

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	508
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	4
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN-EP (4x4)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08qg8cfqe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MC9S08QG8 Data Sheet

Covers MC9S08QG8 MC9S08QG4

> MC9S08QG8 Rev. 5 11/2009

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc.

© Freescale Semiconductor, Inc., 2007-2009. All rights reserved.

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Rev No.	Revision Date	Description of Changes				
2 Draft A	06/08/2006	Previous version was 1.01; revision numbering will increment by integers from now on. Clarified PTA5 pullup behavior note; clarified that FCDIV is write once after reset; expanded FPROT/NVPROT register description added note for servicing the COP if the COP is enabled during an erase function; added requirements for using ACMP0 in ACMP introduction; added factory trim value section to ICS introduction; debug section added to Development Support chapter; updated RTI period and added RTI graph to control timing section; other minor grammar edits.				
3	10/2007	Added 24-pin QFN package and updated the A-5. DC Characteristics table Supply Voltage row.				
4	2/2008	Incorporated core team markups from shared review. See Project Sync issue #3313 for archive.				
5	11/2009	Added new part number information for the maskset revision 4. Corrected bit 0 of KBISC register in the Table 4-2.				

© Freescale Semiconductor, Inc., 2007-2008. All rights reserved.

Chapter 2 External Signal Description

NP_

Chapter 2 External Signal Description

NOTES:

- 1. Not required if using the internal clock option.
- 2. XTAL is the same pin as PTB6; EXTAL the same pin as PTB7.
- 3. The RESET pin can only be used to reset into user mode; you can not enter BDM using the RESET pin. BDM can be entered by holding MS low during POR or writing a 1 to BDFR in SBDFR with MS low after issuing the BDM command.
- 4. IRQ feature has optional internal pullup device.
- 5. RC filter on RESET/IRQ pin recommended for noisy environments.

Figure 2-4. Basic System Connections

2.2.1 Power

 V_{DD} and V_{SS} are the primary power supply pins for the MCU. This voltage source supplies power to all I/O buffer circuitry, ACMP and ADC modules, and to an internal voltage regulator. The internal voltage regulator provides a regulated lower-voltage source to the CPU and other internal circuitry of the MCU.

Typically, application systems have two separate capacitors across the power pins: a bulk electrolytic capacitor, such as a $10-\mu$ F tantalum capacitor, to provide bulk charge storage for the overall system, and a bypass capacitor, such as a $0.1-\mu$ F ceramic capacitor, located as near to the MCU power pins as practical to suppress high-frequency noise.

NOTE

When an alternative function is first enabled, it is possible to get a spurious edge to the module. User software should clear out any associated flags before interrupts are enabled. Table 2-1 shows the priority if multiple modules are enabled. The highest priority module will have control over the pin. Selecting a higher priority pin function with a lower priority function already enabled can cause spurious edges to the lower priority module. It is recommended that all modules that share a pin be disabled before enabling anther module.

Chapter 3 Modes of Operation

Devinhevel	Mode					
renpilerai	Stop1	Stop2	Stop3			
MTIM	Off	Off	Standby			
SCI	Off	Off	Standby			
SPI	Off	Off	Standby			
ТРМ	Off	Off	Standby			
Voltage Regulator	Off	Standby	Standby			
XOSC	Off	Off	Optionally On ³			
I/O Pins	Hi-Z	States Held	States Held			

Table 3-2. Stop Mode Behavior (continued)

¹ Requires the asynchronous ADC clock and LVD to be enabled, else in standby.

² IRCLKEN and IREFSTEN set in ICSC1, else in standby.

³ ERCLKEN and EREFSTEN set in ICSC2, else in standby. For high frequency range (RANGE in ICSC2 set) requires the LVD to also be enabled in stop3.

5.8.3 System Background Debug Force Reset Register (SBDFR)

This high page register contains a single write-only control bit. A serial background command such as WRITE_BYTE must be used to write to SBDFR. Attempts to write this register from a user program are ignored. Reads always return 0x00.

Figure 5-4. System Background Debug Force Reset Register (SBDFR)

¹ BDFR is writable only through serial background debug commands, not from user programs.

Table 5-5. SBDFR Register Field Descriptions

Field	Description
0 BDFR	Background Debug Force Reset — A serial background command such as WRITE_BYTE can be used to allow an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot be written from a user program. To enter user mode, PTA4/ACMPO/BKGD/MS must be high immediately after issuing WRITE_BYTE command. To enter BDM, PTA4/ACMPO/BKGD/MS must be low immediately after issuing WRITE_BYTE command. See Table A-9., "Control Timing," for more information.

1

Chapter 5 Resets, Interrupts, and General System Control

5.8.10 System Power Management Status and Control 3 Register (SPMSC3)

This high page register is used to report the status of the low voltage warning function and to select the low voltage detect trip voltage.

_	7	6	5	4	3	2	1	0
R	LVWF	0			0	0	0	0
w		LVWACK	LVDV					
POR:	0 ¹	0	0	0	0	0	0	0
LVD:	0 ¹	0	U	U	0	0	0	0
Any other reset:	01	0	U	U	0	0	0	0
		= Unimplemented or Reserved U= Unaffected by reset						

Figure 5-12. System Power Management Status and Control 3 Register (SPMSC3)

LVWF will be set in the case when V_{Supply} transitions below the trip point or after reset and V_{Supply} is already below V_{LVW}.

Table 5-14.	SPMSC3	Register	Field	Descriptions
-------------	--------	----------	-------	--------------

Field	Description
7 LVWF	 Low-Voltage Warning Flag — The LVWF bit indicates the low voltage warning status. 0 Low voltage warning not present. 1 Low voltage warning is present or was present.
6 LVWACK	Low-Voltage Warning Acknowledge — The LVWF bit indicates the low voltage warning status. Writing a 1 to LVWACK clears LVWF to a 0 if a low voltage warning is not present.
5 LVDV	 Low-Voltage Detect Voltage Select — The LVDV bit selects the LVD trip point voltage (V_{LVD}). 0 Low trip point selected (V_{LVD} = V_{LVDL}). 1 High trip point selected (V_{LVD} = V_{LVDH}).
4 LVWV	 Low-Voltage Warning Voltage Select — The LVWV bit selects the LVW trip point voltage (V_{LVW}). 0 Low trip point selected (V_{LVW} = V_{LVWL}). 1 High trip point selected (V_{LVW} = V_{LVWH}).

7.4.5 BGND Instruction

The BGND instruction is new to the HCS08 compared to the M68HC08. BGND would not be used in normal user programs because it forces the CPU to stop processing user instructions and enter the active background mode. The only way to resume execution of the user program is through reset or by a host debug system issuing a GO, TRACE1, or TAGGO serial command through the background debug interface.

Software-based breakpoints can be set by replacing an opcode at the desired breakpoint address with the BGND opcode. When the program reaches this breakpoint address, the CPU is forced to active background mode rather than continuing the user program.

9.4.7.2 Stop3 Mode With ADACK Enabled

If ADACK is selected as the conversion clock, the ADC continues operation during stop3 mode. For guaranteed ADC operation, the MCU's voltage regulator must remain active during stop3 mode. Consult the module introduction for configuration information for this MCU.

If a conversion is in progress when the MCU enters stop3 mode, it continues until completion. Conversions can be initiated while the MCU is in stop3 mode by means of the hardware trigger or if continuous conversions are enabled.

A conversion complete event sets the COCO and generates an ADC interrupt to wake the MCU from stop3 mode if the ADC interrupt is enabled (AIEN = 1).

NOTE

It is possible for the ADC module to wake the system from low power stop and cause the MCU to begin consuming run-level currents without generating a system level interrupt. To prevent this scenario, software should ensure that the data transfer blocking mechanism (discussed in Section 9.4.4.2, "Completing Conversions) is cleared when entering stop3 and continuing ADC conversions.

9.4.8 MCU Stop1 and Stop2 Mode Operation

The ADC module is automatically disabled when the MCU enters either stop1 or stop2 mode. All module registers contain their reset values following exit from stop1 or stop2. Therefore the module must be re-enabled and re-configured following exit from stop1 or stop2.

9.5 Initialization Information

This section gives an example which provides some basic direction on how a user would initialize and configure the ADC module. The user has the flexibility of choosing between configuring the module for 8-bit or 10-bit resolution, single or continuous conversion, and a polled or interrupt approach, among many other options. Refer to Table 9-6, Table 9-7, and Table 9-8 for information used in this example.

NOTE

Hexadecimal values designated by a preceding 0x, binary values designated by a preceding %, and decimal values have no preceding character.

9.5.1 ADC Module Initialization Example

9.5.1.1 Initialization Sequence

Before the ADC module can be used to complete conversions, an initialization procedure must be performed. A typical sequence is as follows:

1. Update the configuration register (ADCCFG) to select the input clock source and the divide ratio used to generate the internal clock, ADCK. This register is also used for selecting sample time and low-power configuration.

13.4 Functional Description

The MTIM is composed of a main 8-bit up-counter with an 8-bit modulo register, a clock source selector, and a prescaler block with nine selectable values. The module also contains software selectable interrupt logic.

The MTIM counter (MTIMCNT) has three modes of operation: stopped, free-running, and modulo. Out of reset, the counter is stopped. If the counter is started without writing a new value to the modulo register, then the counter will be in free-running mode. The counter is in modulo mode when a value other than \$00 is in the modulo register while the counter is running.

After any MCU reset, the counter is stopped and reset to \$00, and the modulus is set to \$00. The bus clock is selected as the default clock source and the prescale value is divide by 1. To start the MTIM in free-running mode, simply write to the MTIM status and control register (MTIMSC) and clear the MTIM stop bit (TSTP).

Four clock sources are software selectable: the internal bus clock, the fixed frequency clock (XCLK), and an external clock on the TCLK pin, selectable as incrementing on either rising or falling edges. The MTIM clock select bits (CLKS1:CLKS0) in MTIMSC are used to select the desired clock source. If the counter is active (TSTP = 0) when a new clock source is selected, the counter will continue counting from the previous value using the new clock source.

Nine prescale values are software selectable: clock source divided by 1, 2, 4, 8, 16, 32, 64, 128, or 256. The prescaler select bits (PS[3:0]) in MTIMSC select the desired prescale value. If the counter is active (TSTP = 0) when a new prescaler value is selected, the counter will continue counting from the previous value using the new prescaler value.

The MTIM modulo register (MTIMMOD) allows the overflow compare value to be set to any value from \$01 to \$FF. Reset clears the modulo value to \$00, which results in a free running counter.

When the counter is active (TSTP = 0), the counter increments at the selected rate until the count matches the modulo value. When these values match, the counter overflows to \$00 and continues counting. The MTIM overflow flag (TOF) is set whenever the counter overflows. The flag sets on the transition from the modulo value to \$00. Writing to MTIMMOD while the counter is active resets the counter to \$00 and clears TOF.

Clearing TOF is a two-step process. The first step is to read the MTIMSC register while TOF is set. The second step is to write a 0 to TOF. If another overflow occurs between the first and second steps, the clearing process is reset and TOF will remain set after the second step is performed. This will prevent the second occurrence from being missed. TOF is also cleared when a 1 is written to TRST or when any value is written to the MTIMMOD register.

The MTIM allows for an optional interrupt to be generated whenever TOF is set. To enable the MTIM overflow interrupt, set the MTIM overflow interrupt enable bit (TOIE) in MTIMSC. TOIE should never be written to a 1 while TOF = 1. Instead, TOF should be cleared first, then the TOIE can be set to 1.

Chapter 14 Serial Communications Interface (S08SCIV3)

NOTES:

¹ Not all pins or pin functions are available on all devices, see Table 1-1 for available functions on each device.

- ² Port pins are software configurable with pullup device if input port.
- ³ Port pins are software configurable for output drive strength.
- ⁴ Port pins are software configurable for output slew rate control.
- ⁵ IRQ contains a software configurable (IRQPDD) pullup/pulldown device if PTA5 enabled as IRQ pin function (IRQPE = 1).
- ⁶ RESET contains integrated pullup device if PTA5 enabled as reset pin function (RSTPE = 1).
- ⁷ PTA4 contains integrated pullup device if BKGD enabled (BKGDPE = 1).
- ⁸ SDA and SCL pin locations can be repositioned under software control (IICPS), defaults on PTA2 and PTA3.
- ⁹ When pin functions as KBI (KBIPEn = 1) and associated pin is configured to enable the pullup device, KBEDGn can be used to reconfigure the pullup as a pulldown device.

Figure 14-1. MC9S08QG8/4 Block Diagram Highlighting SCI Block and Pins

Serial Communications Interface (S08SCIV3)

In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing error flag is cleared. The receive shift register continues to function, but a complete character cannot transfer to the receive data buffer if FE is still set.

14.3.3.2 Receiver Wakeup Operation

Receiver wakeup is a hardware mechanism that allows an SCI receiver to ignore the characters in a message that is intended for a different SCI receiver. In such a system, all receivers evaluate the first character(s) of each message, and as soon as they determine the message is intended for a different receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCIC2. When RWU = 1, it inhibits setting of the status flags associated with the receiver, thus eliminating the software overhead for handling the unimportant message characters. At the end of a message, or at the beginning of the next message, all receivers automatically force RWU to 0 so all receivers wake up in time to look at the first character(s) of the next message.

14.3.3.2.1 Idle-Line Wakeup

When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared automatically when the receiver detects a full character time of the idle-line level. The M control bit selects 8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character time (10 or 11 bit times because of the start and stop bits).

When the RWU bit is set, the idle character that wakes a receiver does not set the receiver idle bit, IDLE, or the receive data register full flag, RDRF. It therefore will not generate an interrupt when this idle character occurs. The receiver will wake up and wait for the next data transmission which will set RDRF and generate an interrupt if enabled.

The idle-line type (ILT) control bit selects one of two ways to detect an idle line. When ILT = 0, the idle bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward the full character time of idle. When ILT = 1, the idle bit counter does not start until after a stop bit time, so the idle detection is not affected by the data in the last character of the previous message.

14.3.3.2.2 Address-Mark Wakeup

When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth bit in M = 0 mode and ninth bit in M = 1 mode).

Address-mark wakeup allows messages to contain idle characters but requires that the MSB be reserved for use in address frames. The logic 1 MSB of an address frame clears the receivers RWU bit before the stop bit is received and sets the RDRF flag.

14.3.4 Interrupts and Status Flags

The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events. Another interrupt vector is associated with the receiver for RDRF and IDLE events, and a third vector is used for OR, NF, FE, and PF error conditions. Each of these eight interrupt sources can be separately

16.4.2.2 Output Compare Mode

With the output compare function, the TPM can generate timed pulses with programmable position, polarity, duration, and frequency. When the counter reaches the value in the channel value registers of an output compare channel, the TPM can set, clear, or toggle the channel pin.

In output compare mode, values are transferred to the corresponding timer channel value registers only after both 8-bit bytes of a 16-bit register have been written. This coherency sequence can be manually reset by writing to the channel status/control register (TPMCnSC).

An output compare event sets a flag bit (CHnF) that can optionally generate a CPU interrupt request.

16.4.2.3 Edge-Aligned PWM Mode

This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS = 0) and can be used when other channels in the same TPM are configured for input capture or output compare functions. The period of this PWM signal is determined by the setting in the modulus register (TPMMODH:TPMMODL). The duty cycle is determined by the setting in the timer channel value register (TPMCnVH:TPMCnVL). The polarity of this PWM signal is determined by the setting in the ELSnA control bit. Duty cycle cases of 0 percent and 100 percent are possible.

As Figure 16-11 shows, the output compare value in the TPM channel registers determines the pulse width (duty cycle) of the PWM signal. The time between the modulus overflow and the output compare is the pulse width. If ELSnA = 0, the counter overflow forces the PWM signal high and the output compare forces the PWM signal low. If ELSnA = 1, the counter overflow forces the PWM signal low and the output compare forces the PWM signal high.

Figure 16-11. PWM Period and Pulse Width (ELSnA = 0)

When the channel value register is set to 0x0000, the duty cycle is 0 percent. By setting the timer channel value register (TPMCnVH:TPMCnVL) to a value greater than the modulus setting, 100% duty cycle can be achieved. This implies that the modulus setting must be less than 0xFFFF to get 100% duty cycle.

Because the HCS08 is a family of 8-bit MCUs, the settings in the timer channel registers are buffered to ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to either register, TPMCnVH or TPMCnVL, write to buffer registers. In edge-PWM mode, values are transferred to the corresponding timer channel registers only after both 8-bit bytes of a 16-bit register have been written and the value in the TPMCNTH:TPMCNTL counter is 0x0000. (The new duty cycle does not take effect until the next full period.)

read or written, and allow the user to trace one user instruction at a time, or GO to the user program from active background mode.

• Non-intrusive commands can be executed at any time even while the user's program is running. Non-intrusive commands allow a user to read or write MCU memory locations or access status and control registers within the background debug controller.

Typically, a relatively simple interface pod is used to translate commands from a host computer into commands for the custom serial interface to the single-wire background debug system. Depending on the development tool vendor, this interface pod may use a standard RS-232 serial port, a parallel printer port, or some other type of communications such as a universal serial bus (USB) to communicate between the host PC and the pod. The pod typically connects to the target system with ground, the BKGD pin, RESET, and sometimes V_{DD} . An open-drain connection to reset allows the host to force a target system reset, which is useful to regain control of a lost target system or to control startup of a target system before the on-chip nonvolatile memory has been programmed. Sometimes V_{DD} can be used to allow the pod to use power from the target system to avoid the need for a separate power supply. However, if the pod is powered separately, it can be connected to a running target system without forcing a target system reset or otherwise disturbing the running application program.

Figure 17-1. BDM Tool Connector

17.2.1 BKGD Pin Description

BKGD is the single-wire background debug interface pin. The primary function of this pin is for bidirectional serial communication of active background mode commands and data. During reset, this pin is used to select between starting in active background mode or starting the user's application program. This pin is also used to request a timed sync response pulse to allow a host development tool to determine the correct clock frequency for background debug serial communications.

BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of microcontrollers. This protocol assumes the host knows the communication clock rate that is determined by the target BDC clock rate. All communication is initiated and controlled by the host that drives a high-to-low edge to signal the beginning of each bit time. Commands and data are sent most significant bit first (MSB first). For a detailed description of the communications protocol, refer to Section 17.2.2, "Communication Details."

If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC command may be sent to the target MCU to request a timed sync response signal from which the host can determine the correct communication speed.

BKGD is a pseudo-open-drain pin and there is an on-chip pullup so no external pullup resistor is required. Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively

¹ BDFR is writable only through serial background mode debug commands, not from user programs.

Figure 17-6. System Background Debug Force Reset Register (SBDFR)

Table 17-3. SBDFR Register Field Description

Field	Description
0 BDFR	Background Debug Force Reset — A serial active background mode command such as WRITE_BYTE allows an external debug host to force a target system reset. Writing 1 to this bit forces an MCU reset. This bit cannot be written from a user program.

17.4.3 DBG Registers and Control Bits

The debug module includes nine bytes of register space for three 16-bit registers and three 8-bit control and status registers. These registers are located in the high register space of the normal memory map so they are accessible to normal application programs. These registers are rarely if ever accessed by normal user application programs with the possible exception of a ROM patching mechanism that uses the breakpoint logic.

17.4.3.1 Debug Comparator A High Register (DBGCAH)

This register contains compare value bits for the high-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

17.4.3.2 Debug Comparator A Low Register (DBGCAL)

This register contains compare value bits for the low-order eight bits of comparator A. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

17.4.3.3 Debug Comparator B High Register (DBGCBH)

This register contains compare value bits for the high-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

17.4.3.4 Debug Comparator B Low Register (DBGCBL)

This register contains compare value bits for the low-order eight bits of comparator B. This register is forced to 0x00 at reset and can be read at any time or written at any time unless ARM = 1.

A.5 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Parameter	Symbol	Min	Typical	Мах	Unit
Supply voltage (run, wait and stop modes.)	V_{DD}	1.8 ¹		3.6	V
Temperature C M		-40 -40	_	85 125	°C

Table A-5. Operating Range

¹ As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above V_{LVDL}.

Parameter		Symbol	Min	Typical	Мах	Unit
Minimum RAM retention supply voltage applied to V_{DD}		V _{RAM}	V _{POR} ^{1, 2}		—	V
Low-voltage detection threshold — high range (V _{DD} falling)		V _{LVDH}	2.08	2.1	2.2	V
	(V _{DD} rising)		2.16	2.19	2.27	
Low-voltage detection threshold — low range	(V _{DD} falling)	V _{LVDL}	1.80	1.82	1.91	V
	(V _{DD} rising)		1.88	1.90	1.99	
Low-voltage warning threshold — high range	(V _{DD} falling)	V _{LVWH}	2.35	2.40	2.5	V
	(V _{DD} rising)		2.35	2.40	2.5	
Low-voltage warning threshold — low range	(V _{DD} falling)	V _{LVWL}	2.08	2.1	2.2	V
	(V _{DD} rising)		2.16	2.19	2.27	
Power on reset (POR) re-arm voltage		V _{POR}		1.4		V
Bandgap Voltage Reference		V_{BG}	1.18	1.20	1.21	V
Input high voltage (V_{DD} > 2.3 V) (all digital input	ts)	V _{IH}	$0.70 \times V_{DD}$		—	v
Input high voltage (1.8 V \leq V_{DD} \leq 2.3 V) (all dig	ital inputs)		$0.85 \times V_{DD}$		—	
Input low voltage (V_{DD} > 2.3 V) (all digital input	s)	Vii	—		$0.35 \times V_{DD}$	V
Input low voltage (1.8 V \leq V_{DD} \leq 2.3 V) (all digit	al inputs)	۹IL	—		$0.30\times V_{DD}$	
Input hysteresis (all digital inputs)		V _{hys}	$0.06 \times V_{DD}$		—	V
Input leakage current (Per pin) $V_{In} = V_{DD}$ or V_{SS} , all input only pins		ll _{In} l	—	0.025	1.0	μA
High impedance (off-state) leakage current (per pin) $V_{In} = V_{DD}$ or V_{SS} , all input/output		ll _{oz} l	_	0.025	1.0	μA
Internal pullup resistors ^{3,4}		R _{PU}	17.5		52.5	kΩ

Table A-6. DC Characteristics

Appendix A Electrical Characteristics

Function	Symbol	Min	Мах	Unit
External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
External clock period	t _{TCLK}	4	—	t _{cyc}
External clock high time	t _{clkh}	1.5	—	t _{cyc}
External clock low time	t _{clkl}	1.5	—	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table A-10. TPM/MTIM Input Timing

Figure A-11. Timer External Clock

Figure A-12. Timer Input Capture Pulse

A.8.3 SPI Timing

Table A-11 and Figure A-13 through Figure A-16 describe the timing requirements for the SPI system.

Table A-11. SPI Timing

No.	Function	Symbol	Min	Max	Unit
	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	SPSCK period Master Slave	t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}
2	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{сус}
3	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}

Figure A-17. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply current ADLPC=1 ADLSMP=1 ADCO=1		I _{DDAD}	_	120	_	μA	
Supply current ADLPC=1 ADLSMP=0 ADCO=1		I _{DDAD}	_	202	_	μA	
Supply current ADLPC=0 ADLSMP=1 ADCO=1		I _{DDAD}	_	288	_	μA	
Supply current ADLPC=0 ADLSMP=0 ADCO=1		I _{DDAD}		532	646	μA	
ADC asynchronous clock source	High speed (ADLPC=0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} = 1/f _{ADACK}
	Low power (ADLPC=1)		1.25	2	3.3		

Table A-14. 3	Volt 10-bit	ADC Chara	acteristics

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- A DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- A DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO): 98ASB42564B	REV: V	
8LD SOIC NARROW	I BODY	CASE NUMBER	20 NOV 2007		
		STANDARD: JE	EDEC MS-012AA		