

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LCC (J-Lead)
Supplier Device Package	52-PLCC (19.15x19.15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ac3-s3sum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Туре	Description
P3.0:7	I/O	Port 3: Is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins that have 1's written to them are pulled high by the internal pull-up transistors and can be used as inputs in this state. As inputs, Port 3 pins that are being pulled low externally will be a source of current (I_{IL} , see section "Electrical Characteristic") because of the internal pull-ups. The output latch corresponding to a secondary function must be programmed to one for that function to operate (except for TxD and WR). The secondary functions are assigned to the pins of port 3 as follows:
		P3.0/RxD: Receiver data input (asynchronous) or data input/output (synchronous) of the serial interface P3.1/TxD: Transmitter data output (asynchronous) or clock output (synchronous) of the serial interface P3.2/INT0:
		External interrupt 0 input/timer 0 gate control input P3.3/INT1: External interrupt 1 input/timer 1 gate control input P3.4/T0:
		Timer 0 counter input P3.5/T1/SS: Timer 1 counter input SPI Slave Select P3.6/WR:
		External Data Memory write strobe; latches the data byte from port 0 into the external data memory P3.7/RD: External Data Memory read strobe; Enables the external data memory. It can drive CMOS inputs without external pull-ups.
P4.0:4	I/O	Port 4: Is an 2-bit bi-directional I/O port with internal pull-ups. Port 4 pins that have 1's written to them are pulled high by the internal pull-ups and can be used as inputs in this state. As inputs, Port 4 pins that are being pulled low externally will be a source of current (IIL, on the datasheet) because of the internal pull-up transistor. The secondary functions are assigned to the 5 pins of port 4 as follows: P4.0: Regular Port I/O
		P4.1: Regular Port I/O
		P4.2/MISO: Master Input Slave Output of SPI controller P4.3/SCK:
		Serial Clock of SPI controller P4.4/MOSI:
		Master Ouput Slave Input of SPI controller
		It can drive CMOS inputs without external pull-ups.

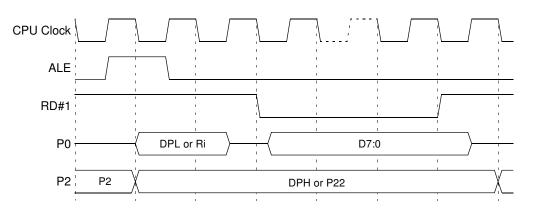
AT89C51AC3

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
IEN0	A8h	Interrupt Enable Control 0	EA	EC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	E8h	Interrupt Enable Control 1	_	_	_	_	ESPI	_	EADC	_
IPL0	B8h	Interrupt Priority Control Low 0	_	PPC	PT2	PS	PT1	PX1	PT0	PX0
IPH0	B7h	Interrupt Priority Control High 0	_	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
IPL1	F8h	Interrupt Priority Control Low 1	_	_	_	_	SPIL	_	PADCL	_
IPH1	F7h	Interrupt Priority Control High1	_	_	_	_	SPIH	_	PADCH	_

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ADCON	F3h	ADC Control	-	PSIDLE	ADEN	ADEOC	ADSST	SCH2	SCH1	SCH0
ADCF	F6h	ADC Configuration	CH7	CH6	CH5	CH4	СНЗ	CH2	CH1	CH0
ADCLK	F2h	ADC Clock	-	-	_	PRS4	PRS3	PRS2	PRS1	PRS0
ADDH	F5h	ADC Data High byte	ADAT9	ADAT8	ADAT7	ADAT6	ADAT5	ADAT4	ADAT3	ADAT2
ADDL	F4h	ADC Data Low byte	_	_	_	_	_	_	ADAT1	ADAT0

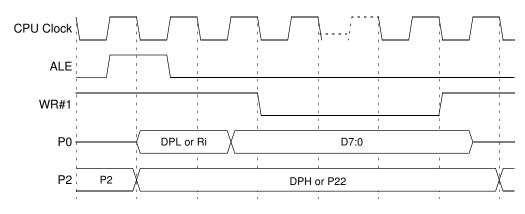
Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	D4h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	СРНА	SPR1	SPR0
SPSCR	D5h	SPI Status and Control	SPIF	_	OVR	MODF	SPTE	UARTM	SPTEIE	MOFIE
SPDAT	D6h	SPI Data	_	_	_	_	_	-	_	_
Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
AUXR	8Eh	Auxiliary Register 0	DPU	VPFDP	M0	XRS2	XRS1	XRS0	EXTRAM	A0
AUXR1	A2h	Auxiliary Register 1	-	-	ENBOOT	_	GF3	0	-	DPS
CKCON0	8Fh	Clock Control 0	-	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2
CKCON1	9Fh	Clock Control 1	-	-	-	_	-	-	-	SPIX2
FCON	D1h	Flash Control	FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY
EECON	D2h	EEPROM Contol	EEPL3	EEPL2	EEPL1	EEPL0	-	-	EEE	EEBUSY
FSTA	D3	Flash Status	-	-	-	-	-	-	SEQERR	FLOAD

Table 1. SFR Mapping


	0/8 ⁽²⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	IPL1 xxxx x0x0	CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000	CCAP2H 0000 0000	CCAP3H 0000 0000	CCAP4H 0000 0000		FFh
F0h	B 0000 0000		ADCLK xxx0 0000	ADCON x000 0000	ADDL 0000 0000	ADDH 0000 0000	ADCF 0000 0000	IPH1 xxxx x0x0	F7h
E8h	IEN1 xxxx x0x0	CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000	CCAP2L 0000 0000	CCAP3L 0000 0000	CCAP4L 0000 0000		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 0000 0000	CMOD 00xx x000	CCAPM0 ×000 0000	CCAPM1 x000 0000	CCAPM2 x000 0000	CCAPM3 ×000 0000	CCAPM4 x000 0000		DFh
D0h	PSW 0000 0000	FCON 0000 0000	EECON xxxx xx00	FSTA xxxx xx00	SPCON 0001 0100	SPSCR 0000 0000	SPDAT xxxx xxxx		D7h
C8h	T2CON 0000 0000	T2MOD xxxx xx00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h	P4 xxx1 1111								C7h
B8h	IPL0 x000 0000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH0 ×000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 xxxx 00x0				WDTRST 1111 1111	WDTPRG xxxx x000	A7h
98h	SCON 0000 0000	SBUF 0000 0000						CKCON1 xxxx xxx0	9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR x001 0100	CKCON0 x00 0000	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00x1 0000	87h
- -	0/8 ⁽²⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	-

Reserved

Note: 1. Do not read or write Reserved Registers


 These registers are bit-addressable. Sixteen addresses in the SFR space are both byte-addressable and bit-addressable. The bit-addressable SFR's are those whose address ends in 0 and 8. The bit addresses, in this area, are 0x80 through to 0xFF.

Notes: 1. RD# signal may be stretched using M0 bit in AUXR register.2. When executing MOVX @Ri instruction, P2 outputs SFR content.

Registers

Table 6. PSW Register

PSW (S:8Eh) Program Status Word Register

7	6	5	4	3	2	1	0				
СҮ	AC	F0	RS1	RS0	ov	F1	Р				
Bit Number	Bit Mnemonic	Description	escription								
7	CY	Carry Flag Carry out fro	arry Flag arry out from bit 1 of ALU operands.								
6	AC	-	Auxiliary Carry Flag Carry out from bit 1 of addition operands.								
5	F0	User Defina	ble Flag 0.								
4-3	RS1:0		nk Select Bit e 4 for bits de								
2	OV	Overflow Fla	ag by arithmetic	operations.							
1	F1	User Defina	User Definable Flag 1								
0	Р			n odd number ns an even nu							

Reset Value = 0000 0000b

Table 7. AUXR Register

AUXR (S:8Eh) Auxiliary Register

7	6	5	4	3	2	1	0			
-	-	MO	XRS2	XRS1	XRS0	EXTRAM	A0			
Bit Number	Bit Mnemonic	Description								
7-6	-	Reserved The value rea	Reserved The value read from these bits are indeterminate. Do not set this bit.							
5	MO	the RD/ and the RD								

Registers

Table 10.PCON RegisterPCON (S87:h)Power configuration Register

7	6	5	4	3	2	1	0					
-	-	-	-	GF1	GF0	PD	IDL					
Bit Number	Bit Mnemonic	Description	Description									
7-4	-	Reserved The value re	Reserved The value read from these bits is indeterminate. Do not set these bits.									
3	GF1	One use is to	General Purpose flag 1 One use is to indicate whether an interrupt occurred during normal operation or during Idle mode.									
2	GF0	General Pur One use is to during Idle m	indicate whe	ther an interru	pt occurred d	uring normal o	operation or					
1	PD	Cleared by h Set to activa	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.									
0	IDL	Set to activat	ardware when the Idle mo	n an interrupt (de. , PD takes pre		3.						

Reset Value= XXXX 0000b

Registers

Table 11. EECON Register

EECON (S:0D2h) EEPROM Control Register

7	6	5	4	3	2	1	0		
EEPL3	EEPL2	EEPL1	EEPL0	-	-	EEE	EEBUSY		
Bit Number	Bit Mnemonic	Descriptio	n						
7-4	EEPL3-0	•	•	command bit Kh to EEPL to	s launch the pre	ogramming.			
3	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.						
2	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.						
1	EEE	Set to map latches)	Enable EEPROM Space bit Set to map the EEPROM space during MOVX instructions (Write in the column atches) Clear to map the XRAM space during MOVX.						
0	EEBUSY	Set by hard Cleared by	hardware wh	g rogramming is en programmi d by software.	ng is done.				

Reset Value = XXXX XX00b Not bit addressable

Operation Cross Memory Access

Space addressable in read and write are:

- RAM
- ERAM (Expanded RAM access by movx)
- XRAM (eXternal RAM)
- EEPROM DATA
- FM0 (user flash)
- Hardware byte
- XROW
- Boot Flash
- Flash Column latch

The table below provide the different kind of memory which can be accessed from different code location.

Table 18.	Cross	Memory	Access
-----------	-------	--------	--------

	Action	RAM	XRAM ERAM	Boot FLASH	FM0	E ² Data	Hardware Byte	XROW
	Read			ОК	OK	ОК	OK	-
boot FLASH	Write			-	OK ⁽¹⁾	OK ⁽¹⁾	OK ⁽¹⁾	OK ⁽¹⁾
FM0	Read			ОК	OK	ОК	OK	-
FIVIU	Write			-	OK (idle)	OK ⁽¹⁾	-	ОК
External	Read			-	-	ОК	-	-
memory EA = 0 or Code Roll Over	Write			-	-	OK ⁽¹⁾	-	-

Note: 1. RWW: Read While Write

Table 22. Read MOVC A, @DPTR

	FC	ON Regis	ter						Hardware	Externa	
Code Execution	FMOD1	FMOD0	FPS	ENBOOT	DPTR	FM1	FM0	XROW	Byte	Code	
				0	0000h to FFFFh		ОК				
	0	0	Х		0000h to F7FF		ОК				
				1	F800h to FFFFh		Do not u	se this configu	uration	1	
From FM0	0	1	х	х	0000 to 007Fh See ⁽¹⁾			ОК			
	1	0	Х	х	х				ОК		
				0	000h to FFFFh		OK				
1	1	1	1	х		0000h to F7FF		ОК			
				1	F800h to FFFFh		Do not use this configuration				
				4	0000h to F7FF		ОК				
	0		0	1	F800h to FFFFh	OK					
	0	0		0	х			NA			
			1	1	х		ОК				
			-	0	х			NA			
From FM1 (ENBOOT =1	0	1	х	1	0000h to 007h			OK			
	0	I	~	0	See (2)			NA		-	
	1	0	х	1	x				ОК		
		Ű	~	0	~			NA			
	1	1	х	1	000h to FFFFh		OK				
				0				NA		i	
External code : EA=0 or Code Roll Over	х	0	х	x	Х					ОК	

1. For DPTR higher than 007Fh only lowest 7 bits are decoded, thus the behavior is the same as for addresses from 0000h to 007Fh

 For DPTR higher than 007Fh only lowest 7 bits are decoded, thus the behavior is the same as for addresses from 0000h to 007Fh

Hardware Security Byte

 Table 24.
 Hardware Security Byte

7	6	5	4	3	2	1	0		
X2B	BLJB	-	-	-	LB2	LB1	LB0		
Bit Number	Bit Mnemonic	Description	Description						
7	X2B		X2 Bit Set this bit to start in standard mode Clear this bit to start in X2 mode.						
6	BLJB	- 1: To start th	Boot Loader JumpBit - 1: To start the user's application on next RESET (@0000h) located in FM0, - 0: To start the boot loader(@F800h) located in FM1.						
5-3	-	Reserved The value read from these bits are indeterminate.							
2-0	LB2:0	Lock Bits							

Default value after erasing chip: FFh

Notes: 1. Only the 4 MSB bits can be accessed by software.

2. The 4 LSB bits can only be accessed by parallel mode.

Table 26. SADEN Register

SADEN (S:B9h) Slave Address Mask Register

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	
Bit Number	Bit Mnemonic	Description	Description					
7-0		Mask Data for Slave Individual Address						

Reset Value = 0000 0000b Not bit addressable

Table 27. SADDR Register

SADDR (S:A9h) Slave Address Register

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	-		
Bit Number	Bit Mnemonic	Description	Description						
7-0		Slave Individual Address							

Reset Value = 0000 0000b Not bit addressable

Table 28. SBUF Register

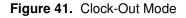
SBUF (S:99h) Serial Data Buffer

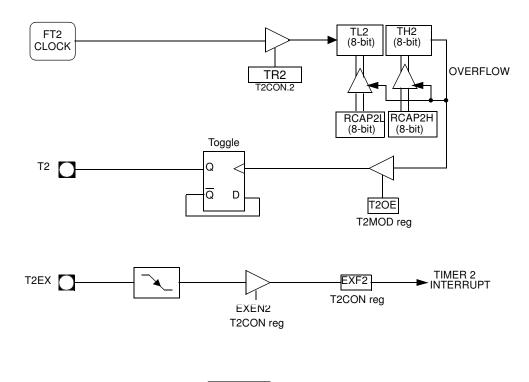
7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	
Bit Number	Bit Mnemonic	Description						
7-0		Data sent/re	Data sent/received by Serial I/O Port					

Reset Value = 0000 0000b Not bit addressable

Programmable Clock-Output

In clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 41). The input clock increments TL2 at frequency $F_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency depending on the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

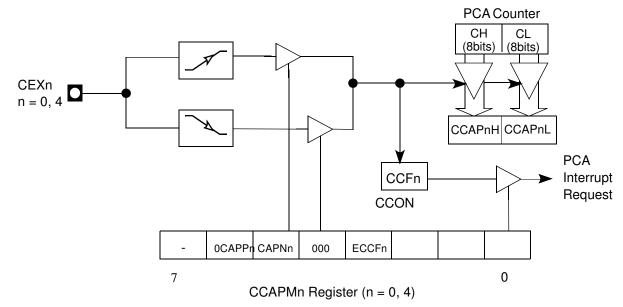

 $Clock - OutFrequency = \frac{FT2clock}{4 \times (65536 - RCAP2H/RCAP2L)}$


For a 16 MHz system clock in x1 mode, timer 2 has a programmable frequency range of 61 Hz ($F_{OSC}/2^{16}$) to 4 MHz ($F_{OSC}/4$). The generated clock signal is brought out to T2 pin (P1.0).

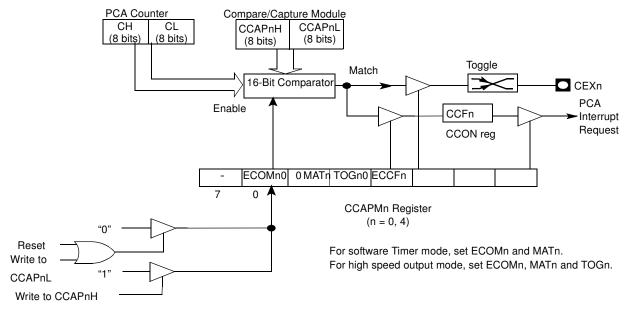
Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or different depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.



AT89C51AC3


Figure 55. PCA Capture Mode

16-bit Software Timer Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set.

Figure 56. PCA 16-bit Software Timer and High Speed Output Mode

PCA Registers

Table 50. CMOD Register

CMOD (S:D9h) PCA Counter Mode Register

7	6	5	4	3	2	1	0			
CIDL	WDTE	-	-	-	CPS1	CPS0	ECF			
Bit Number	Bit Mnemonic	Description	Description							
7	CIDL	PCA Counter Idle Control bit Clear to let the PCA run during Idle mode. Set to stop the PCA when Idle mode is invoked.								
6	WDTE	Clear to disa	WatchDog Timer Enable Clear to disable WatchDog Timer function on PCA Module 4, Set to enable it.							
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.				
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.				
2-1	CPS1:0	EWC Count Pulse Select bits <u>CPS1</u> <u>CPS0</u> <u>Clock source</u> 0 0 Internal Clock, FPca/6 0 1 Internal Clock, FPca/2 1 0 Timer 0 overflow 1 1 External clock at ECI/P1.2 pin (Max. Rate = FPca/4)								
0	ECF	Enable PCA Counter Overflow Interrupt bit Clear to disable CF bit in CCON register to generate an interrupt. Set to enable CF bit in CCON register to generate an interrupt.								

Reset Value = 00XX X000b

Table 51. CCON Register

CCON (S:D8h) PCA Counter Control Register

7	6	5	4	3	2	1	0		
CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0		
Bit Number	Bit Mnemonic	Description	Description						
7	CF	Set by hardw interrupt requ	PCA Timer/Counter Overflow flag Set by hardware when the PCA Timer/Counter rolls over. This generates a PCA nterrupt request if the ECF bit in CMOD register is set. Must be cleared by software.						
6	CR	Clear to turn	PCA Timer/Counter Run Control bit Clear to turn the PCA Timer/Counter off. Set to turn the PCA Timer/Counter on.						
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	CCF4	Set by hardw interrupt requ	PCA Module 4 Compare/Capture flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 4 bit in CCAPM 4 register is set. Must be cleared by software.						
3	CCF3	Set by hardw interrupt requ	are when a n	Capture flag natch or captu CF 3 bit in CC rre.		•	PCA		
2	CCF2	Set by hardw interrupt requ	PCA Module 2 Compare/Capture flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 2 bit in CCAPM 2 register is set. Must be cleared by software.						
1	CCF1	Set by hardw interrupt requ	PCA Module 1 Compare/Capture flag Set by hardware when a match or capture occurs. This generates a PCA interrupt request if the ECCF 1 bit in CCAPM 1 register is set. Must be cleared by software.						
0	CCF0	Set by hardw interrupt requ	vare when a n	Capture flag natch or captu CF 0 bit in CC re.			PCA		

Reset Value = 00X0 0000b

EADC = 1 // clear the field SCH[2:0] ADCON and = F8h // Select the channel ADCON | = channel // Start conversion in precision mode ADCON | = 48h

Note: to enable the ADC interrupt: EA = 1

Table 60. ADCLK Register

ADCLK (S:F2h) ADC Clock Prescaler

7	6	5	4	3	2	1	0		
-	-	-	PRS 4	PRS 3	PRS 2	PRS 1	PRS 0		
Bit Number	Bit Mnemonic	Description							
7-5	-	Reserved The value re	Reserved The value read from these bits are indeterminate. Do not set these bits.						
4-0	PRS4:0	Clock Presc See Note ⁽¹⁾	aler						

Reset Value = XXX0 0000b

Note:

1. In X1 mode: For PRS > 0 $F_{ADC} = \frac{EXTAL}{4xPRS}$ For PRS = 0 $F_{ADC} = \frac{FXTAL}{128}$ In X2 mode: For PRS > 0 $F_{ADC} = \frac{FXTAL}{2xPRS}$ For PRS = 0 $F_{ADC} = \frac{FXTAL}{64}$

Table 61. ADDH Register

ADDH (S:F5h Read Only) ADC Data High Byte Register

7	6	5	4	3	2	1	0
ADAT 9	ADAT 8	ADAT 7	ADAT 6	ADAT 5	ADAT 4	ADAT 3	ADAT 2
Bit Number	Bit Mnemonic	Description					
7-0	ADAT9:2	ADC result bits 9-2					

Reset Value = 00h

Table 62. ADDL Register

ADDL (S:F4h Read Only) ADC Data Low Byte Register

Table 70. IPH1 Register

IPH1 (S:F7h) Interrupt High Priority Register 1

7	6	5	4	3	2	1	0	
-	-	-	-	SPIH	-	PADCH	-	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.		
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.		
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	SPIH		0 1 1 0					
2	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.		
1	PADCH	ADC Interrupt Priority Level Most Significant bit PADCH PADCL Priority level 0 0 Lowest 0 1 1 1 0 Interrupt 1 1 Highest						
0	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.		

Reset Value = XXXX 0X0Xb

AC Parameters

Explanation of the AC Each timing symbol has 5 characters. The first character is always a "T" (stands for Symbols time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for. Example: T_{AVLL} = Time for Add<u>ress V</u>alid to ALE Low. T_{IIPI} = Time for ALE Low to PSEN Low. TA = -40°C to +85°C; V_{SS} = 0V; V_{CC} = 3V to 5.5V; F = 0 to 40 MHz. (Load Capacitance for port 0, ALE and PSEN = 60 pF; Load Capacitance for all other outputs = 60 pF.) Table 73, Table 76 and Table 79 give the description of each AC symbols. Table 74, Table 78 and Table 80 give for each range the AC parameter. Table 75, Table 78 and Table 81 give the frequency derating formula of the AC parameter for each speed range description. To calculate each AC symbols: Take the x value and use this value in the formula. Example: T_{LLIV} and 20 MHz, Standard clock. x = 30 nsT = 50 ns

 $T_{CCIV} = 4T - x = 170 \text{ ns}$

External Program Memory Characteristics

Table 73. Symbol Description

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction Float After PSEN
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

Table 74. AC Parameters for a Fix Clock (F = 40 MHz)

Symbol	Min	Max	Units
Т	25		ns
T _{LHLL}	40		ns
T _{AVLL}	10		ns
T _{LLAX}	10		ns
T _{LLIV}		70	ns
T _{LLPL}	15		ns
T _{PLPH}	55		ns
T _{PLIV}		35	ns
T _{PXIX}	0		ns
T _{PXIZ}		18	ns
T _{AVIV}		85	ns
T _{PLAZ}		10	ns

