software selectable: the internal bus clock, the fixed frequency clock (XCLK), and an external clock on the TCLK pin, selectable as incrementing on either rising or falling edges. The MTIM clock select bits (CLKS1:CLKS0) in MTIMSC are used to select the desired clock source. If the counter is active (TSTP = 0) when a new clock source is selected, the counter will continue counting from the previous value using the new clock source.

Nine prescale values are software selectable: clock source divided by 1, 2, 4, 8, 16, 32, 64, 128, or 256. The prescaler select bits (PS[3:0]) in MTIMSC select the desired prescale value. If the counter is active (TSTP = 0) when a new prescaler value is selected, the counter will continue counting from the previous value using the new prescaler value.

The MTIM modulo register (MTIMMOD) allows the overflow compare value to be set to any value from \$01 to \$FF. Reset clears the modulo value to \$00, which results in a free running counter.

When the counter is active (TSTP = 0), the counter increments at the selected rate until the count matches the modulo value. When these values match, the counter overflows to \$00 and continues counting. The MTIM overflow flag (TOF) is set whenever the counter overflows. The flag sets on the transition from the modulo value to \$00. Writing to MTIMMOD while the counter is active resets the counter to \$00 and clears TOF.

Clearing TOF is a two-step process. The first step is to read the MTIMSC register while TOF is set. The second step is to write a 0 to TOF. If another overflow occurs between the first and second steps, the clearing process is reset and TOF will remain set after the second step is performed. This will prevent the second occurrence from being missed. TOF is also cleared when a 1 is written to TRST or when any value is written to the MTIMMOD register.

The MTIM allows for an optional interrupt to be generated whenever TOF is set. To enable the MTIM overflow interrupt, set the MTIM overflow interrupt enable bit (TOIE) in MTIMSC. TOIE should never be written to a 1 while TOF = 1. Instead, TOF should be cleared first, then the TOIE can be set to 1.

Table 14-2	. SCIBDL	Register	Field	Descriptions
------------	----------	----------	-------	--------------

Field	Description
7:0	Baud Rate Modulo Divisor — These 13 bits are referred to collectively as BR, and they set the modulo divide
SBR[7:0]	rate for the SCI baud rate generator. When $BR = 0$, the SCI baud rate generator is disabled to reduce supply current. When $BR = 1$ to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in Table 14-1.

14.2.2 SCI Control Register 1 (SCIC1)

This read/write register is used to control various optional features of the SCI system.

Figure 14-7. SCI Control Register 1 (SCIC1)

Table 14-3. SCIC1 Register Field Descriptions

Field	Description
7 LOOPS	 Loop Mode Select — Selects between loop back modes and normal 2-pin full-duplex modes. When LOOPS = 1, the transmitter output is internally connected to the receiver input. 0 Normal operation — RxD and TxD use separate pins. 1 Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input. (See RSRC bit.) RxD pin is not used by SCI.
6 SCISWAI	 SCI Stops in Wait Mode SCI clocks continue to run in wait mode so the SCI can be the source of an interrupt that wakes up the CPU. SCI clocks freeze while CPU is in wait mode.
5 RSRC	 Receiver Source Select — This bit has no meaning or effect unless the LOOPS bit is set to 1. When LOOPS = 1, the receiver input is internally connected to the TxD pin and RSRC determines whether this connection is also connected to the transmitter output. Provided LOOPS = 1, RSRC = 0 selects internal loop back mode and the SCI does not use the RxD pins. Single-wire SCI mode where the TxD pin is connected to the transmitter output.
4 M	 9-Bit or 8-Bit Mode Select 0 Normal — start + 8 data bits (LSB first) + stop. 1 Receiver and transmitter use 9-bit data characters start + 8 data bits (LSB first) + 9th data bit + stop.
3 WAKE	 Receiver Wakeup Method Select — Refer to Section 14.3.3.2, "Receiver Wakeup Operation" for more information. 0 Idle-line wakeup. 1 Address-mark wakeup.
2 ILT	Idle Line Type Select — Setting this bit to 1 ensures that the stop bit and logic 1 bits at the end of a character do not count toward the 10 or 11 bit times of the logic high level by the idle line detection logic. Refer to Section 14.3.3.2.1, "Idle-Line Wakeup" for more information. 0 Idle character bit count starts after start bit. 1 Idle character bit count starts after stop bit.

transferred to the corresponding timer channel registers only after both 8-bit bytes of a 16-bit register have been written and the timer counter overflows (reverses direction from up-counting to down-counting at the end of the terminal count in the modulus register). This TPMCNT overflow requirement only applies to PWM channels, not output compares.

Optionally, when TPMCNTH:TPMCNTL = TPMMODH:TPMMODL, the TPM can generate a TOF interrupt at the end of this count. The user can choose to reload any number of the PWM buffers, and they will all update simultaneously at the start of a new period.

Writing to TPMSC cancels any values written to TPMMODH and/or TPMMODL and resets the coherency mechanism for the modulo registers. Writing to TPMCnSC cancels any values written to the channel value registers and resets the coherency mechanism for TPMCnVH:TPMCnVL.

16.5 TPM Interrupts

The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel. The meaning of channel interrupts depends on the mode of operation for each channel. If the channel is configured for input capture, the interrupt flag is set each time the selected input capture edge is recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each time the main timer counter matches the value in the 16-bit channel value register. See the Resets, Interrupts, and System Configuration chapter for absolute interrupt vector addresses, priority, and local interrupt mask control bits.

For each interrupt source in the TPM, a flag bit is set on recognition of the interrupt condition such as timer overflow, channel input capture, or output compare events. This flag may be read (polled) by software to verify that the action has occurred, or an associated enable bit (TOIE or CHnIE) can be set to enable hardware interrupt generation. While the interrupt enable bit is set, a static interrupt will be generated whenever the associated interrupt flag equals 1. It is the responsibility of user software to perform a sequence of steps to clear the interrupt flag before returning from the interrupt service routine.

16.5.1 Clearing Timer Interrupt Flags

TPM interrupt flags are cleared by a 2-step process that includes a read of the flag bit while it is set (1) followed by a write of 0 to the bit. If a new event is detected between these two steps, the sequence is reset and the interrupt flag remains set after the second step to avoid the possibility of missing the new event.

16.5.2 Timer Overflow Interrupt Description

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In up-counting mode, the 16-bit timer counter counts from 0x0000 through 0xFFFF and overflows to 0x0000 on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When the counter is operating in up-/down-counting mode, the TOF flag gets set as the counter changes direction at the transition from the value set in the modulus register and the next lower count value. This corresponds to the end of a PWM period. (The 0x0000 count value corresponds to the center of a period.)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.
- A DIMENSION TO CENTER OF LEADS WHEN FORMED PARALLEL.
- A DIMENSIONS DOES NOT INCLUDE MOLD FLASH.
- 5. ROUNDED CORNERS OPTIONAL.
- 6. 648-01 THRU -08 OBSOLETE, NEW STANDARD 648-09.

	MILLIN	ETERS		NCHES		MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	18.80	19.55	0.740	0.770					
В	6.35	6.85	0.250	0.270					
С	3.69	4.44	0.145	0.175					
D	0.39	0.53	0.015	0.021					
F	1.02	1.77	0.040	0.070					
G	2.54	BSC	0.1	00 BSC					
Н	1.27	BSC	0.0	50 BSC					
J	0.21	0.38	0.008	0.015					
K	2.80	3.30	0.110	0.130					
L	7.50	7.74	0.295	0.305					
М	0.	10°	0.	10°					
S	0.51	1.01	0.020	0.040					
© FF	REESCALE SEM All RIGHT	ICONDUCTOR, : S RESERVED.	NC.	MECHANICA	L OUT	LINE	PRINT VER	SION NO	DT TO SCALE
TITLE:			DOCU	Ment no): 98ASB4243	1B	REV: T		
16 LD PDIP			CASE	NUMBER	2:648-08		19 MAY 2005		
				STAN	dard: No	N-JEDEC			

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2. ALL DIMENSIONS ARE IN INCHES.
- 3. 626-03 TO 626-06 OBSOLETE. NEW STANDARD 626-07.
- \triangle DIMENSION TO CENTER OF LEAD WHEN FORMED PARALLEL.
- A PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CONERS). STYLE 1:

PIN	1.	AC	ΙN	
	2.	DC	+ IN	
	З.	DC	— IN	
	4.	AC	ΙN	

- 5. GROUND
- OUTPUT
 AUXILIARY
- 8. VCC

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		PRINT VERSION NO	DT TO SCALE
TITLE:	DOCUMENT N	0: 98ASB42420B	REV: N
8 LD PDIP	CASE NUMBE	R: 626–06	19 MAY 2005
	STANDARD: N	ON-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	LE SEMICONDUCTOR, INC. MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO): 98ASB42564B	REV: V
8LD SOIC NARROW	BODY	CASE NUMBER	8: 751–07	20 NOV 2007
		STANDARD: JE	DEC MS-012AA	