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systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.
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Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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MC9S08QG8/4 Features
8-Bit HCS08 Central Processor Unit (CPU)

• 20-MHz HCS08 CPU (central processor unit)
• HC08 instruction set with added BGND instruction
• Background debugging system 
• Breakpoint capability to allow single breakpoint 

setting during in-circuit debugging (plus two more 
breakpoints in on-chip debug module)

• Debug module containing two comparators and nine 
trigger modes. Eight deep FIFO for storing 
change-of-flow addresses and event-only data 
Debug module supports both tag and force 
breakpoints

• Support for up to 32 interrupt/reset sources

Memory Options

• FLASH read/program/erase over full operating 
voltage and temperature

• MC9S08QG8 — 8 Kbytes FLASH, 512 bytes RAM
MC9S08QG4 — 4 Kbytes FLASH, 256 bytes RAM

Power-Saving Modes

• Wait plus three stops

Clock Source Options

• ICS — Internal clock source module containing a 
frequency-locked-loop (FLL) controlled by internal 
or external reference; precision trimming of internal 
reference allows 0.2% resolution and 2% deviation 
over temperature and voltage; supports bus 
frequencies from 1 MHz to 10 MHz

• XOSC — Low-power oscillator module with 
software selectable crystal or ceramic resonator 
range, 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz, 
and supports external clock source input up to 
20 MHz

System Protection

• Watchdog computer operating properly (COP) reset 
with option to run from dedicated 1-kHz internal 
clock source or bus clock

• Low-voltage detection with reset or interrupt
• Illegal opcode detection with reset
• Illegal address detection with reset 
• FLASH block protect

Peripherals

• ADC — 8-channel, 10-bit analog-to-digital 
converter with automatic compare function, 
asynchronous clock source, temperature sensor, and 
internal bandgap reference channel; ADC is 
hardware triggerable using the RTI counter

• ACMP — Analog comparator module with option 
to compare to internal reference; output can be 
optionally routed to TPM module

• SCI — Serial communications interface module 
with option for 13-bit break capabilities

• SPI — Serial peripheral interface module
• IIC — Inter-integrated circuit bus module 
• TPM— 2-channel timer/pulse-width modulator; 

each channel can be used for input capture, output 
compare, buffered edge-aligned PWM, or buffered 
center-aligned PWM

• MTIM — 8-bit modulo timer module with 8-bit 
prescaler

• KBI — 8-pin keyboard interrupt module with software 
selectable polarity on edge or edge/level modes

Input/Output

• 12 general-purpose input/output (I/O) pins, one 
input-only pin and one output-only pin; outputs 
10 mA each, 60 mA max for package

• Software selectable pullups on ports when used as 
input

• Software selectable slew rate control and drive 
strength on ports when used as output

• Internal pullup on RESET and IRQ pins to reduce 
customer system cost

Development Support

• Single-wire background debug interface
• On-chip, in-circuit emulation (ICE) with real-time 

bus capture

Package Options

• 24-pin quad flat no lead (QFN) package
• 16-pin plastic dual in-line package (PDIP) — 

MC9S08QG8 only
• 16-pin quad flat no lead (QFN) package
• 16-pin thin shrink small outline package (TSSOP)
• 8-pin dual flat no lead (DFN) package
• 8-pin PDIP — MC9S08QG4 only
• 8-pin narrow body small outline integrated circuit 

(SOIC) package



Chapter 1 Device Overview
Table 1-2 provides the functional versions of the on-chip modules. 

System Clock Distribution

Figure 1-2 shows a simplified clock connection diagram. Some modules in the MCU have selectable clock 
inputs as shown. The clock inputs to the modules indicate the clock(s) that are used to drive the module 
function. All memory mapped registers associated with the modules are clocked with BUSCLK.

Figure 1-2. System Clock Distribution Diagram

Table 1-2. Versions of On-Chip Modules

Module Version

Analog Comparator (ACMP) 2

Analog-to-Digital Converter (ADC) 1

Central Processing Unit (CPU) 2

IIC Module (IIC) 1

Internal Clock Source (ICS) 1

Keyboard Interrupt (KBI) 2

Modulo Timer (MTIM) 1

Serial Communications Interface (SCI) 3

Serial Peripheral Interface (SPI) 3

Timer Pulse-Width Modulator (TPM) 2

Low-Power Oscillator (XOSC) 1

Debug Module (DBG) 2

TPM MTIM IIC SCI SPI

CPUBDC ADC FLASH

ICS ICSOUT ÷2 

ICSFFE

SYSTEM

LOGIC

BUSCLK

ICSLCLK**

CONTROL

FIXED FREQ CLOCK (XCLK)

ICSERCLK*

RTI

* ICSERCLK requires XOSC module.
** ICSLCLK is the alternate BDC clock source for the MC9S08QG8/4.

÷2 

FLASH has frequency 
requirements for 
program
and erase operation.
See Appendix A, 
“Electrical 
Characteristics.”

ADC has min and max
frequency requirements.
See the ADC chapter 
and
Appendix A, “Electrical 
Characteristics.”

ICSFFCLK

XOSC

EXTAL XTAL

COP1-kHz

TCLK
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Chapter 4 Memory Map and Register Definition
the MCU secure. During development, whenever the FLASH is erased, it is good practice to immediately 
program the SEC00 bit to 0 in NVOPT so SEC01:SEC00 = 1:0. This would allow the MCU to remain 
unsecured after a subsequent reset.

The on-chip debug module cannot be enabled while the MCU is secure. The separate background debug 
controller can still be used for background memory access commands, but the MCU cannot enter active 
background mode except by holding BKGD/MS low at the rising edge of reset.

A user can choose to allow or disallow a security unlocking mechanism through an 8-byte backdoor 
security key. If the nonvolatile KEYEN bit in NVOPT/FOPT is 0, the backdoor key is disabled and there 
is no way to disengage security without completely erasing all FLASH locations. If KEYEN is 1, a secure 
user program can temporarily disengage security by:

1. Writing 1 to KEYACC in the FCNFG register. This makes the FLASH module interpret writes to 
the backdoor comparison key locations (NVBACKKEY through NVBACKKEY+7) as values to 
be compared against the key rather than as the first step in a FLASH program or erase command.

2. Writing the user-entered key values to the NVBACKKEY through NVBACKKEY+7 locations. 
These writes must be done in order starting with the value for NVBACKKEY and ending with 
NVBACKKEY+7. STHX should not be used for these writes because these writes cannot be done 
on adjacent bus cycles. User software normally would get the key codes from outside the MCU 
system through a communication interface such as a serial I/O.

3. Writing 0 to KEYACC in the FCNFG register. If the 8-byte key that was just written matches the 
key stored in the FLASH locations, SEC01:SEC00 are automatically changed to 1:0 and security 
will be disengaged until the next reset.

The security key can be written only from secure memory (either RAM or FLASH), so it cannot be entered 
through background commands without the cooperation of a secure user program.

The backdoor comparison key (NVBACKKEY through NVBACKKEY+7) is located in FLASH memory 
locations in the nonvolatile register space so users can program these locations exactly as they would 
program any other FLASH memory location. The nonvolatile registers are in the same 512-byte block of 
FLASH as the reset and interrupt vectors, so block protecting that space also block protects the backdoor 
comparison key. Block protects cannot be changed from user application programs, so if the vector space 
is block protected, the backdoor security key mechanism cannot permanently change the block protect, 
security settings, or the backdoor key.

Security can always be disengaged through the background debug interface by taking these steps:
1. Disable any block protections by writing FPROT. FPROT can be written only with background 

debug commands, not from application software.
2. Mass erase FLASH if necessary.
3. Blank check FLASH. Provided FLASH is completely erased, security is disengaged until the next 

reset.
To avoid returning to secure mode after the next reset, program NVOPT so SEC01:SEC00 = 1:0.
MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5
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Chapter 5 Resets, Interrupts, and General System Control
5.8.10 System Power Management Status and Control 3 Register 
(SPMSC3) 

This high page register is used to report the status of the low voltage warning function and to select the 
low voltage detect trip voltage.

 7 6 5 4 3 2 1 0

R LVWF 0
LVDV LVWV

0 0 0 0

W LVWACK

POR: 01

1  LVWF will be set in the case when VSupply transitions below the trip point or after reset and VSupply is already below VLVW. 

0 0 0 0 0 0 0

LVD: 01 0 U U 0 0 0 0

Any other
reset:

01 0 U U 0 0 0 0

= Unimplemented or Reserved U= Unaffected by reset

Figure 5-12. System Power Management Status and Control 3 Register (SPMSC3)

Table 5-14. SPMSC3 Register Field Descriptions

Field Description

7
LVWF

Low-Voltage Warning Flag — The LVWF bit indicates the low voltage warning status.
0 Low voltage warning not present.
1 Low voltage warning is present or was present.

6
LVWACK

Low-Voltage Warning Acknowledge — The LVWF bit indicates the low voltage warning status. Writing a 1 to 
LVWACK clears LVWF to a 0 if a low voltage warning is not present.

5
LVDV

Low-Voltage Detect Voltage Select — The LVDV bit selects the LVD trip point voltage (VLVD).
0 Low trip point selected (VLVD = VLVDL).
1 High trip point selected (VLVD = VLVDH).

4
LVWV

Low-Voltage Warning Voltage Select — The LVWV bit selects the LVW trip point voltage (VLVW).
0 Low trip point selected (VLVW = VLVWL).
1 High trip point selected (VLVW = VLVWH).
MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5
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Chapter 6 Parallel Input/Output Control
6.4.4.3 Port B Drive Strength Select (PTBDS)

An output pin can be selected to have high output drive strength by setting the corresponding bit in the 
drive strength select register (PTBDSn). When high drive is selected, a pin is capable of sourcing and 
sinking greater current. Even though every I/O pin can be selected as high drive, the user must ensure that 
the total current source and sink limits for the chip are not exceeded. Drive strength selection is intended 
to affect the DC behavior of I/O pins. However, the AC behavior is also affected. High drive allows a pin 
to drive a greater load with the same switching speed as a low drive enabled pin into a smaller load. 
Because of this the EMC emissions may be affected by enabling pins as high drive.

 7 6 5 4 3 2 1 0

R
PTBDS7 PTBDS6 PTBDS5 PTBDS4 PTBDS3 PTBDS2 PTBDS1 PTBDS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 6-16. Drive Strength Selection for Port B Register (PTBDS)

Table 6-10. PTBDS Register Field Descriptions

Field Description

7:0
PTBDS[7:0]

Output Drive Strength Selection for Port B Bits — Each of these control bits selects between low and high 
output drive for the associated PTB pin. For port B pins that are configured as inputs, these bits have no effect.
0 Low output drive strength selected for port B bit n.
1 High output drive strength selected for port B bit n.
MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5
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Chapter 7 Central Processor Unit (S08CPUV2)
Figure 7-2. Condition Code Register

Table 7-1. CCR Register Field Descriptions

Field Description

7
V

Two’s Complement Overflow Flag — The CPU sets the overflow flag when a two’s complement overflow occurs. 
The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.
0 No overflow
1 Overflow

4
H

Half-Carry Flag — The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during 
an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded 
decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C condition code bits to 
automatically add a correction value to the result from a previous ADD or ADC on BCD operands to correct the 
result to a valid BCD value.
0 No carry between bits 3 and 4
1 Carry between bits 3 and 4

3
I

Interrupt Mask Bit — When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts 
are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set 
automatically after the CPU registers are saved on the stack, but before the first instruction of the interrupt service 
routine is executed.
Interrupts are not recognized at the instruction boundary after any instruction that clears I (CLI or TAP). This 
ensures that the next instruction after a CLI or TAP will always be executed without the possibility of an intervening 
interrupt, provided I was set. 
0 Interrupts enabled
1 Interrupts disabled

2
N

Negative Flag — The CPU sets the negative flag when an arithmetic operation, logic operation, or data 
manipulation produces a negative result, setting bit 7 of the result. Simply loading or storing an 8-bit or 16-bit value 
causes N to be set if the most significant bit of the loaded or stored value was 1.
0 Non-negative result
1 Negative result

1
Z

Zero Flag — The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation 
produces a result of 0x00 or 0x0000. Simply loading or storing an 8-bit or 16-bit value causes Z to be set if the 
loaded or stored value was all 0s.
0 Non-zero result
1 Zero result

0
C

Carry/Borrow Flag — The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 
7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and 
branch, shift, and rotate — also clear or set the carry/borrow flag.
0 No carry out of bit 7
1 Carry out of bit 7

CONDITION CODE REGISTER

CARRY
ZERO 
NEGATIVE 
INTERRUPT MASK
HALF-CARRY (FROM BIT 3)
TWO’S COMPLEMENT OVERFLOW

7 0

CCRCV 1 1 H I N Z
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Chapter 7 Central Processor Unit (S08CPUV2)
INC  opr8a
INCA
INCX
INC  oprx8,X
INC  ,X
INC  oprx8,SP

Increment M ← (M) + $01
A ← (A) + $01
X ← (X) + $01
M ← (M) + $01
M ← (M) + $01
M ← (M) + $01

DIR
INH
INH
IX1
IX
SP1

3C
4C
5C
6C
7C

9E 6C

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

¦ – –  ¦  ¦  –

JMP  opr8a
JMP  opr16a
JMP  oprx16,X
JMP  oprx8,X
JMP  ,X

Jump
PC ← Jump Address

DIR
EXT
IX2
IX1
IX

BC
CC
DC
EC
FC

dd
hh ll
ee ff
ff

3
4
4
3
3

ppp
pppp
pppp
ppp
ppp

– – –  –  –  –

JSR  opr8a
JSR  opr16a
JSR  oprx16,X
JSR  oprx8,X
JSR  ,X

Jump to Subroutine
PC ← (PC) + n  (n = 1, 2, or 3)
Push  (PCL);  SP ← (SP) – $0001
Push  (PCH);  SP ← (SP) – $0001
PC ← Unconditional Address

DIR
EXT
IX2
IX1
IX

BD
CD
DD
ED
FD

dd
hh ll
ee ff
ff

5
6
6
5
5

ssppp
pssppp
pssppp
ssppp
ssppp

– – –  –  –  –

LDA  #opr8i
LDA  opr8a
LDA  opr16a
LDA  oprx16,X
LDA  oprx8,X
LDA   ,X
LDA  oprx16,SP
LDA oprx8,SP

Load Accumulator from Memory
A ← (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

A6
B6
C6
D6
E6
F6

9E D6
9E E6

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

0 – – ¦  ¦ –

LDHX  #opr16i
LDHX  opr8a
LDHX  opr16a
LDHX   ,X
LDHX  oprx16,X
LDHX  oprx8,X
LDHX oprx8,SP

Load Index Register (H:X) 
H:X ← (M:M + $0001)

IMM
DIR
EXT
IX
IX2
IX1
SP1

45
55
32

9E AE
9E BE
9E CE
9E FE

jj kk
dd
hh ll

ee ff
ff
ff

3
4
5
5
6
5
5

ppp
rrpp
prrpp
prrfp
pprrpp
prrpp
prrpp

0 – – ¦  ¦ –

LDX  #opr8i
LDX  opr8a
LDX  opr16a
LDX  oprx16,X
LDX  oprx8,X
LDX   ,X
LDX  oprx16,SP
LDX oprx8,SP

Load X (Index Register Low) from Memory
X ← (M)

IMM
DIR
EXT
IX2
IX1
IX
SP2
SP1

AE
BE
CE
DE
EE
FE

9E DE
9E EE

ii
dd
hh ll
ee ff
ff

ee ff
ff

2
3
4
4
3
3
5
4

pp
rpp
prpp
prpp
rpp
rfp
pprpp
prpp

0 – – ¦  ¦ –

LSL  opr8a
LSLA
LSLX
LSL  oprx8,X
LSL  ,X
LSL  oprx8,SP

Logical Shift Left

(Same as ASL)

DIR
INH
INH
IX1
IX
SP1

38
48
58
68
78

9E 68

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

¦ – – ¦ ¦  ¦

LSR  opr8a
LSRA
LSRX
LSR  oprx8,X
LSR  ,X
LSR  oprx8,SP

Logical Shift Right
DIR
INH
INH
IX1
IX
SP1

34
44
54
64
74

9E 64

dd

ff

ff

5
1
1
5
4
6

rfwpp
p
p
rfwpp
rfwp
prfwpp

¦ – –  0 ¦  ¦

Table 7-2. . Instruction Set Summary (Sheet 5 of 9)

Source
Form Operation

A
d

d
re

ss
M

o
d

e

Object Code

C
yc

le
s

Cyc-by-Cyc 
Details

Affect
on CCR

VH I N Z C

C

b0b7

0

b0b7

C0
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Analog-to-Digital Converter (S08ADC10V1) 
In cases where separate power supplies are used for analog and digital power, the ground connection 
between these supplies must be at the VSSAD pin. This should be the only ground connection between these 
supplies if possible. The VSSAD pin makes a good single point ground location.

9.6.1.2 Analog Reference Pins

In addition to the analog supplies, the ADC module has connections for two reference voltage inputs. The 
high reference is VREFH, which may be shared on the same pin as VDDAD on some devices. The low 
reference is VREFL, which may be shared on the same pin as VSSAD on some devices.

When available on a separate pin, VREFH may be connected to the same potential as VDDAD, or may be 
driven by an external source that is between the minimum VDDAD spec and the VDDAD potential (VREFH 
must never exceed VDDAD). When available on a separate pin, VREFL must be connected to the same 
voltage potential as VSSAD. Both VREFH and VREFL must be routed carefully for maximum noise 
immunity and bypass capacitors placed as near as possible to the package.

AC current in the form of current spikes required to supply charge to the capacitor array at each successive 
approximation step is drawn through the VREFH and VREFL loop. The best external component to meet this 
current demand is a 0.1 μF capacitor with good high frequency characteristics. This capacitor is connected 
between VREFH and VREFL and must be placed as near as possible to the package pins. Resistance in the 
path is not recommended because the current will cause a voltage drop which could result in conversion 
errors. Inductance in this path must be minimum (parasitic only).

9.6.1.3 Analog Input Pins

The external analog inputs are typically shared with digital I/O pins on MCU devices. The pin I/O control 
is disabled by setting the appropriate control bit in one of the pin control registers. Conversions can be 
performed on inputs without the associated pin control register bit set. It is recommended that the pin 
control register bit always be set when using a pin as an analog input. This avoids problems with contention 
because the output buffer will be in its high impedance state and the pullup is disabled. Also, the input 
buffer draws dc current when its input is not at either VDD or VSS. Setting the pin control register bits for 
all pins used as analog inputs should be done to achieve lowest operating current.

Empirical data shows that capacitors on the analog inputs improve performance in the presence of noise 
or when the source impedance is high. Use of 0.01 μF capacitors with good high-frequency characteristics 
is sufficient. These capacitors are not necessary in all cases, but when used they must be placed as near as 
possible to the package pins and be referenced to VSSA.

For proper conversion, the input voltage must fall between VREFH and VREFL. If the input is equal to or 
exceeds VREFH, the converter circuit converts the signal to $3FF (full scale 10-bit representation) or $FF 
(full scale 8-bit representation). If the input is equal to or less than VREFL, the converter circuit converts it 
to $000. Input voltages between VREFH and VREFL are straight-line linear conversions. There will be a 
brief current associated with VREFL when the sampling capacitor is charging. The input is sampled for 
3.5 cycles of the ADCK source when ADLSMP is low, or 23.5 cycles when ADLSMP is high.

For minimal loss of accuracy due to current injection, pins adjacent to the analog input pins should not be 
transitioning during conversions.
MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5
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Analog-to-Digital Converter (S08ADC10V1) 
• Average the result by converting the analog input many times in succession and dividing the sum 
of the results. Four samples are required to eliminate the effect of a 1LSB, one-time error.

• Reduce the effect of synchronous noise by operating off the asynchronous clock (ADACK) and 
averaging. Noise that is synchronous to ADCK cannot be averaged out.

9.6.2.4 Code Width and Quantization Error

The ADC quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step 
ideally has the same height (1 code) and width. The width is defined as the delta between the transition 
points to one code and the next. The ideal code width for an N bit converter (in this case N can be 8 or 10), 
defined as 1LSB, is:

1LSB = (VREFH - VREFL) / 2N Eqn. 9-2

There is an inherent quantization error due to the digitization of the result. For 8-bit or 10-bit conversions 
the code will transition when the voltage is at the midpoint between the points where the straight line 
transfer function is exactly represented by the actual transfer function. Therefore, the quantization error 
will be ± 1/2LSB in 8- or 10-bit mode. As a consequence, however, the code width of the first ($000) 
conversion is only 1/2LSB and the code width of the last ($FF or $3FF) is 1.5LSB.

9.6.2.5 Linearity Errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these 
errors but the system should be aware of them because they affect overall accuracy. These errors are:

• Zero-scale error (EZS) (sometimes called offset) — This error is defined as the difference between 
the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first 
conversion is $001, then the difference between the actual $001 code width and its ideal (1LSB) is 
used.

• Full-scale error (EFS) — This error is defined as the difference between the actual code width of 
the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is $3FE, then the 
difference between the actual $3FE code width and its ideal (1LSB) is used.

• Differential non-linearity (DNL) — This error is defined as the worst-case difference between the 
actual code width and the ideal code width for all conversions.

• Integral non-linearity (INL) — This error is defined as the highest-value the (absolute value of the) 
running sum of DNL achieves. More simply, this is the worst-case difference of the actual 
transition voltage to a given code and its corresponding ideal transition voltage, for all codes.

• Total unadjusted error (TUE) — This error is defined as the difference between the actual transfer 
function and the ideal straight-line transfer function, and therefore includes all forms of error.

9.6.2.6 Code Jitter, Non-Monotonicity and Missing Codes

Analog-to-digital converters are susceptible to three special forms of error. These are code jitter, 
non-monotonicity, and missing codes.

Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled 
repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the 
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Inter-Integrated Circuit (S08IICV1)
Figure 11-11. Typical IIC Interrupt Routine
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Serial Communications Interface (S08SCIV3)
In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing 
error flag is cleared. The receive shift register continues to function, but a complete character cannot 
transfer to the receive data buffer if FE is still set.

14.3.3.2 Receiver Wakeup Operation

Receiver wakeup is a hardware mechanism that allows an SCI receiver to ignore the characters in a 
message that is intended for a different SCI receiver. In such a system, all receivers evaluate the first 
character(s) of each message, and as soon as they determine the message is intended for a different 
receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCIC2. When RWU = 1, it 
inhibits setting of the status flags associated with the receiver, thus eliminating the software overhead for 
handling the unimportant message characters. At the end of a message, or at the beginning of the next 
message, all receivers automatically force RWU to 0 so all receivers wake up in time to look at the first 
character(s) of the next message.

14.3.3.2.1 Idle-Line Wakeup

When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared 
automatically when the receiver detects a full character time of the idle-line level. The M control bit selects 
8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character 
time (10 or 11 bit times because of the start and stop bits). 

When the RWU bit is set, the idle character that wakes a receiver does not set the receiver idle bit, IDLE, 
or the receive data register full flag, RDRF. It therefore will not generate an interrupt when this idle 
character occurs. The receiver will wake up and wait for the next data transmission which will set RDRF 
and generate an interrupt if enabled. 

The idle-line type (ILT) control bit selects one of two ways to detect an idle line. When ILT = 0, the idle 
bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward 
the full character time of idle. When ILT = 1, the idle bit counter does not start until after a stop bit time, 
so the idle detection is not affected by the data in the last character of the previous message. 

14.3.3.2.2 Address-Mark Wakeup

When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared 
automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth 
bit in M = 0 mode and ninth bit in M = 1 mode).

Address-mark wakeup allows messages to contain idle characters but requires that the MSB be reserved 
for use in address frames. The logic 1 MSB of an address frame clears the receivers RWU bit before the 
stop bit is received and sets the RDRF flag.

14.3.4 Interrupts and Status Flags

The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the 
cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events. 
Another interrupt vector is associated with the receiver for RDRF and IDLE events, and a third vector is 
used for OR, NF, FE, and PF error conditions. Each of these eight interrupt sources can be separately 
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Serial Peripheral Interface (S08SPIV3) 
Figure 15-4. SPI Baud Rate Generation

15.2 External Signal Description
The SPI optionally shares four port pins. The function of these pins depends on the settings of SPI control 
bits. When the SPI is disabled (SPE = 0), these four pins revert to being general-purpose port I/O pins that 
are not controlled by the SPI.

15.2.1 SPSCK — SPI Serial Clock

When the SPI is enabled as a slave, this pin is the serial clock input. When the SPI is enabled as a master, 
this pin is the serial clock output.

15.2.2 MOSI — Master Data Out, Slave Data In

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this 
pin is the serial data output. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data 
input. If SPC0 = 1 to select single-wire bidirectional mode, and master mode is selected, this pin becomes 
the bidirectional data I/O pin (MOMI). Also, the bidirectional mode output enable bit determines whether 
the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and slave mode is 
selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

15.2.3 MISO — Master Data In, Slave Data Out

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this 
pin is the serial data input. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data 
output. If SPC0 = 1 to select single-wire bidirectional mode, and slave mode is selected, this pin becomes 
the bidirectional data I/O pin (SISO) and the bidirectional mode output enable bit determines whether the 
pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and master mode is selected, 
this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

15.2.4 SS — Slave Select

When the SPI is enabled as a slave, this pin is the low-true slave select input. When the SPI is enabled as 
a master and mode fault enable is off (MODFEN = 0), this pin is not used by the SPI and reverts to being 
a general-purpose port I/O pin. When the SPI is enabled as a master and MODFEN = 1, the slave select 
output enable bit determines whether this pin acts as the mode fault input (SSOE = 0) or as the slave select 
output (SSOE = 1).
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Timer/Pulse-Width Modulator (S08TPMV2)  
When center-aligned PWM operation is specified, the counter counts upward from 0x0000 through its 
terminal count and then counts downward to 0x0000 where it returns to up-counting. Both 0x0000 and the 
terminal count value (value in TPMMODH:TPMMODL) are normal length counts (one timer clock period 
long).

An interrupt flag and enable are associated with the main 16-bit counter. The timer overflow flag (TOF) is 
a software-accessible indication that the timer counter has overflowed. The enable signal selects between 
software polling (TOIE = 0) where no hardware interrupt is generated, or interrupt-driven operation 
(TOIE = 1) where a static hardware interrupt is automatically generated whenever the TOF flag is 1.

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In 
up-counting mode, the main 16-bit counter counts from 0x0000 through 0xFFFF and overflows to 0x0000 
on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus 
limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When 
the main 16-bit counter is operating in up-/down-counting mode, the TOF flag gets set as the counter 
changes direction at the transition from the value set in the modulus register and the next lower count 
value. This corresponds to the end of a PWM period. (The 0x0000 count value corresponds to the center 
of a period.)

Because the HCS08 MCU is an 8-bit architecture, a coherency mechanism is built into the timer counter 
for read operations. Whenever either byte of the counter is read (TPMCNTH or TPMCNTL), both bytes 
are captured into a buffer so when the other byte is read, the value will represent the other byte of the count 
at the time the first byte was read. The counter continues to count normally, but no new value can be read 
from either byte until both bytes of the old count have been read.

The main timer counter can be reset manually at any time by writing any value to either byte of the timer 
count TPMCNTH or TPMCNTL. Resetting the counter in this manner also resets the coherency 
mechanism in case only one byte of the counter was read before resetting the count.

16.4.2 Channel Mode Selection

Provided CPWMS = 0 (center-aligned PWM operation is not specified), the MSnB and MSnA control bits 
in the channel n status and control registers determine the basic mode of operation for the corresponding 
channel. Choices include input capture, output compare, and buffered edge-aligned PWM.

16.4.2.1 Input Capture Mode

With the input capture function, the TPM can capture the time at which an external event occurs. When an 
active edge occurs on the pin of an input capture channel, the TPM latches the contents of the TPM counter 
into the channel value registers (TPMCnVH:TPMCnVL). Rising edges, falling edges, or any edge may be 
chosen as the active edge that triggers an input capture.

When either byte of the 16-bit capture register is read, both bytes are latched into a buffer to support 
coherent 16-bit accesses regardless of order. The coherency sequence can be manually reset by writing to 
the channel status/control register (TPMCnSC).

An input capture event sets a flag bit (CHnF) that can optionally generate a CPU interrupt request.
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Timer/Pulse-Width Modulator (S08TPMV2)
transferred to the corresponding timer channel registers only after both 8-bit bytes of a 16-bit register have 
been written and the timer counter overflows (reverses direction from up-counting to down-counting at the 
end of the terminal count in the modulus register). This TPMCNT overflow requirement only applies to 
PWM channels, not output compares.

Optionally, when TPMCNTH:TPMCNTL = TPMMODH:TPMMODL, the TPM can generate a TOF 
interrupt at the end of this count. The user can choose to reload any number of the PWM buffers, and they 
will all update simultaneously at the start of a new period.

Writing to TPMSC cancels any values written to TPMMODH and/or TPMMODL and resets the 
coherency mechanism for the modulo registers. Writing to TPMCnSC cancels any values written to the 
channel value registers and resets the coherency mechanism for TPMCnVH:TPMCnVL.

16.5 TPM Interrupts
The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel. 
The meaning of channel interrupts depends on the mode of operation for each channel. If the channel is 
configured for input capture, the interrupt flag is set each time the selected input capture edge is 
recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each 
time the main timer counter matches the value in the 16-bit channel value register. See the Resets, 
Interrupts, and System Configuration chapter for absolute interrupt vector addresses, priority, and local 
interrupt mask control bits.

For each interrupt source in the TPM, a flag bit is set on recognition of the interrupt condition such as timer 
overflow, channel input capture, or output compare events. This flag may be read (polled) by software to 
verify that the action has occurred, or an associated enable bit (TOIE or CHnIE) can be set to enable 
hardware interrupt generation. While the interrupt enable bit is set, a static interrupt will be generated 
whenever the associated interrupt flag equals 1. It is the responsibility of user software to perform a 
sequence of steps to clear the interrupt flag before returning from the interrupt service routine.

16.5.1 Clearing Timer Interrupt Flags

TPM interrupt flags are cleared by a 2-step process that includes a read of the flag bit while it is set (1) 
followed by a write of 0 to the bit. If a new event is detected between these two steps, the sequence is reset 
and the interrupt flag remains set after the second step to avoid the possibility of missing the new event.

16.5.2 Timer Overflow Interrupt Description

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In 
up-counting mode, the 16-bit timer counter counts from 0x0000 through 0xFFFF and overflows to 0x0000 
on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus 
limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When 
the counter is operating in up-/down-counting mode, the TOF flag gets set as the counter changes direction 
at the transition from the value set in the modulus register and the next lower count value. This corresponds 
to the end of a PWM period. (The 0x0000 count value corresponds to the center of a period.)
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Development Support
read or written, and allow the user to trace one user instruction at a time, or GO to the user program 
from active background mode.

• Non-intrusive commands can be executed at any time even while the user’s program is running. 
Non-intrusive commands allow a user to read or write MCU memory locations or access status and 
control registers within the background debug controller.

Typically, a relatively simple interface pod is used to translate commands from a host computer into 
commands for the custom serial interface to the single-wire background debug system. Depending on the 
development tool vendor, this interface pod may use a standard RS-232 serial port, a parallel printer port, 
or some other type of communications such as a universal serial bus (USB) to communicate between the 
host PC and the pod. The pod typically connects to the target system with ground, the BKGD pin, RESET, 
and sometimes VDD. An open-drain connection to reset allows the host to force a target system reset, 
which is useful to regain control of a lost target system or to control startup of a target system before the 
on-chip nonvolatile memory has been programmed. Sometimes VDD can be used to allow the pod to use 
power from the target system to avoid the need for a separate power supply. However, if the pod is powered 
separately, it can be connected to a running target system without forcing a target system reset or otherwise 
disturbing the running application program.

Figure 17-1. BDM Tool Connector

17.2.1 BKGD Pin Description

BKGD is the single-wire background debug interface pin. The primary function of this pin is for 
bidirectional serial communication of active background mode commands and data. During reset, this pin 
is used to select between starting in active background mode or starting the user’s application program. 
This pin is also used to request a timed sync response pulse to allow a host development tool to determine 
the correct clock frequency for background debug serial communications.

BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of 
microcontrollers. This protocol assumes the host knows the communication clock rate that is determined 
by the target BDC clock rate. All communication is initiated and controlled by the host that drives a 
high-to-low edge to signal the beginning of each bit time. Commands and data are sent most significant 
bit first (MSB first). For a detailed description of the communications protocol, refer to Section 17.2.2, 
“Communication Details.”

If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC 
command may be sent to the target MCU to request a timed sync response signal from which the host can 
determine the correct communication speed.

BKGD is a pseudo-open-drain pin and there is an on-chip pullup so no external pullup resistor is required. 
Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external 
capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively 
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Development Support
Commands begin with an 8-bit hexadecimal command code in the host-to-target 
direction (most significant bit first)

/  = separates parts of the command
d = delay 16 target BDC clock cycles

AAAA = a 16-bit address in the host-to-target direction
RD = 8 bits of read data in the target-to-host direction

WD = 8 bits of write data in the host-to-target direction
RD16 = 16 bits of read data in the target-to-host direction

WD16 = 16 bits of write data in the host-to-target direction
SS = the contents of BDCSCR in the target-to-host direction (STATUS)
CC = 8 bits of write data for BDCSCR in the host-to-target direction (CONTROL)

RBKP = 16 bits of read data in the target-to-host direction (from BDCBKPT breakpoint 
register)

WBKP = 16 bits of write data in the host-to-target direction (for BDCBKPT breakpoint register)
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Development Support
The SYNC command is unlike other BDC commands because the host does not necessarily know the 
correct communications speed to use for BDC communications until after it has analyzed the response to 
the SYNC command. 

To issue a SYNC command, the host:
• Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (The slowest 

clock is normally the reference oscillator/64 or the self-clocked rate/64.)
• Drives BKGD high for a brief speedup pulse to get a fast rise time (This speedup pulse is typically 

one cycle of the fastest clock in the system.)
• Removes all drive to the BKGD pin so it reverts to high impedance
• Monitors the BKGD pin for the sync response pulse

The target, upon detecting the SYNC request from the host (which is a much longer low time than would 
ever occur during normal BDC communications):

• Waits for BKGD to return to a logic high
• Delays 16 cycles to allow the host to stop driving the high speedup pulse
• Drives BKGD low for 128 BDC clock cycles
• Drives a 1-cycle high speedup pulse to force a fast rise time on BKGD
• Removes all drive to the BKGD pin so it reverts to high impedance

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for 
subsequent BDC communications. Typically, the host can determine the correct communication speed 
within a few percent of the actual target speed and the communication protocol can easily tolerate speed 
errors of several percent.

17.2.4 BDC Hardware Breakpoint

The BDC includes one relatively simple hardware breakpoint that compares the CPU address bus to a 
16-bit match value in the BDCBKPT register. This breakpoint can generate a forced breakpoint or a tagged 
breakpoint. A forced breakpoint causes the CPU to enter active background mode at the first instruction 
boundary following any access to the breakpoint address. The tagged breakpoint causes the instruction 
opcode at the breakpoint address to be tagged so that the CPU will enter active background mode rather 
than executing that instruction if and when it reaches the end of the instruction queue. This implies that 
tagged breakpoints can only be placed at the address of an instruction opcode while forced breakpoints can 
be set at any address.

The breakpoint enable (BKPTEN) control bit in the BDC status and control register (BDCSCR) is used to 
enable the breakpoint logic (BKPTEN = 1). When BKPTEN = 0, its default value after reset, the 
breakpoint logic is disabled and no BDC breakpoints are requested regardless of the values in other BDC 
breakpoint registers and control bits. The force/tag select (FTS) control bit in BDCSCR is used to select 
forced (FTS = 1) or tagged (FTS = 0) type breakpoints.

The on-chip debug module (DBG) includes circuitry for two additional hardware breakpoints that are more 
flexible than the simple breakpoint in the BDC module.
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Development Support 
17.3 On-Chip Debug System (DBG)
Because HCS08 devices do not have external address and data buses, the most important functions of an 
in-circuit emulator have been built onto the chip with the MCU. The debug system consists of an 8-stage 
FIFO that can store address or data bus information, and a flexible trigger system to decide when to capture 
bus information and what information to capture. The system relies on the single-wire background debug 
system to access debug control registers and to read results out of the eight stage FIFO.

The debug module includes control and status registers that are accessible in the user’s memory map. 
These registers are located in the high register space to avoid using valuable direct page memory space.

Most of the debug module’s functions are used during development, and user programs rarely access any 
of the control and status registers for the debug module. The one exception is that the debug system can 
provide the means to implement a form of ROM patching. This topic is discussed in greater detail in 
Section 17.3.6, “Hardware Breakpoints.”

17.3.1 Comparators A and B

Two 16-bit comparators (A and B) can optionally be qualified with the R/W signal and an opcode tracking 
circuit. Separate control bits allow you to ignore R/W for each comparator. The opcode tracking circuitry 
optionally allows you to specify that a trigger will occur only if the opcode at the specified address is 
actually executed as opposed to only being read from memory into the instruction queue. The comparators 
are also capable of magnitude comparisons to support the inside range and outside range trigger modes. 
Comparators are disabled temporarily during all BDC accesses.

The A comparator is always associated with the 16-bit CPU address. The B comparator compares to the 
CPU address or the 8-bit CPU data bus, depending on the trigger mode selected. Because the CPU data 
bus is separated into a read data bus and a write data bus, the RWAEN and RWA control bits have an 
additional purpose, in full address plus data comparisons they are used to decide which of these buses to 
use in the comparator B data bus comparisons. If RWAEN = 1 (enabled) and RWA = 0 (write), the CPU’s 
write data bus is used. Otherwise, the CPU’s read data bus is used.

The currently selected trigger mode determines what the debugger logic does when a comparator detects 
a qualified match condition. A match can cause:

• Generation of a breakpoint to the CPU 
• Storage of data bus values into the FIFO
• Starting to store change-of-flow addresses into the FIFO (begin type trace)
• Stopping the storage of change-of-flow addresses into the FIFO (end type trace)

17.3.2 Bus Capture Information and FIFO Operation

The usual way to use the FIFO is to setup the trigger mode and other control options, then arm the 
debugger. When the FIFO has filled or the debugger has stopped storing data into the FIFO, you would 
read the information out of it in the order it was stored into the FIFO. Status bits indicate the number of 
words of valid information that are in the FIFO as data is stored into it. If a trace run is manually halted by 
writing 0 to ARM before the FIFO is full (CNT = 1:0:0:0), the information is shifted by one position and 
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