
NXP USA Inc. - MC9S08QG84CPBE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor S08

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 12

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 16-DIP (0.300", 7.62mm)

Supplier Device Package 16-PDIP

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08qg84cpbe

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc9s08qg84cpbe-4449107
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


 

MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5

8  Freescale Semiconductor
PRELIMINARY



Chapter 1 Device Overview
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Chapter 2 External Signal Description
2.2.4 Background / Mode Select (BKGD/MS)

During a power-on-reset (POR) or background debug force reset (see 5.8.3, “System Background Debug 
Force Reset Register (SBDFR),” for more information), the PTA4/ACMPO/BKGD/MS pin functions as a 
mode select pin. Immediately after any reset, the pin functions as the background pin and can be used for 
background debug communication. When enabled as the BKGD/MS pin (BKGDPE = 1), an internal 
pullup device is automatically enabled. 

The background debug communication function is enabled when BKGDPE in SOPT1 is set. BKGDPE is 
set following any reset of the MCU and must be cleared to use the PTA4/ACMPO/BKGD/MS pin’s 
alternative pin functions.

If nothing is connected to this pin, the MCU will enter normal operating mode at the rising edge of the 
internal reset after a POR or force BDC reset. If a debug system is connected to the 6-pin standard 
background debug header, it can hold BKGD/MS low during a POR or immediately after issuing a 
background debug force reset, which will force the MCU to active background mode.

The BKGD pin is used primarily for background debug controller (BDC) communications using a custom 
protocol that uses 16 clock cycles of the target MCU’s BDC clock per bit time. The target MCU’s BDC 
clock could be as fast as the maximum bus clock rate, so there must never be any significant capacitance 
connected to the BKGD/MS pin that could interfere with background serial communications.

Although the BKGD pin is a pseudo open-drain pin, the background debug communication protocol 
provides brief, actively driven, high speedup pulses to ensure fast rise times. Small capacitances from 
cables and the absolute value of the internal pullup device play almost no role in determining rise and fall 
times on the BKGD pin.

2.2.5 General-Purpose I/O and Peripheral Ports

The MC9S08QG8/4 series of MCUs support up to 12 general-purpose I/O pins, 1 input-only pin, and 1 
output-only pin, which are shared with on-chip peripheral functions (timers, serial I/O, ADC, keyboard 
interrupts, etc.). On each MC9S08QG8/4 device, there is one input-only and one output-only port pin. 

When a port pin is configured as a general-purpose output or a peripheral uses the port pin as an output, 
software can select one of two drive strengths and enable or disable slew rate control. When a port pin is 
configured as a general-purpose input or a peripheral uses the port pin as an input, software can enable a 
pullup device. 

For information about controlling these pins as general-purpose I/O pins, see the Chapter 6, “Parallel 
Input/Output Control.” For information about how and when on-chip peripheral systems use these pins, 
see the appropriate chapter referenced in Table 2-2. 

Immediately after reset, all pins that are not output-only are configured as high-impedance 
general-purpose inputs with internal pullup devices disabled. After reset, the output-only port function is 
not enabled but is configured for low output drive strength with slew rate control enabled. The PTA4 pin 
defaults to BKGD/MS on any reset.
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Chapter 5 Resets, Interrupts, and General System Control
When the 1-kHz clock source is selected, the COP counter is re-initialized to zero upon entry to stop mode. 
The COP counter begins from zero after the MCU exits stop mode.

5.5 Interrupts
Interrupts provide a way to save the current CPU status and registers, execute an interrupt service routine 
(ISR), and then restore the CPU status so processing resumes where it was before the interrupt. Other than 
the software interrupt (SWI), which is a program instruction, interrupts are caused by hardware events 
such as an edge on the IRQ pin or a timer-overflow event. The debug module can also generate an SWI 
under certain circumstances.

If an event occurs in an enabled interrupt source, an associated read-only status flag will become set. The 
CPU will not respond until and unless the local interrupt enable is a 1 to enable the interrupt. The I bit in 
the CCR is 0 to allow interrupts. The global interrupt mask (I bit) in the CCR is initially set after reset, 
which masks (prevents) all maskable interrupt sources. The user program initializes the stack pointer and 
performs other system setup before clearing the I bit to allow the CPU to respond to interrupts.

When the CPU receives a qualified interrupt request, it completes the current instruction before responding 
to the interrupt. The interrupt sequence obeys the same cycle-by-cycle sequence as the SWI instruction 
and consists of:

• Saving the CPU registers on the stack
• Setting the I bit in the CCR to mask further interrupts
• Fetching the interrupt vector for the highest-priority interrupt that is currently pending
• Filling the instruction queue with the first three bytes of program information starting from the 

address fetched from the interrupt vector locations

While the CPU is responding to the interrupt, the I bit is automatically set to avoid the possibility of 
another interrupt interrupting the ISR itself (this is called nesting of interrupts). Normally, the I bit is 
restored to 0 when the CCR is restored from the value stacked on entry to the ISR. In rare cases, the I bit 
can be cleared inside an ISR (after clearing the status flag that generated the interrupt) so that other 
interrupts can be serviced without waiting for the first service routine to finish. This practice is not 
recommended for anyone other than the most experienced programmers because it can lead to subtle 
program errors that are difficult to debug.

The interrupt service routine ends with a return-from-interrupt (RTI) instruction which restores the CCR, 
A, X, and PC registers to their pre-interrupt values by reading the previously saved information from the 
stack. 

NOTE
For compatibility with M68HC08 devices, the H register is not 
automatically saved and restored. It is good programming practice to push 
H onto the stack at the start of the interrupt service routine (ISR) and restore 
it immediately before the RTI that is used to return from the ISR.

When two or more interrupts are pending when the I bit is cleared, the highest priority source is serviced 
first (see Table 5-2).
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Chapter 7 Central Processor Unit (S08CPUV2)
7.2.3 Stack Pointer (SP)

This 16-bit address pointer register points at the next available location on the automatic last-in-first-out 
(LIFO) stack. The stack may be located anywhere in the 64-Kbyte address space that has RAM and can 
be any size up to the amount of available RAM. The stack is used to automatically save the return address 
for subroutine calls, the return address and CPU registers during interrupts, and for local variables. The 
AIS (add immediate to stack pointer) instruction adds an 8-bit signed immediate value to SP. This is most 
often used to allocate or deallocate space for local variables on the stack. 

SP is forced to 0x00FF at reset for compatibility with the earlier M68HC05 Family. HCS08 programs 
normally change the value in SP to the address of the last location (highest address) in on-chip RAM 
during reset initialization to free up direct page RAM (from the end of the on-chip registers to 0x00FF).

The RSP (reset stack pointer) instruction was included for compatibility with the M68HC05 Family and 
is seldom used in new HCS08 programs because it only affects the low-order half of the stack pointer.

7.2.4 Program Counter (PC)

The program counter is a 16-bit register that contains the address of the next instruction or operand to be 
fetched.

During normal program execution, the program counter automatically increments to the next sequential 
memory location every time an instruction or operand is fetched. Jump, branch, interrupt, and return 
operations load the program counter with an address other than that of the next sequential location. This 
is called a change-of-flow.

During reset, the program counter is loaded with the reset vector that is located at 0xFFFE and 0xFFFF. 
The vector stored there is the address of the first instruction that will be executed after exiting the reset 
state. 

7.2.5 Condition Code Register (CCR)

The 8-bit condition code register contains the interrupt mask (I) and five flags that indicate the results of 
the instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the 
functions of the condition code bits in general terms. For a more detailed explanation of how each 
instruction sets the CCR bits, refer to the HCS08 Family Reference Manual, volume 1, Freescale 
Semiconductor document order number HCS08RMv1.
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Analog-to-Digital Converter (S08ADC10V1)
9.2.1 Analog Power (VDDAD) 

The ADC analog portion uses VDDAD as its power connection. In some packages, VDDAD is connected 
internally to VDD. If externally available, connect the VDDAD pin to the same voltage potential as VDD. 
External filtering may be necessary to ensure clean VDDAD for good results.

9.2.2 Analog Ground (VSSAD) 

The ADC analog portion uses VSSAD as its ground connection. In some packages, VSSAD is connected 
internally to VSS. If externally available, connect the VSSAD pin to the same voltage potential as VSS.

9.2.3 Voltage Reference High (VREFH)

VREFH is the high reference voltage for the converter. In some packages, VREFH is connected internally to 
VDDAD. If externally available, VREFH may be connected to the same potential as VDDAD, or may be 
driven by an external source that is between the minimum VDDAD spec and the VDDAD potential (VREFH 
must never exceed VDDAD).

9.2.4 Voltage Reference Low (VREFL)

VREFL is the low reference voltage for the converter. In some packages, VREFL is connected internally to 
VSSAD. If externally available, connect the VREFL pin to the same voltage potential as VSSAD. 

9.2.5 Analog Channel Inputs (ADx)

The ADC module supports up to 28 separate analog inputs. An input is selected for conversion through 
the ADCH channel select bits. 

9.3 Register Definition

These memory mapped registers control and monitor operation of the ADC:

• Status and control register, ADCSC1
• Status and control register, ADCSC2
• Data result registers, ADCRH and ADCRL
• Compare value registers, ADCCVH and ADCCVL
• Configuration register, ADCCFG
• Pin enable registers, APCTL1, APCTL2, APCTL3

9.3.1 Status and Control Register 1 (ADCSC1)

This section describes the function of the ADC status and control register (ADCSC1). Writing ADCSC1 
aborts the current conversion and initiates a new conversion (if the ADCH bits are equal to a value other 
than all 1s).
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Analog-to-Digital Converter (S08ADC10V1)
9.6.2 Sources of Error

Several sources of error exist for A/D conversions. These are discussed in the following sections.

9.6.2.1 Sampling Error

For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given the 
maximum input resistance of approximately 7kΩ and input capacitance of approximately 5.5 pF, sampling 
to within 1/4LSB (at 10-bit resolution) can be achieved within the minimum sample window (3.5 cycles @ 
8 MHz maximum ADCK frequency) provided the resistance of the external analog source (RAS) is kept 
below 5 kΩ.

Higher source resistances or higher-accuracy sampling is possible by setting ADLSMP (to increase the 
sample window to 23.5 cycles) or decreasing ADCK frequency to increase sample time.

9.6.2.2 Pin Leakage Error

Leakage on the I/O pins can cause conversion error if the external analog source resistance (RAS) is high. 
If this error cannot be tolerated by the application, keep RAS lower than VDDAD / (2N*ILEAK) for less than 
1/4LSB leakage error (N = 8 in 8-bit mode or 10 in 10-bit mode).

9.6.2.3 Noise-Induced Errors

System noise which occurs during the sample or conversion process can affect the accuracy of the 
conversion. The ADC accuracy numbers are guaranteed as specified only if the following conditions are 
met:

• There is a 0.1 μF low-ESR capacitor from VREFH to VREFL.
• There is a 0.1 μF low-ESR capacitor from VDDAD to VSSAD.
• If inductive isolation is used from the primary supply, an additional 1 μF capacitor is placed from 

VDDAD to VSSAD.
• VSSAD (and VREFL, if connected) is connected to VSS at a quiet point in the ground plane.
• Operate the MCU in wait or stop3 mode before initiating (hardware triggered conversions) or 

immediately after initiating (hardware or software triggered conversions) the ADC conversion. 
— For software triggered conversions, immediately follow the write to the ADCSC1 with a WAIT 

instruction or STOP instruction.
— For stop3 mode operation, select ADACK as the clock source. Operation in stop3 reduces VDD 

noise but increases effective conversion time due to stop recovery.
• There is no I/O switching, input or output, on the MCU during the conversion.

There are some situations where external system activity causes radiated or conducted noise emissions or 
excessive VDD noise is coupled into the ADC. In these situations, or when the MCU cannot be placed in 
wait or stop3 or I/O activity cannot be halted, these recommended actions may reduce the effect of noise 
on the accuracy:

• Place a 0.01 μF capacitor (CAS) on the selected input channel to VREFL or VSSAD (this will 
improve noise issues but will affect sample rate based on the external analog source resistance).
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Internal Clock Source (S08ICSV1) 
times the filter frequency, as selected by the RDIV bits, so that the ICSLCLK will be available for BDC 
communications, and the external reference clock is enabled.

10.4.1.6 FLL Bypassed External Low Power (FBELP)

The FLL bypassed external low power (FBELP) mode is entered when all the following conditions occur:
• CLKS bits are written to 10.
• IREFS bit is written to 0.
• BDM mode is not active and LP bit is written to 1.

In FLL bypassed external low power mode, the ICSOUT clock is derived from the external reference clock 
and the FLL is disabled. The ICSLCLK will be not be available for BDC communications. The external 
reference clock is enabled.

10.4.1.7 Stop

ICS stop mode is entered whenever the MCU enters stop. In this mode, all ICS clock signals are stopped 
except in the following cases:

ICSIRCLK will be active in stop mode when all the following conditions occur:
• IRCLKEN bit is written to 1
• IREFSTEN bit is written to 1

ICSERCLK will be active in stop mode when all the following conditions occur:
• ERCLKEN bit is written to 1
• EREFSTEN bit is written to 1

10.4.2 Mode Switching

When switching between FLL engaged internal (FEI) and FLL engaged external (FEE) modes the IREFS 
bit can be changed at anytime, but the RDIV bits must be changed simultaneously so that the resulting 
frequency stays in the range of 31.25 kHz to 39.0625 kHz. After a change in the IREFS value the FLL will 
begin locking again after a few full cycles of the resulting divided reference frequency.

The CLKS bits can also be changed at anytime, but the RDIV bits must be changed simultaneously so that 
the resulting frequency stays in the range of 31.25 kHz to 39.0625 kHz. The actual switch to the newly 
selected clock will not occur until after a few full cycles of the new clock. If the newly selected clock is 
not available, the previous clock will remain selected.

10.4.3 Bus Frequency Divider

The BDIV bits can be changed at anytime and the actual switch to the new frequency will occur 
immediately.
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Keyboard Interrupts (S08KBIV2) 
Figure 12-2. KBI Block Diagram

12.2 External Signal Description
The KBI input pins can be used to detect either falling edges, or both falling edge and low level interrupt 
requests. The KBI input pins can also be used to detect either rising edges, or both rising edge and high 
level interrupt requests.

The signal properties of KBI are shown in Table 12-1.

12.3 Register Definition
The KBI includes three registers:

• An 8-bit pin status and control register.
• An 8-bit pin enable register.
• An 8-bit edge select register.

Refer to the direct-page register summary in the Memory chapter for the absolute address assignments for 
all KBI registers. This section refers to registers and control bits only by their names.

Some MCUs may have more than one KBI, so register names include placeholder characters to identify 
which KBI is being referenced.

12.3.1 KBI Status and Control Register (KBISC)

KBISC contains the status flag and control bits, which are used to configure the KBI.

Table 12-1. Signal Properties

Signal Function I/O

KBIPn Keyboard interrupt pins I

D Q

CK

CLR

VDD

KBMOD

KBIE

KEYBOARD
INTERRUPT FF

KBACK

RESET

SYNCHRONIZER

KBF

STOP BYPASSSTOP

BUSCLK

KBIPEn
0

1

S

KBEDGn

KBIPE0
0

1

S

KBEDG0

KBIP0

KBIPn

KBI
INTERRU
PT
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Chapter 14 Serial Communications Interface (S08SCIV3)
Figure 14-2. SCI Module Quick Start

SBR12 SBR11 SBR10 SBR9 SBR8

SBR4 SBR3 SBR2 SBR1 SBR0SBR7 SBR6 SBR5SCIBDL

SCIBDH

Baud rate = BUSCLK / (16 x SBR12:SBR0)

M WAKE ILT PE PTSCIC1 LOOPS SCISWAI RSRC

Module configuration

ILIE TE RE RWU SBKSCIC2 TIE TCIE RIE

Local interrupt enables Tx and Rx enable
Rx wakeup and send break

IDLE OR NF FE PFSCIS1 TDRE TC RDRF

Interrupt flags Rx error flags

BRK13 RAFSCIS2

Configure LIN support options and monitor receiver activity

FEIE PEIESCIS3

9th data bits

TXDIRR8 T8 ORIE NEIE

SCIID

Read: Rx data; write: Tx data

R5/T5R7/T7 R6/T6

Rx/Tx pin
direction in

Local interrupt enables

R4/T4 R3/T3 R2/T2 R1/T1 R0/T0

TXINV

Tx data path
polarity

single-wire
mode

Module Initialization:
Write: SCIBDH:SCIBDL to set baud rate

Write: SCFC1 to configure 1-wire/2-wire, 9/8-bit data, wakeup, and parity, if used.

Write; SCIC2 to configure interrupts, enable Rx and Tx, RWU
Enable Rx wakeup, SBK sends break character

Write: SCIC3 to enable Rx error interrupt sources. Also controls pin direction in 
1-wire modes. R8 and T8 only used in 9-bit data modes.

Module Use:

Wait for TDRE, then write data to SCID

Wait for RDRF, then read data from SCID

A small number of applications will use RWU to manage automatic receiver wakeup, SBK to send break characters, and 
R8 and T8 for 9-bit data.
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Timer/Pulse-Width Modulator (S08TPMV2)  
When center-aligned PWM operation is specified, the counter counts upward from 0x0000 through its 
terminal count and then counts downward to 0x0000 where it returns to up-counting. Both 0x0000 and the 
terminal count value (value in TPMMODH:TPMMODL) are normal length counts (one timer clock period 
long).

An interrupt flag and enable are associated with the main 16-bit counter. The timer overflow flag (TOF) is 
a software-accessible indication that the timer counter has overflowed. The enable signal selects between 
software polling (TOIE = 0) where no hardware interrupt is generated, or interrupt-driven operation 
(TOIE = 1) where a static hardware interrupt is automatically generated whenever the TOF flag is 1.

The conditions that cause TOF to become set depend on the counting mode (up or up/down). In 
up-counting mode, the main 16-bit counter counts from 0x0000 through 0xFFFF and overflows to 0x0000 
on the next counting clock. TOF becomes set at the transition from 0xFFFF to 0x0000. When a modulus 
limit is set, TOF becomes set at the transition from the value set in the modulus register to 0x0000. When 
the main 16-bit counter is operating in up-/down-counting mode, the TOF flag gets set as the counter 
changes direction at the transition from the value set in the modulus register and the next lower count 
value. This corresponds to the end of a PWM period. (The 0x0000 count value corresponds to the center 
of a period.)

Because the HCS08 MCU is an 8-bit architecture, a coherency mechanism is built into the timer counter 
for read operations. Whenever either byte of the counter is read (TPMCNTH or TPMCNTL), both bytes 
are captured into a buffer so when the other byte is read, the value will represent the other byte of the count 
at the time the first byte was read. The counter continues to count normally, but no new value can be read 
from either byte until both bytes of the old count have been read.

The main timer counter can be reset manually at any time by writing any value to either byte of the timer 
count TPMCNTH or TPMCNTL. Resetting the counter in this manner also resets the coherency 
mechanism in case only one byte of the counter was read before resetting the count.

16.4.2 Channel Mode Selection

Provided CPWMS = 0 (center-aligned PWM operation is not specified), the MSnB and MSnA control bits 
in the channel n status and control registers determine the basic mode of operation for the corresponding 
channel. Choices include input capture, output compare, and buffered edge-aligned PWM.

16.4.2.1 Input Capture Mode

With the input capture function, the TPM can capture the time at which an external event occurs. When an 
active edge occurs on the pin of an input capture channel, the TPM latches the contents of the TPM counter 
into the channel value registers (TPMCnVH:TPMCnVL). Rising edges, falling edges, or any edge may be 
chosen as the active edge that triggers an input capture.

When either byte of the 16-bit capture register is read, both bytes are latched into a buffer to support 
coherent 16-bit accesses regardless of order. The coherency sequence can be manually reset by writing to 
the channel status/control register (TPMCnSC).

An input capture event sets a flag bit (CHnF) that can optionally generate a CPU interrupt request.
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Development Support 
driven speedup pulses to force rapid rise times on this pin without risking harmful drive level conflicts. 
Refer to Section 17.2.2, “Communication Details,” for more detail.

When no debugger pod is connected to the 6-pin BDM interface connector, the internal pullup on BKGD 
chooses normal operating mode. When a debug pod is connected to BKGD it is possible to force the MCU 
into active background mode after reset. The specific conditions for forcing active background depend 
upon the HCS08 derivative (refer to the introduction to this Development Support section). It is not 
necessary to reset the target MCU to communicate with it through the background debug interface.

17.2.2 Communication Details

The BDC serial interface requires the external controller to generate a falling edge on the BKGD pin to 
indicate the start of each bit time. The external controller provides this falling edge whether data is 
transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven either by an external controller or by the MCU. Data 
is transferred MSB first at 16 BDC clock cycles per bit (nominal speed). The interface times out if 
512 BDC clock cycles occur between falling edges from the host. Any BDC command that was in progress 
when this timeout occurs is aborted without affecting the memory or operating mode of the target MCU 
system.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed. 

The clock switch (CLKSW) control bit in the BDC status and control register allows the user to select the 
BDC clock source. The BDC clock source can either be the bus or the alternate BDC clock source. 

The BKGD pin can receive a high or low level or transmit a high or low level. The following diagrams 
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but 
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting 
cycles.

Figure 17-2 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target HCS08 MCU. 
The host is asynchronous to the target so there is a 0-to-1 cycle delay from the host-generated falling edge 
to where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target 
senses the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin 
during host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD 
pin during the host-to-target transmission period, there is no need to treat the line as an open-drain signal 
during this period.
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Development Support 
A force-type breakpoint waits for the current instruction to finish and then acts upon the breakpoint 
request. The usual action in response to a breakpoint is to go to active background mode rather than 
continuing to the next instruction in the user application program.

The tag vs. force terminology is used in two contexts within the debug module. The first context refers to 
breakpoint requests from the debug module to the CPU. The second refers to match signals from the 
comparators to the debugger control logic. When a tag-type break request is sent to the CPU, a signal is 
entered into the instruction queue along with the opcode so that if/when this opcode ever executes, the 
CPU will effectively replace the tagged opcode with a BGND opcode so the CPU goes to active 
background mode rather than executing the tagged instruction. When the TRGSEL control bit in the DBGT 
register is set to select tag-type operation, the output from comparator A or B is qualified by a block of 
logic in the debug module that tracks opcodes and only produces a trigger to the debugger if the opcode at 
the compare address is actually executed. There is separate opcode tracking logic for each comparator so 
more than one compare event can be tracked through the instruction queue at a time.

17.3.5 Trigger Modes

The trigger mode controls the overall behavior of a debug run. The 4-bit TRG field in the DBGT register 
selects one of nine trigger modes. When TRGSEL = 1 in the DBGT register, the output of the comparator 
must propagate through an opcode tracking circuit before triggering FIFO actions. The BEGIN bit in 
DBGT chooses whether the FIFO begins storing data when the qualified trigger is detected (begin trace), 
or the FIFO stores data in a circular fashion from the time it is armed until the qualified trigger is detected 
(end trigger).

A debug run is started by writing a 1 to the ARM bit in the DBGC register, which sets the ARMF flag and 
clears the AF and BF flags and the CNT bits in DBGS. A begin-trace debug run ends when the FIFO gets 
full. An end-trace run ends when the selected trigger event occurs. Any debug run can be stopped manually 
by writing a 0 to ARM or DBGEN in DBGC.

In all trigger modes except event-only modes, the FIFO stores change-of-flow addresses. In event-only 
trigger modes, the FIFO stores data in the low-order eight bits of the FIFO. 

The BEGIN control bit is ignored in event-only trigger modes and all such debug runs are begin type 
traces. When TRGSEL = 1 to select opcode fetch triggers, it is not necessary to use R/W in comparisons 
because opcode tags would only apply to opcode fetches that are always read cycles. It would also be 
unusual to specify TRGSEL = 1 while using a full mode trigger because the opcode value is normally 
known at a particular address.

The following trigger mode descriptions only state the primary comparator conditions that lead to a trigger. 
Either comparator can usually be further qualified with R/W by setting RWAEN (RWBEN) and the 
corresponding RWA (RWB) value to be matched against R/W. The signal from the comparator with 
optional R/W qualification is used to request a CPU breakpoint if BRKEN = 1 and TAG determines 
whether the CPU request will be a tag request or a force request.

A-Only — Trigger when the address matches the value in comparator A

A OR B — Trigger when the address matches either the value in comparator A or the value in 
comparator B
MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5

254  Freescale Semiconductor
   



Development Support 
17.3.6 Hardware Breakpoints

The BRKEN control bit in the DBGC register may be set to 1 to allow any of the trigger conditions 
described in Section 17.3.5, “Trigger Modes,” to be used to generate a hardware breakpoint request to the 
CPU. TAG in DBGC controls whether the breakpoint request will be treated as a tag-type breakpoint or a 
force-type breakpoint. A tag breakpoint causes the current opcode to be marked as it enters the instruction 
queue. If a tagged opcode reaches the end of the pipe, the CPU executes a BGND instruction to go to active 
background mode rather than executing the tagged opcode. A force-type breakpoint causes the CPU to 
finish the current instruction and then go to active background mode.

If the background mode has not been enabled (ENBDM = 1) by a serial WRITE_CONTROL command 
through the BKGD pin, the CPU will execute an SWI instruction instead of going to active background 
mode.

17.4 Register Definition

This section contains the descriptions of the BDC and DBG registers and control bits.

Refer to the high-page register summary in the device overview chapter of this data sheet for the absolute 
address assignments for all DBG registers. This section refers to registers and control bits only by their 
names. A Freescale-provided equate or header file is used to translate these names into the appropriate 
absolute addresses.

17.4.1 BDC Registers and Control Bits

The BDC has two registers:
• The BDC status and control register (BDCSCR) is an 8-bit register containing control and status 

bits for the background debug controller. 
• The BDC breakpoint match register (BDCBKPT) holds a 16-bit breakpoint match address. 

These registers are accessed with dedicated serial BDC commands and are not located in the memory 
space of the target MCU (so they do not have addresses and cannot be accessed by user programs).

Some of the bits in the BDCSCR have write limitations; otherwise, these registers may be read or written 
at any time. For example, the ENBDM control bit may not be written while the MCU is in active 
background mode. (This prevents the ambiguous condition of the control bit forbidding active background 
mode while the MCU is already in active background mode.) Also, the four status bits (BDMACT, WS, 
WSF, and DVF) are read-only status indicators and can never be written by the WRITE_CONTROL serial 
BDC command. The clock switch (CLKSW) control bit may be read or written at any time.
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17.4.3.7 Debug Control Register (DBGC)

This register can be read or written at any time.

 7 6 5 4 3 2 1 0

R
DBGEN ARM TAG BRKEN RWA RWAEN RWB RWBEN

W

Reset 0 0 0 0 0 0 0 0

Figure 17-7. Debug Control Register (DBGC)

Table 17-4. DBGC Register Field Descriptions

Field Description

7
DBGEN

Debug Module Enable — Used to enable the debug module. DBGEN cannot be set to 1 if the MCU is secure.
0 DBG disabled
1 DBG enabled

6
ARM

Arm Control — Controls whether the debugger is comparing and storing information in the FIFO. A write is used 
to set this bit (and ARMF) and completion of a debug run automatically clears it. Any debug run can be manually 
stopped by writing 0 to ARM or to DBGEN.
0 Debugger not armed
1 Debugger armed

5
TAG

Tag/Force Select — Controls whether break requests to the CPU will be tag or force type requests. If 
BRKEN = 0, this bit has no meaning or effect.
0 CPU breaks requested as force type requests
1 CPU breaks requested as tag type requests

4
BRKEN

Break Enable — Controls whether a trigger event will generate a break request to the CPU. Trigger events can 
cause information to be stored in the FIFO without generating a break request to the CPU. For an end trace, CPU 
break requests are issued to the CPU when the comparator(s) and R/W meet the trigger requirements. For a 
begin trace, CPU break requests are issued when the FIFO becomes full. TRGSEL does not affect the timing of 
CPU break requests.
0 CPU break requests not enabled
1 Triggers cause a break request to the CPU

3
RWA

R/W Comparison Value for Comparator A — When RWAEN = 1, this bit determines whether a read or a write 
access qualifies comparator A. When RWAEN = 0, RWA and the R/W signal do not affect comparator A.
0 Comparator A can only match on a write cycle
1 Comparator A can only match on a read cycle

2
RWAEN

Enable R/W for Comparator A — Controls whether the level of R/W is considered for a comparator A match.
0 R/W is not used in comparison A
1 R/W is used in comparison A

1
RWB

R/W Comparison Value for Comparator B — When RWBEN = 1, this bit determines whether a read or a write 
access qualifies comparator B. When RWBEN = 0, RWB and the R/W signal do not affect comparator B.
0 Comparator B can match only on a write cycle
1 Comparator B can match only on a read cycle

0
RWBEN

Enable R/W for Comparator B — Controls whether the level of R/W is considered for a comparator B match.
0 R/W is not used in comparison B
1 R/W is used in comparison B
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 7 6 5 4 3 2 1 0

R AF BF ARMF 0 CNT3 CNT2 CNT1 CNT0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 17-9. Debug Status Register (DBGS)

Table 17-6. DBGS Register Field Descriptions

Field Description

7
AF

Trigger Match A Flag — AF is cleared at the start of a debug run and indicates whether a trigger match A 
condition was met since arming.
0 Comparator A has not matched
1 Comparator A match

6
BF

Trigger Match B Flag — BF is cleared at the start of a debug run and indicates whether a trigger match B 
condition was met since arming.
0 Comparator B has not matched
1 Comparator B match

5
ARMF

Arm Flag — While DBGEN = 1, this status bit is a read-only image of ARM in DBGC. This bit is set by writing 1 
to the ARM control bit in DBGC (while DBGEN = 1) and is automatically cleared at the end of a debug run. A 
debug run is completed when the FIFO is full (begin trace) or when a trigger event is detected (end trace). A 
debug run can also be ended manually by writing 0 to ARM or DBGEN in DBGC.
0 Debugger not armed
1 Debugger armed

3:0
CNT[3:0]

FIFO Valid Count — These bits are cleared at the start of a debug run and indicate the number of words of valid 
data in the FIFO at the end of a debug run. The value in CNT does not decrement as data is read out of the FIFO. 
The external debug host is responsible for keeping track of the count as information is read out of the FIFO. 
0000 Number of valid words in FIFO = No valid data
0001 Number of valid words in FIFO = 1
0010 Number of valid words in FIFO = 2
0011 Number of valid words in FIFO = 3
0100 Number of valid words in FIFO = 4
0101 Number of valid words in FIFO = 5
0110 Number of valid words in FIFO = 6
0111 Number of valid words in FIFO = 7
1000 Number of valid words in FIFO = 8
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Appendix A Electrical Characteristics
Figure A-17. ADC Input Impedance Equivalency Diagram

Table A-14. 3 Volt 10-bit ADC Characteristics

Characteristic Conditions Symb Min Typ1 Max Unit Comment

Supply current
ADLPC=1
ADLSMP=1
ADCO=1

IDDAD — 120 — μA

Supply current
ADLPC=1
ADLSMP=0
ADCO=1

IDDAD — 202 — μA

Supply current
ADLPC=0
ADLSMP=1
ADCO=1

IDDAD — 288 — μA

Supply current
ADLPC=0
ADLSMP=0
ADCO=1

IDDAD — 532 646 μA

ADC asynchronous 
clock source

High speed (ADLPC=0) fADACK 2 3.3 5 MHz tADACK =
1/fADACK

Low power (ADLPC=1) 1.25 2 3.3

+
–

+

–
VAS

RAS

CAS

VADIN

ZAS
Pad 
leakage
due to
input 
protection

ZADIN

SIMPLIFIED 
INPUT PIN EQUIVALENT

CIRCUIT

RADIN

ADC SAR
ENGINE

SIMPLIFIED 
CHANNEL SELECT

CIRCUIT

INPUT PIN

RADIN

CADIN

INPUT PIN

RADIN

INPUT PIN

RADIN
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Appendix A Electrical Characteristics
Conversion time 
(including sample 
time)

Short sample (ADLSMP=0) tADC — 20 — ADCK 
cycles

See 
Table 9-12 for 

conversion 
time variances

Long sample (ADLSMP=1) — 40 —

Sample time Short sample (ADLSMP=0) tADS — 3.5 — ADCK 
cycles

Long sample (ADLSMP=1) — 23.5 —

Total unadjusted error 10 bit mode ETUE — ±1.5 ±3.5 LSB2 Includes 
quantization

8 bit mode — ±0.7 ±1.5

Differential 
non-linearity

10 bit mode DNL — ±0.5 ±1.0 LSB2 Monotonicity 
and no 

missing codes 
guaranteed

8 bit mode — ±0.3 ±0.5

Integral non-linearity 10 bit mode INL — ±0.5 ±1.0 LSB2

8 bit mode — ±0.3 ±0.5

Zero-scale error 10 bit mode EZS — ±1.5 ±2.1 LSB2 VADIN = VSS

8 bit mode — ±0.5 ±0.7

Full-scale error 10 bit mode EFS 0 ±1.0 ±1.5 LSB2 VADIN = VDD

8 bit mode 0 ±0.5 ±0.5

Quantization error 10 bit mode EQ — — ±0.5 LSB2

8 bit mode — — ±0.5

Input leakage error 10 bit mode EIL 0 ±0.2 ±4 LSB2 Pad leakage3 * 
RAS

8 bit mode 0 ±0.1 ±1.2

Temp sensor
slope

-40°C– 25°C m — 1.646 — mV/°C

25°C– 85°C — 1.769 —

Temp sensor
voltage

25°C VTEMP25 — 701.2 — mV

1 Typical values assume VDD = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference 
only and are not tested in production.

2 1 LSB = (VREFH - VREFL)/2N

3 Based on input pad leakage current. Refer to pad electricals.

Table A-14. 3 Volt 10-bit ADC Characteristics (continued)

Characteristic Conditions Symb Min Typ1 Max Unit Comment
MC9S08QG8 and MC9S08QG4 Data Sheet, Rev. 5

284 Freescale Semiconductor
 






