

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ac3-rdtum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Configuration

AT89C51AC3

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
IEN0	A8h	Interrupt Enable Control 0	EA	EC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	E8h	Interrupt Enable Control 1	_	_	_	_	ESPI	_	EADC	_
IPL0	B8h	Interrupt Priority Control Low 0	_	PPC	PT2	PS	PT1	PX1	PT0	PX0
IPH0	B7h	Interrupt Priority Control High 0	_	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
IPL1	F8h	Interrupt Priority Control Low 1	_	_	_	_	SPIL	_	PADCL	_
IPH1	F7h	Interrupt Priority Control High1	_	_	_	_	SPIH	_	PADCH	_

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ADCON	F3h	ADC Control	-	PSIDLE	ADEN	ADEOC	ADSST	SCH2	SCH1	SCH0
ADCF	F6h	ADC Configuration	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	CH0
ADCLK	F2h	ADC Clock	-	_	-	PRS4	PRS3	PRS2	PRS1	PRS0
ADDH	F5h	ADC Data High byte	ADAT9	ADAT8	ADAT7	ADAT6	ADAT5	ADAT4	ADAT3	ADAT2
ADDL	F4h	ADC Data Low byte	-	_	-	_	-	-	ADAT1	ADAT0

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	D4h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	CPHA	SPR1	SPR0
SPSCR	D5h	SPI Status and Control	SPIF	_	OVR	MODF	SPTE	UARTM	SPTEIE	MOFIE
SPDAT	D6h	SPI Data	_	_	-	—	-	-	-	-
Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
AUXR	8Eh	Auxiliary Register 0	DPU	VPFDP	M0	XRS2	XRS1	XRS0	EXTRAM	A0
AUXR1	A2h	Auxiliary Register 1	-	-	ENBOOT	_	GF3	0	-	DPS
CKCON0	8Fh	Clock Control 0	-	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2
CKCON1	9Fh	Clock Control 1	-	-	-	_	-	-	-	SPIX2
FCON	D1h	Flash Control	FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY
EECON	D2h	EEPROM Contol	EEPL3	EEPL2	EEPL1	EEPL0	-	-	EEE	EEBUSY
FSTA	D3	Flash Status	-	-	-	-	-	-	SEQERR	FLOAD

Figure 5. Clock CPU Generation Diagram

Registers

Table 2. CKCON0 Register

CKCON0 (S:8Fh) Clock Control Register

7	6	5	4	3	2	1	0				
-	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2				
Bit Number	Bit Mnemonic	Description									
7	-	Reserved The value re	Reserved The value read from this bits is indeterminate. Do not set this bit.								
6	WDX2	WatchDog of Clear to sele Set to select	l ock ⁽¹⁾ ct 6 clock per 12 clock peri	iods per perip ods per periph	heral clock cy leral clock cyc	cle. le.					
5	PCAX2	Programma Clear to sele Set to select	rogrammable Counter Array clock ⁽¹⁾ lear to select 6 clock periods per peripheral clock cycle. tet to select 12 clock periods per peripheral clock cycle.								
4	SIX2	Enhanced U Clear to sele Set to select	Enhanced UART clock (MODE 0 and 2) ⁽¹⁾ Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.								
3	T2X2	Timer2 cloc Clear to sele Set to select	k ⁽¹⁾ ct 6 clock per 12 clock peri	iods per perip ods per peripł	heral clock cyo neral clock cyc	cle. le.					
2	T1X2	Timer1 cloc Clear to sele Set to select	k ⁽¹⁾ ct 6 clock per 12 clock peri	iods per perip ods per periph	heral clock cy leral clock cyc	cle. le.					
1	T0X2	Timer0 cloc Clear to sele Set to select	k ⁽¹⁾ ct 6 clock per 12 clock peri	iods per perip ods per periph	heral clock cy leral clock cyc	cle. le.					
0	X2	CPU clock Clear to sele the periphera Set to select individual pe	CPU clock Clear to select 12 clock periods per machine cycle (STD mode) for CPU and all the peripherals. Set to select 6 clock periods per machine cycle (X2 mode) and to enable the individual peripherals "X2"bits.								
Note: 1.	This contro	l bit is valida	ted when th	e CPU clock	bit X2 is set	; when X2 is	low, this bit				

has no effect.

Reset Value = x000 0000b

External Space

Memory Interface

The external memory interface comprises the external bus (port 0 and port 2) as well as the bus control signals (RD#, WR#, and ALE).

Figure 10 shows the structure of the external address bus. P0 carries address A7:0 while P2 carries address A15:8. Data D7:0 is multiplexed with A7:0 on P0. Table 5 describes the external memory interface signals.

Figure 10. External Data Memory Interface Structure

Table 5.	External	Data N	/lemorv	Interface	Signals
	External	Duiun	nemery	menuoc	orginalo

Signal Name	Туре	Description	Alternative Function
A15:8	0	Address Lines Upper address lines for the external bus.	P2.7:0
AD7:0	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0
ALE	0	Address Latch Enable ALE signals indicates that valid address information are available on lines AD7:0.	-
RD#	0	Read Read signal output to external data memory.	P3.7
WR#	0	Write Write signal output to external memory.	P3.6

External Bus Cycles

This section describes the bus cycles the AT89C51AC3 executes to read (see Figure 11), and write data (see Figure 12) in the external data memory.

External memory cycle takes 6 CPU clock periods. This is equivalent to 12 oscillator clock period in standard mode or 6 oscillator clock periods in X2 mode. For further information on X2 mode.

Slow peripherals can be accessed by stretching the read and write cycles. This is done using the M0 bit in AUXR register. Setting this bit changes the width of the RD# and WR# signals from 3 to 15 CPU clock periods.

For simplicity, the accompanying figures depict the bus cycle waveforms in idealized form and do not provide precise timing information. For bus cycle timing parameters refer to the Section "AC Characteristics" of the AT89C51AC3 datasheet.

Registers

Table 10.PCON RegisterPCON (S87:h)Power configuration Register

7	6	5	4	3	2	1	0					
-	-	-	-	GF1	GF0	PD	IDL					
Bit Number	Bit Mnemonic	Description	Description									
7-4	-	Reserved The value re	Reserved The value read from these bits is indeterminate. Do not set these bits.									
3	GF1	General Pur One use is to during Idle m	General Purpose flag 1 One use is to indicate whether an interrupt occurred during normal operation or during Idle mode.									
2	GF0	General Pur One use is to during Idle m	pose flag 0 indicate whe iode.	ether an interru	pt occurred d	uring normal c	operation or					
1	PD	Power-Down Cleared by h Set to activa If IDL and PI	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.									
0	IDL	Idle Mode b Cleared by h Set to activa If IDL and PI	dle Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Idle mode. If IDL and PD are both set, PD takes precedence.									

Reset Value= XXXX 0000b

Examples

```
;* DPTR contain address to read.
;* Acc contain the reading value
;* NOTE: before execute this function, be sure the EEPROM is not BUSY
api_rd_eeprom_byte:
MOV EECON, #02h; map EEPROM in XRAM space
MOVX A, @DPTR
MOV EECON, #00h; unmap EEPROM
ret
;* NAME: api_ld_eeprom_cl
;* DPTR contain address to load
;* Acc contain value to load
;* NOTE: in this example we load only 1 byte, but it is possible upto
;* 128 Bytes.
;* before execute this function, be sure the EEPROM is not BUSY
api_ld_eeprom_cl:
MOV EECON, #02h ; map EEPROM in XRAM space
MOVX @DPTR, A
MOVEECON, #00h; unmap EEPROM
ret
;* NAME: api_wr_eeprom
;* NOTE: before execute this function, be sure the EEPROM is not BUSY
******
api_wr_eeprom:
MOV EECON, #050h
MOV EECON, #0A0h
ret
```


Program/Code Memory

The AT89C51AC3 implement 64K Bytes of on-chip program/code memory. Figure 20 shows the partitioning of internal and external program/code memory spaces depending on the product.

The Flash memory increases EPROM and ROM functionality by in-circuit electrical erasure and programming. Thanks to the internal charge pump, the high voltage needed for programming or erasing Flash cells is generated on-chip using the standard VDD voltage. Thus, the Flash Memory can be programmed using only one voltage and allows In-System Programming commonly known as ISP. Hardware programming mode is also available using specific programming tool.

Hardware Security Byte

 Table 24.
 Hardware Security Byte

7	6	5	4	3	2	1	0				
X2B	BLJB	-	-	-	LB2	LB1	LB0				
Bit Number	Bit Mnemonic	Description	Description								
7	X2B	X2 Bit Set this bit to Clear this bit	2 Bit Set this bit to start in standard mode Clear this bit to start in X2 mode.								
6	BLJB	Boot Loader - 1: To start th - 0: To start th	JumpBit ne user's app ne boot loade	lication on nex r(@F800h) loo	kt RESET (@0 cated in FM1.	0000h) locatec	l in FM0,				
5-3	-	Reserved The value rea	Reserved The value read from these bits are indeterminate.								
2-0	LB2:0	Lock Bits									

Default value after erasing chip: FFh

Notes: 1. Only the 4 MSB bits can be accessed by software.

2. The 4 LSB bits can only be accessed by parallel mode.

Serial I/O Port

The AT89C51AC3 I/O serial port is compatible with the I/O serial port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as a Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

Figure 31. Serial I/O Port Block Diagram

Framing Error Detection Framing bit error detection is provided for the three asynchronous modes. To enable the framing bit error detection feature, set SMOD0 bit in PCON register.

Figure 32. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register bit is set.

The software may examine the FE bit after each reception to check for data errors. Once set, only software or a reset clears the FE bit. Subsequently received frames with valid stop bits cannot clear the FE bit. When the FE feature is enabled, RI rises on the stop bit instead of the last data bit (See Figure 33. and Figure 34.).

60 **AT89C51AC3**

Figure 33. UART Timing in Mode 1

Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in the hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address will the receiver set the RI bit in the SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If necessary, you can enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

Note: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

Table 31. TMOD Register

TMOD (S:89h) Timer/Counter Mode Control Register

7	6	5	4	3	2	1	0			
GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00			
Bit Number	Bit Mnemonic	Description								
7	GATE1	Timer 1 Gati Clear to enal Set to enable	Timer 1 Gating Control Bit Clear to enable Timer 1 whenever TR1 bit is set. Set to enable Timer 1 only while INT1# pin is high and TR1 bit is set.							
6	C/T1#	Timer 1 Cou Clear for Tim Set for Coun	imer 1 Counter/Timer Select Bit Clear for Timer operation: Timer 1 counts the divided-down system clock. Set for Counter operation: Timer 1 counts negative transitions on external pin T1.							
5	M11	Timer 1 Mod	le Select Bits	s .						
4	M01	<u>M11 M01</u> 0 0 0 1 1 0 1 1	M11 M01 Operating mode 0 0 Mode 0: 8-bit Timer/Counter (TH1) with 5-bit prescaler (TL1). 0 1 Mode 1: 16-bit Timer/Counter. 1 0 Mode 2: 8-bit auto-reload Timer/Counter (TL1) ⁽¹⁾ 1 1 Mode 3: Timer 1 halted. Retains count							
3	GATE0	Timer 0 Gati Clear to enal Set to enable	ing Control E ble Timer 0 w e Timer/Coun	Bit henever TR0 b ter 0 only while	oit is set. e INT0# pin is	high and TR() bit is set.			
2	C/T0#	Timer 0 Cou Clear for Tim Set for Coun	nter/Timer S er operation: ter operation:	elect Bit Timer 0 count Timer 0 count	s the divided- s negative tra	down system nsitions on ex	clock. ternal pin T0.			
1	M10	Timer 0 Moc <u>M10</u> <u>M00</u> 0 0	le Select Bit Operating Mode 0: 8-	mode bit Timer/Cour	nter (TH0) wit	h 5-bit presca	ler (TL0).			
0	M00	1 0 1 1 TH0 is an 8-I	Mode 1: 16 Mode 2: 8- Mode 3: Tl pit Timer usin	bit auto-reload L0 is an 8-bit T g Timer 1's TF	Timer/Count Timer/Counter 0 and TF0 bi	er (TL0) ⁽²⁾ ts.				

1. Reloaded from TH1 at overflow.

2. Reloaded from TH0 at overflow.

Reset Value = 0000 0000b

Registers

Table 36. T2CON Register

T2CON (S:C8h) Timer 2 Control Register

7	6	5	4	3	2	1	0				
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#				
Bit Number	Bit Mnemonic	Description									
7	TF2	Timer 2 Ove TF2 is not se Must be clea Set by hardw	Timer 2 Overflow Flag TF2 is not set if RCLK=1 or TCLK = 1. Must be cleared by software. Set by hardware on timer 2 overflow.								
6	EXF2	Timer 2 Externation Set when a created EXEN2=1. Set to cause is enabled. Must be clear	Fimer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. Set to cause the CPU to vector to timer 2 interrupt routine when timer 2 interrupt s enabled. Must be cleared by software.								
5	RCLK	Receive Clo Clear to use Set to use tir	Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.								
4	TCLK	Transmit Cle Clear to use Set to use tir	ock bit timer 1 overfl ner 2 overflow	ow as transmit v as transmit c	t clock for seri lock for serial	al port in mod port in mode	e 1 or 3. 1 or 3.				
3	EXEN2	Timer 2 Exte Clear to igno Set to cause detected, if ti	ernal Enable re events on a capture or mer 2 is not u	bit T2EX pin for ti reload when a ised to clock tl	mer 2 operation negative tran ne serial port.	on. sition on T2E)	X pin is				
2	TR2	Timer 2 Run Clear to turn Set to turn of	off timer 2.								
1	C/T2#	Timer/Coun Clear for time Set for count	ter 2 Select b er operation (i er operation (hit nput from inte input from T2	rnal clock sys input pin).	tem: F _{OSC}).					
0	CP/RL2#	Timer 2 Cap If RCLK=1 or timer 2 overf Clear to auto EXEN2=1. Set to captur	ture/Reload r TCLK=1, CF low. -reload on tim e on negative	bit VRL2# is ignor her 2 overflows transitions or	red and timer i s or negative t n T2EX pin if E	is forced to au ransitions on EXEN2=1.	ito-reload on T2EX pin if				

Reset Value = 0000 0000b Bit addressable

Table 39. TL2 Register

TL2 (S:CCh) Timer 2 Low Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0		Low Byte of	Timer 2.				

Reset Value = 0000 0000b Not bit addressable

Table 40. RCAP2H Register

RCAP2H (S:CBh) Timer 2 Reload/Capture High Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0		High Byte of Timer 2 Reload/Capture.					

Reset Value = 0000 0000b Not bit addressable

Table 41. RCAP2L Register

RCAP2L (S:CAH) TIMER 2 Reload/Capture Low Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0		Low Byte of Timer 2 Reload/Capture.					

Reset Value = 0000 0000b Not bit addressable

As shown in Figure 46, the first SCK edge is the MSB capture strobe. Therefore, the Slave must begin driving its data before the first SCK edge, and a falling edge on the \overline{SS} pin is used to start the transmission. The \overline{SS} pin must be toggled high and then low between each Byte transmitted (Figure 48).

Figure 47 shows an SPI transmission in which CPHA is '1'. In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore, the Slave uses the first SCK edge as a start transmission signal. The SS pin can remain low between transmissions (Figure 48). This format may be preferred in systems having only one Master and only one Slave driving the MISO data line.

Queuing transmission For an SPI configured in master or slave mode, a queued data byte must be transmitted/received immediately after the previous transmission has completed.

Programmable Counter Array (PCA)

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture modules. Its clock input can be programmed to count any of the following signals:

- PCA clock frequency/6 (see "clock" section)
- PCA clock frequency/2
- Timer 0 overflow
- External input on ECI (P1.2)

Each compare/capture modules can be programmed in any one of the following modes:

- rising and/or falling edge capture,
- software timer,
- high-speed output,
- pulse width modulator.

Module 4 can also be programmed as a WatchDog timer. see the "PCA WatchDog Timer" section.

When the compare/capture modules are programmed in capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/Os. These pins are listed below. If the port is not used for the PCA, it can still be used for standard I/O.

PCA Component	External I/O Pin
16-bit Counter	P1.2/ECI
16-bit Module 0	P1.3/CEX0
16-bit Module 1	P1.4/CEX1
16-bit Module 2	P1.5/CEX2
16-bit Module 3	P1.6/CEX3
16-bit Module 4	P1.7/CEX4

PCA Timer

The PCA timer is a common time base for all five modules (see Figure 53). The timer count source is determined from the CPS1 and CPS0 bits in the CMOD SFR (see Table 8) and can be programmed to run at:

- 1/6 the PCA clock frequency.
- 1/2 the PCA clock frequency.
- the Timer 0 overflow.
- the input on the ECI pin (P1.2).

EADC = 1 // clear the field SCH[2:0] ADCON and = F8h // Select the channel ADCON | = channel // Start conversion in precision mode ADCON | = 48h

Note: to enable the ADC interrupt: EA = 1

Bit Number	Bit Mnemonic	Description
7-2	-	Reserved The value read from these bits are indeterminate. Do not set these bits.
1-0	ADAT1:0	ADC result bits 1-0

Reset Value = 00h

Table 66. IEN1 Register

IEN1 (S:E8h) Interrupt Enable Register

7	6	5	4	3	2	1	0
-	-	-	-	ESPI	-	EADC	-
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.				
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	ESPI	SPI Interrupt Enable bit Clear to disable the SPI interrupt. Set to enable the SPI interrupt.					
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					
1	EADC	ADC Interrupt Enable bit Clear to disable the ADC interrupt. Set to enable the ADC interrupt.					
0	-	Reserved The value read from this bit is indeterminate. Do not set this bit.					

Reset Value = xxxx 0x0xb bit addressable