

Welcome to E-XFL.COM

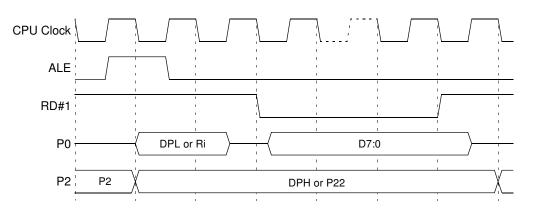
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

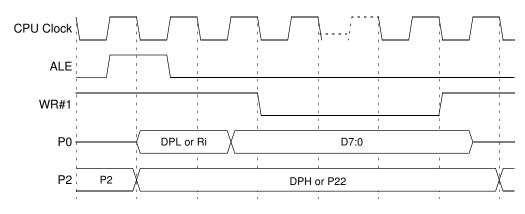
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ac3-rdtim


Email: info@E-XFL.COM

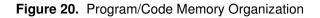
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

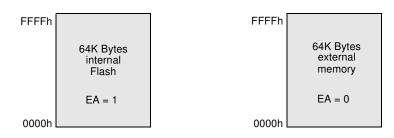

Pin Name	Туре	Description
P3.0:7	I/O	Port 3: Is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins that have 1's written to them are pulled high by the internal pull-up transistors and can be used as inputs in this state. As inputs, Port 3 pins that are being pulled low externally will be a source of current (I_{IL} , see section "Electrical Characteristic") because of the internal pull-ups. The output latch corresponding to a secondary function must be programmed to one for that function to operate (except for TxD and WR). The secondary functions are assigned to the pins of port 3 as follows:
		P3.0/RxD: Receiver data input (asynchronous) or data input/output (synchronous) of the serial interface P3.1/TxD: Transmitter data output (asynchronous) or clock output (synchronous) of the serial interface P3.2/INT0:
		External interrupt 0 input/timer 0 gate control input P3.3/INT1: External interrupt 1 input/timer 1 gate control input P3.4/T0:
		Timer 0 counter input P3.5/T1/SS: Timer 1 counter input SPI Slave Select P3.6/WR:
		External Data Memory write strobe; latches the data byte from port 0 into the external data memory P3.7/RD: External Data Memory read strobe; Enables the external data memory. It can drive CMOS inputs without external pull-ups.
P4.0:4	I/O	Port 4: Is an 2-bit bi-directional I/O port with internal pull-ups. Port 4 pins that have 1's written to them are pulled high by the internal pull-ups and can be used as inputs in this state. As inputs, Port 4 pins that are being pulled low externally will be a source of current (IIL, on the datasheet) because of the internal pull-up transistor. The secondary functions are assigned to the 5 pins of port 4 as follows: P4.0: Regular Port I/O
		P4.1: Regular Port I/O
		P4.2/MISO: Master Input Slave Output of SPI controller P4.3/SCK:
		Serial Clock of SPI controller P4.4/MOSI:
		Master Ouput Slave Input of SPI controller
		It can drive CMOS inputs without external pull-ups.

Notes: 1. RD# signal may be stretched using M0 bit in AUXR register.2. When executing MOVX @Ri instruction, P2 outputs SFR content.

Mode	Port 0	Port 1	Port 2	Port 3	Port 4	ALE	PSEN#
Reset	Floating	High	High	High	High	High	High
ldle (internal code)	Data	Data	Data	Data	Data	High	High
ldle (external code)	Floating	Data	Data	Data	Data	High	High
Power- Down(inter nal code)	Data	Data	Data	Data	Data	Low	Low
Power- Down (external code)	Floating	Data	Data	Data	Data	Low	Low

Table 9. Pin Conditions in Special Operating Modes





Program/Code Memory

The AT89C51AC3 implement 64K Bytes of on-chip program/code memory. Figure 20 shows the partitioning of internal and external program/code memory spaces depending on the product.

The Flash memory increases EPROM and ROM functionality by in-circuit electrical erasure and programming. Thanks to the internal charge pump, the high voltage needed for programming or erasing Flash cells is generated on-chip using the standard VDD voltage. Thus, the Flash Memory can be programmed using only one voltage and allows In-System Programming commonly known as ISP. Hardware programming mode is also available using specific programming tool.

Overview of FM0 Operations

Flash Registers (SFR)

The CPU interfaces to the flash memory through the FCON register, AUXR1 register and FSTA register.

These registers are used to map the column latches, HSB, extra row and EEDATA in the working data or code space.

FCON Register

Table 13. FCON Register

FCON Register (S:D1h) Flash Control Register

7	6	5	4	3	2	1	0		
FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY		
Bit Number	Bit Mnemonic	Description	Description						
7-4	FPL3:0	Write 5Xh fo	Programming Launch Command Bits Write 5Xh followed by AXh to launch the programming according to FMOD1:0. (see Table 16.)						
3	FPS	When this bi The MOVX @ When this bi	Flash Map Program Space When this bit is set: The MOVX @DPTR, A instruction writes in the columns latches space When this bit is cleared: The MOVX @DPTR, A instruction writes in the regular XDATA memory space						
2-1	FMOD1:0	Flash Mode See Table 16	Flash Mode See Table 16.						
0	FBUSY	Clear by har							

Reset Value= 0000 0000b

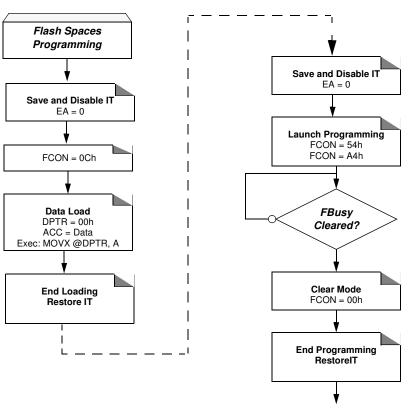


 Table 16.
 Programming Spaces

					T		
			Write to	FCON			
		FPL3:0	FPS	FMOD1	FMOD0	Operation	
		5	Х	0	0	No action	
	User	А	х	0	0	Write the column latches in user space	
		5	х	0	1	No action	
	Extra Row	А	Х	0	1	Write the column latches in extra row space	
	Hardware	5	Х	1	0	No action	
	Security Byte	А	х	1	0	Write the fuse bits space	
	Reset	5	х	1	1	No action	
	Columns Latches	А	х	1	1	Reset the column latches	
	 Notes: 1. The sequence 5xh and Axh must be executing without instructions between them otherwise the programming is not executed (see Flash Status Register) 2. The sequence 5xh and Axh must be executed with the same FMOD0 FMOD1 configuration. 3. Interrupts that may occur during programming time must be disabled to avoid any spurious exit of the programming mode. 						
Status of the Flash Memory	The hit FRI	ISV in ECO	N rogistor i	e used to ir	dicate the	status of programming.	
Status of the Hash Memory	FBUSY is s		-			status of programming.	
		-				ed mechine evels following the	
	sequence s during the i	5xh and Axh nsctruction h sequence	n in FCON. after the 52 e in FCON	Thus the F xh, Axh sec	BUSY flag	nd machine cycle following the should be read by sofware not the the second instruction after BUSY is cleared when the pro-	
	·* 厂 ******	*****	*****	*****	*****	***	
	,	launch_prog					
	,,	******	******	*****	******	***	
		IOV FCON, #					
		10V FCON # 10P	OAOh ; Flash Bequired	Write Sequend d time before r		lag	
	wait_bus		,		ouug 2009 .		
		IOV A,FCON					
		B ACC.0,wait_ ET	busy				
Selecting FM1	The bit EN	300T in Al	JXR1 regist	er is used t	o map FM1	from F800h to FFFFh.	
Loading the Column Latches	provides the	e capability	to program	the whole i	nemory by	aded in the column latches. This byte, by page or by any number o not have to be in consecutive	

Reset the Column Latches

An automatic reset of the column latches is performed after a successful Flash write sequence. User can also reset the column latches manually, for instance to reload the column latches before writing the Flash. The following procedure is summarized below.

- Save and disable the interrupts.
- Launch the reset by writing the data sequence 56h followed by A6h in FCON register (only from FM1).
- Restore the interrupts.

Error Reports

Flash Programming Sequence When a wrong sequence is detected, the SEQERR bit in FSTA register is set. Possible wrong sequence are :

- MOV FCON, 5xh instruction not immediately followed by a MOV FCON, Ax instruction.
- A write Flash sequence is launched while no data were loaded in the column latches

The SEQERR bit can be cleared

- By software
- By hardware when a correct programming sequence is completed

When multiple pages are written into the Flash, the user should check FSTA for errors after each write page sequences, not only at the end of the multiple write pages.

50 **AT89C51AC3**

Table	17.	Program	Lock Bit
-------	-----	---------	----------

Pro	gram Lo	ock Bits		
Security level	LB0	LB1	LB2	Protection Description
1	U	U	U	No program lock features enabled.
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further parallel programming of the Flash is disabled. ISP and software programming with API are still allowed. Writing EEprom Data from external parallel programmer is disabled but still allowed from internal code execution.
3	U	Ρ	U	Same as 2, also verify through parallel programming interface is disabled. Writing And Reading EEPROM Data from external parallel programmer is disabled but still allowed from internal code execution
4	U	U	Р	Same as 3, also external execution is disabled

Program Lock bits

U: unprogrammed

P: programmed

WARNING: Security level 2 and 3 should only be programmed after Flash and Core verification.

Table 22. Read MOVC A, @DPTR

	FCON Register							Hardware	Externa	
Code Execution	FMOD1	FMOD0	FPS	ENBOOT	DPTR	FM1	FM0	XROW	Byte	Code
				0	0000h to FFFFh		ОК			
	0	0	x		0000h to F7FF		ОК			
				1	F800h to FFFFh		Do not u	se this configu	uration	1
From FM0	0	1	х	х	0000 to 007Fh See ⁽¹⁾			ОК		
	1	0	Х	х	х				ОК	
			x	0	000h to FFFFh		OK			
	1	1		1	0000h to F7FF		ОК			
					F800h to FFFFh	Do not use this configuration				
				4	0000h to F7FF		ОК			
			0	1	F800h to FFFFh	OK				
	0	0	1	0	х			NA		
				1	х		ОК			
				0	х			NA		
From FM1 (ENBOOT =1	0	1	х	1	0000h to 007h			OK		
	0	I	~	0	See (2)			NA		-
	1	0	х	1	x				ОК	
		Ű	~	0	~			NA		
	1	1	х	1	000h to FFFFh		OK			
				0				NA		i
External code : EA=0 or Code Roll Over	х	0	х	x	х					ОК

1. For DPTR higher than 007Fh only lowest 7 bits are decoded, thus the behavior is the same as for addresses from 0000h to 007Fh

 For DPTR higher than 007Fh only lowest 7 bits are decoded, thus the behavior is the same as for addresses from 0000h to 007Fh

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

Registers

Table 25. SCON Register

SCON (S:98h) Serial Control Register

7	6	5	4	3	2	1	0	
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI	
Bit Number	Bit Mnemonic	Description						
7	FE	Clear to rese			d by a valid sto t is detected.	op bit.		
	SM0		lode bit 0 (Si for serial por	MOD0=0) t mode select	ion.			
6	SM1	Serial port N SM0 SM1 0 0 1 0 1 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
5	SM2	Clear to disa	ble multiproce	essor commur	ication feature	t ion Enable b e. n mode 2 and		
4	REN		nable bit ble serial rece serial recept					
3	TB8	Clear to trans	Bit 8/Ninth b smit a logic 0 nit a logic 1 in	in the 9th bit.	in modes 2 a	and 3		
2	RB8	Cleared by h	Receiver Bit 8/Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1.					
1	TI	Clear to ackr Set by hardw	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.					
0	RI	Clear to ackr Set by hardw	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 33. and Figure 34. in the other modes.					

Reset Value = 0000 0000b Bit addressable

Table 26. SADEN Register

SADEN (S:B9h) Slave Address Mask Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0		Mask Data for Slave Individual Address					

Reset Value = 0000 0000b Not bit addressable

Table 27. SADDR Register

SADDR (S:A9h) Slave Address Register

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	-		
Bit Number	Bit Mnemonic	Description	Description						
7-0		Slave Individual Address							

Reset Value = 0000 0000b Not bit addressable

Table 28. SBUF Register

SBUF (S:99h) Serial Data Buffer

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	
Bit Number	Bit Mnemonic	Description						
7-0		Data sent/re	Data sent/received by Serial I/O Port					

Reset Value = 0000 0000b Not bit addressable

Table 29. PCON Register

PCON (S:87h) Power Control Register

7	6	5	4	3	2	1	0		
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic	Description	escription						
7	SMOD1	Serial port I Set to select		rate in mode 1	l, 2 or 3.				
6	SMOD0			SCON register ON register.	ſ.				
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not se	et this bit.			
4	POF	Clear to reco	Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.						
3	GF1	Cleared by u	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.						
2	GF0	Cleared by u	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.						
1	PD	Cleared by h	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL	Idle mode b Clear by har Set to enter	dware when ir	nterrupt or res	et occurs.				

Reset Value = 00X1 0000b Not bit addressable

R

Timers/Counters	The AT89C51AC3 implements two general-purpose, 16-bit Timers/Counters. Such are identified as Timer 0 and Timer 1, and can be independently configured to operate in a variety of modes as a Timer or an event Counter. When operating as a Timer, the Timer/Counter runs for a programmed length of time, then issues an interrupt request. When operating as a Counter, the Timer/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues an interrupt request. The various operating modes of each Timer/Counter are described in the following sections.
Timer/Counter Operations	A basic operation is Timer registers THx and TLx ($x = 0, 1$) connected in cascade to form a 16-bit Timer. Setting the run control bit (TRx) in TCON register (see Figure 30) turns the Timer on by allowing the selected input to increment TLx. When TLx overflows it increments THx; when THx overflows it sets the Timer overflow flag (TFx) in TCON register. Setting the TRx does not clear the THx and TLx Timer registers. Timer registers can be accessed to obtain the current count or to enter preset values. They can be read at any time but TRx bit must be cleared to preset their values, otherwise the behavior of the Timer/Counter is unpredictable.
	The C/Tx# control bit selects Timer operation or Counter operation by selecting the divided-down peripheral clock or external pin Tx as the source for the counted signal. TRx bit must be cleared when changing the mode of operation, otherwise the behavior of the Timer/Counter is unpredictable.
	For Timer operation (C/Tx# = 0), the Timer register counts the divided-down peripheral clock. The Timer register is incremented once every peripheral cycle (6 peripheral clock periods). The Timer clock rate is $F_{PER}/6$, i.e. $F_{OSC}/12$ in standard mode or $F_{OSC}/6$ in X2 mode.
	For Counter operation (C/Tx# = 1), the Timer register counts the negative transitions on the Tx external input pin. The external input is sampled every peripheral cycles. When the sample is high in one cycle and low in the next one, the Counter is incremented. Since it takes 2 cycles (12 peripheral clock periods) to recognize a negative transition, the maximum count rate is $F_{PER}/12$, i.e. $F_{OSC}/24$ in standard mode or $F_{OSC}/12$ in X2 mode. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full peripheral cycle.
Timer 0	Timer 0 functions as either a Timer or event Counter in four modes of operation. Figure 35 to Figure 38 show the logical configuration of each mode.
	Timer 0 is controlled by the four lower bits of TMOD register (see Figure 31) and bits 0, 1, 4 and 5 of TCON register (see Figure 30). TMOD register selects the method of Timer gating (GATE0), Timer or Counter operation (T/C0#) and mode of operation (M10 and M00). TCON register provides Timer 0 control functions: overflow flag (TF0), run control bit (TR0), interrupt flag (IE0) and interrupt type control bit (IT0).
	For normal Timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by the selected input. Setting GATE0 and TR0 allows external pin INT0# to control Timer operation.
	Timer 0 overflow (count rolls over from all 1s to all 0s) sets TF0 flag generating an inter- rupt request.
	It is important to stop Timer/Counter before changing mode.

Table 31. TMOD Register

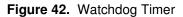
TMOD (S:89h) Timer/Counter Mode Control Register

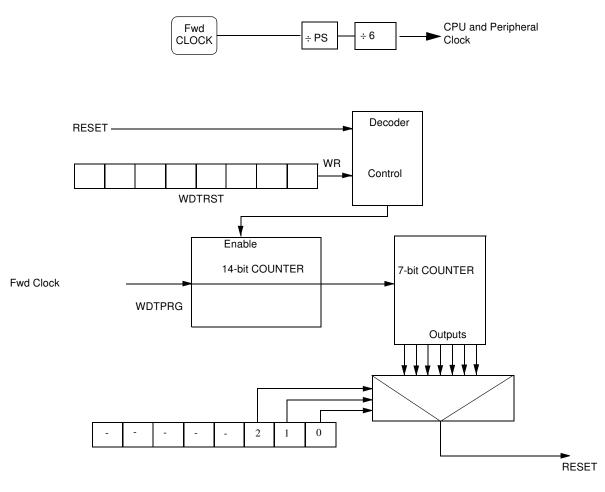
7	6	5	4	3	2	1	0	
GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00	
Bit Number	Bit Mnemonic	Description						
7	GATE1	Clear to enal		Bit henever TR1 k / while INT1# p		TR1 bit is se	t.	
6	C/T1#	Clear for Tim	Timer 1 Counter/Timer Select Bit Clear for Timer operation: Timer 1 counts the divided-down system clock. Set for Counter operation: Timer 1 counts negative transitions on external pin T1.					
5	M11		le Select Bits	-				
4	M01	<u>M11 M01</u> 0 0 0 1 1 0 1 1	 Mode 1: 16-bit Timer/Counter. Mode 2: 8-bit auto-reload Timer/Counter (TL1)⁽¹⁾ 					
3	GATE0	Clear to enal	Timer 0 Gating Control Bit Clear to enable Timer 0 whenever TR0 bit is set. Set to enable Timer/Counter 0 only while INT0# pin is high and TR0 bit is set.					
2	C/T0#	Clear for Tim	Timer 0 Counter/Timer Select Bit Clear for Timer operation: Timer 0 counts the divided-down system clock. Set for Counter operation: Timer 0 counts negative transitions on external pin T0.					
1	M10	Mine Mode Select Bit M10 M00 Operating mode 0 0 Mode 0: 8-bit Timer/Counter (TH0) with 5-bit prescaler (TL0). 0 1 Mode 1: 16-bit Timer/Counter.						
0	M00	1 0 1 1	Mode 2: 8- Mode 3: Tl	bit auto-reload L0 is an 8-bit T g Timer 1's TF	I Timer/Counter	. ,		

1. Reloaded from TH1 at overflow.

2. Reloaded from TH0 at overflow.

Reset Value = 0000 0000b


Watchdog Timer


AT89C51AC3 contains a powerful programmable hardware Watchdog Timer (WDT) that automatically resets the chip if it software fails to reset the WDT before the selected time interval has elapsed. It permits large Time-Out ranking from 16ms to 2s @Fosc = 12MHz in X1 mode.

This WDT consists of a 14-bit counter plus a 7-bit programmable counter, a Watchdog Timer reset register (WDTRST) and a Watchdog Timer programming (WDTPRG) register. When exiting reset, the WDT is -by default- disable.

To enable the WDT, the user has to write the sequence 1EH and E1H into WDTRST register no instruction in between. When the Watchdog Timer is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is $96xT_{OSC}$, where $T_{OSC}=1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset

Note: When the Watchdog is enable it is impossible to change its period.

Watchdog Programming

The three lower bits (S0, S1, S2) located into WDTPRG register permit to program the WDT duration.

Table 42. Machine Cycle Count

S2	S1	S0	Machine Cycle Count
0	0	0	2 ¹⁴ - 1
0	0	1	2 ¹⁵ - 1
0	1	0	2 ¹⁶ - 1
0	1	1	2 ¹⁷ - 1
1	0	0	2 ¹⁸ - 1
1	0	1	2 ¹⁹ - 1
1	1	0	2 ²⁰ - 1
1	1	1	2 ²¹ - 1

To compute WD Time-Out, the following formula is applied:

$$FTime - Out = \frac{F_{wd}}{12 \times ((2^{14} \times 2^{Svalue}) - 1))}$$

Note: Svalue represents the decimal value of (S2 S1 S0)

The following table outlines the time-out value for $\mathsf{Fosc}_{\mathsf{XTAL}}$ = 12 MHz in X1 mode

S2	S1	S0	Fosc = 12 MHz	Fosc = 16 MHz	Fosc = 20 MHz
0	0	0	16.38 ms	12.28 ms	9.82 ms
0	0	1	32.77 ms	24.57 ms	19.66 ms
0	1	0	65.54 ms	49.14 ms	39.32 ms
0	1	1	131.07 ms	98.28 ms	78.64 ms
1	0	0	262.14 ms	196.56 ms	157.28 ms
1	0	1	524.29 ms	393.12 ms	314.56 ms
1	1	0	1.05 s	786.24 ms	629.12 ms
1	1	1	2.10 s	1.57 s	1.25 s

Table 43. Time-Out Computation

Bit Number	Bit Mnemonic	Description
4	MODF	Mode Fault - Set by hardware to indicate that the SS pin is in inappropriate logic level (in both master and slave modes). - Cleared by hardware when reading SPSCR When MODF error occurred: - In slave mode: SPI interface ignores all transmitted data while SS remains high. A new transmission is perform as soon as SS returns low. - In master mode: SPI interface is disabled (SPEN=0, see description for SPEN bit in SPCON register).
3	SPTE	Serial Peripheral Transmit register Empty - Set by hardware when transmit register is empty (if needed, SPDAT can be loaded with another data). - Cleared by hardware when transmit register is full (no more data should be loaded in SPDAT).
2	UARTM	Serial Peripheral UART mode Set and cleared by software: - Clear: Normal mode, data are transmitted MSB first (default) - Set: UART mode, data are transmitted LSB first.
1	SPTEIE	Interrupt Enable for SPTE Set and cleared by software: - Set to enable SPTE interrupt generation (when SPTE goes high, an interrupt is generated). - Clear to disable SPTE interrupt generation Caution: When SPTEIE is set no interrupt generation occurred when SPIF flag goes high. To enable SPIF interrupt again, SPTEIE should be cleared.
0	MODFIE	Interrupt Enable for MODF Set and cleared by software: - Set to enable MODF interrupt generation - Clear to disable MODF interrupt generation

Reset Value = 00X0 XXXXb

Not Bit addressable

Analog-to-Digital Converter (ADC)	This section describes the on-chip 10 bit analog-to-digital converter of the AT89C51AC3. Eight ADC channels are available for sampling of the external sources AN0 to AN7. An analog multiplexer allows the single ADC converter to select one from the 8 ADC channels as ADC input voltage (ADCIN). ADCIN is converted by the 10-bit cascaded potentiometric ADC.				
	Two kinds of conversion are available: - Standard conversion (8 bits). - Precision conversion (10 bits).				
	For the precision conversion, set bit PSIDLE in ADCON register and start conversion. The device is in a pseudo-idle mode, the CPU does not run but the peripherals are always running. This mode allows digital noise to be as low as possible, to ensure high precision conversion.				
	For this mode it is necessary to work with end of conversion interrupt, which is the only way to wake the device up.				
	If another interrupt occurs during the precision conversion, it will be treated only after this conversion is ended.				
Features	 8 channels with multiplexed inputs 10-bit cascaded potentiometric ADC Conversion time 16 micro-seconds (typ.) Zero Error (offset) ± 2 LSB max Positive External Reference Voltage Range (VREF) 2.4 to 3.0Volt (typ.) ADCIN Range 0 to 3Volt Integral non-linearity typical 1 LSB, max. 2 LSB Differential non-linearity typical 0.5 LSB, max. 1 LSB Conversion Complete Flag or Conversion Complete Interrupt Selectable ADC Clock 				
ADC Port1 I/O Functions	Port 1 pins are general I/O that are shared with the ADC channels. The channel select bit in ADCF register define which ADC channel/port1 pin will be used as ADCIN. The remaining ADC channels/port1 pins can be used as general-purpose I/O or as the alternate function that is available.				

A conversion launched on a channel which are not selected on ADCF register will not have any effect.

Registers

Table 58. ADCF Register

ADCF (S:F6h) ADC Configuration

7	6	5	4	3	2	1	0	
CH 7	CH 6	CH 5	CH 4	CH 3	CH 2	CH 1	CH 0	
Bit Number	Bit Mnemonic	Description						
7-0	CH 0:7	Channel Configuration Set to use P1.x as ADC input. Clear to use P1.x as standart I/O port.						

Reset Value =0000 0000b

Table 59. ADCON Register

ADCON (S:F3h) ADC Control Register

7	6	5	4	3	2	1	0			
-	PSIDLE	ADEN	ADEOC	ADSST	SCH2	SCH1	SCH0			
Bit Number	Bit Mnemonic	Description	Description							
7	-									
6	PSIDLE	Set to put in	Pseudo Idle Mode (Best Precision) Set to put in idle mode during conversion Clear to convert without idle mode.							
5	ADEN	Set to enable	Enable/Standby Mode Set to enable ADC Clear for Standby mode (power dissipation 1 uW).							
4	ADEOC	Set by hardw interrupt.	End Of Conversion Set by hardware when ADC result is ready to be read. This flag can generate an interrupt. Must be cleared by software.							
3	ADSST	Set to start a	Start and Status Set to start an A/D conversion. Cleared by hardware after completion of the conversion							
2-0	SCH2:0	Selection of see Table 57	Channel to	Convert						

Reset Value =X000 0000b

Table 66. IEN1 Register

IEN1 (S:E8h) Interrupt Enable Register

7	6	5	4	3	2	1	0		
-	-	-	-	ESPI	-	EADC	-		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
6	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	ESPI	Clear to disa	SPI Interrupt Enable bit Clear to disable the SPI interrupt. Set to enable the SPI interrupt.						
2	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
1	EADC	Clear to disa	ADC Interrupt Enable bit Clear to disable the ADC interrupt. Set to enable the ADC interrupt.						
0	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			

Reset Value = xxxx 0x0xb bit addressable