Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 16MHz | | Connectivity | UART/USART | | Peripherals | - | | Number of I/O | 24 | | Program Memory Size | - | | Program Memory Type | ROMIess | | EEPROM Size | - | | RAM Size | 236 x 8 | | Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-LCC (J-Lead) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/z86c9116vsc | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact: # **ZiLOG Worldwide Headquarters** 532 Race Street Campbell, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.ZiLOG.com ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated. ## **Document Disclaimer** © 2002 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this document under any intellectual property rights. PS018501-1002 - Six Vectored, Prioritized Interrupts from Eight Different Sources - Two Programmable 8-Bit Counter/Timers, each with two 6-Bit Programmable Prescalers - On-Chip Oscillator that accepts a Crystal, Ceramic Resonator, LC, or External Clock - Two Standby Modes: STOP and HALT - Auto Latches ZiLOG # **Functional Block Diagrams** Figure 1. Z86C91 Functional Block Diagram # **Pin Functions** The following paragraphs describe the function of each available Z86C91 pin. \overline{DS} (output, active Low). The Data Strobe is activated one time for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of \overline{DS} . For WRITE operations, the falling edge of \overline{DS} indicates that output data is valid. $\overline{\text{AS}}$ (output, active Low). The Address Strobe is pulsed one time at the beginning of each machine cycle for external memory transfer. Address output is through Port 1 for all external programs. Memory address transfers are valid at the trailing edge of $\overline{\text{AS}}$. Under program control, $\overline{\text{AS}}$ is placed in the high-impedance state along with Ports 0 and 1, Data Strobe, and READ/WRITE. **XTAL1** (Crystal 1)Time-Based Oscillator Input. This pin connects a parallel-resonant crystal, ceramic resonator, LC network, or an external single-phase clock to the on-chip oscillatorand buffer. **XTAL2 (Crystal 2) Time-Based Oscillator Output.** This pin connects a parallel-resonant crystal, ceramic resonant, LC network to the on-chip oscillator and buffer. R/W (output, WRITE Low). The READ/WRITE signal is Low when the Z8 writes to external data memory. $\overline{\text{RESET}}$ (input, Low). To avoid asynchronous and noisy reset problems, the Z8 is equipped with a reset filter of four external XTAL clocks (4TpC). If the external $\overline{\text{RESET}}$ signal is less than 4TpC in duration, reset does not occur. On the fifth clock after \overline{RESET} is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external \overline{RESET} , whichever is longer. During the reset cycle, \overline{DS} is held active Low while \overline{AS} cycles at a rate of TpC/2. When \overline{RESET} is deactivated, program execution begins at location 000Ch. Power-Up reset time must be held Low for 50 ms, or until V_{CC} is stable, whichever is longer. Port 0 (P00–P07). Port 0 is an 8-bit, nibble programmable, bidirectional, TTL-compatible port. These eight I/O lines are configured under software control as a nibble I/O port (P03–P00 input/output and P07–P04 input/output), or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control DAV0 and RDY0. Handshake signal direction is dictated by the I/O direction (input or output) of Port 0 of the upper nibble P04–P07. The lower nibble must indicate the same direction as the upper nibble. For external memory references, Port 1 provides address bits A7–A0 (lower nibble) and Port 0 provides address bits A15–A8 (upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 is programmed independently as I/O while the lower nibble is used for addressing. If one or PS018501-1002 Pin Functions both nibbles are required for I/O operation, they are configured by writing to the Port 01 mode register (P01M). After a hardware RESET, Port 0 is configured as address lines A15–A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode. Port 0 can be placed in a high-impedance state along with Port 1, \overline{AS} , \overline{DS} and R/\overline{W} , allowing the Z8 to share common resources in multiprocessor and DMA applications (Figure 5). A hardware RESET is required to exit this high-impedance state. Figure 5. Port 0 Configuration PS018501-1002 Pin Functions Port 2 (P27–P20). Port 2 is an 8-bit programmable, bidirectional, TTL-compatible I/O port. These eight I/O lines are configured under software control as an input or output, independently or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port, Port 2 is placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake control lines $\overline{DAV2}$ and RDY2. The handshake signal assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to P27 (Figure 7). After a RESET, Port 2 is configured as an input port. The Port 2 output portion of the circuit has open-drain as it's default configuration. Figure 7. Port 2 Configuration PS018501-1002 Pin Functions Table 15. Port 3 Pin Assignments | Pin | I/O | Control Times | r Interrupt | P0 HS | P2 HS | Ext | UART | |--------|-----|------------------|-------------|-------|-------|--------------------------|------------| | P30 | IN | | IRQ3 | | | | Serial In | | P31 | IN | T _{IN} | IRQ2 | | D/R | | | | P32 | IN | | IRQ0 | D/R | | | | | P33 | IN | | IRQ1 | | | | | | P34 | OUT | | | | | $\overline{\mathrm{DM}}$ | | | P35 | OUT | | | R/D | | | | | P36 | OUT | T _{OUT} | | | R/D | | | | P37 | OUT | | | | | | Serial Out | | Notes: | | | | | | | | HS = Handshake Signals $D = \overline{DAV}$ (Data Available) R = RDY (Ready) **Autolatch.** The autolatch places valid CMOS levels on all inputs that are not externally driven. Whether this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. Autolatches are available on Port 0, Port 1, Port 2, and P3 inputs. RESET (input, Low). Initializes the MCU. RESET occurs through external reset only. During Power-On Reset, the externally-generated reset drives the RESET pin Low for the POR time. Pull-up is provided internally. RESET depends on oscillator operation to achieve full reset conditions. **Caution:** \overline{RESET} is a Schmitt-triggered input. During the RESET cycle, \overline{DS} is held active Low while \overline{AS} cycles at a rate of $T_pC \div 2$. Program execution begins at location 000Ch, after the \overline{RESET} is released. When program execution begins, \overline{AS} and \overline{DS} toggles only for external memory accesses. The Z8 can only exit Stop Mode by using the RESET pin. The Z8 does reset all registers on a Stop-Mode Recovery operation out of STOP mode. PS018501-1002 Pin Functions Figure 14. Data Memory Map Register File. The register file contains three I/O port registers, 236 general-purpose registers, and 16 control and status registers (Figure 15). The instructions can access registers directly or indirectly via an 8-bit address field. The Z86C91 also allows short 4-bit register addressing using the Register Pointer (Figure 16). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group. | Location | | Identifiers | |----------|------------------------------|----------------| | 255 | Stack Pointer (Bits 7-0) | SPL | | 254 | Stack Pointer (Bits 15-8) | SPH | | 253 | Register Pointer | RP | | 252 | Program Control Flags | FLAGS | | 251 | Interrupt Mask Register | IMR | | 250 | Interrupt Request Register | IRQ | | 249 | Interrupt Priority Register | IPR | | 248 | Ports 0-1 Mode | P01M | | 247 | Port 3 Mode | P3M | | 246 | Port 2 Mode | P2M | | 245 | T0 Prescaler | PRE0 | | 244 | Timer/Counter 0 | Т0 | | 243 | T1 Prescaler | PRE1 | | 242 | Timer/Counter 1 | T1 | | 241 | Timer Mode | TMR | | 240 | Serial I/O | SIO | | 239 | General Purpose
Registers | | | 4 | | | | 3 | Port 3 | P3 | | 2 | Port 2 | P2 | | 1 | Reserved | 1 | | - | Port () | Reserved
P0 | | 0 | 1 011 0 | 10 | Figure 15. Register File **Note:** Register Bank E0-EF is only accessed through working register and indirect addressing modes. Figure 16. Register Pointer Register Figure 17. Register Pointer—Detail Figure 20. Oscillator Configuration **HALT.** HALT turns off the internal CPU clock, but not the XTAL oscillation or the peripheral clock. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The devices are recovered by interrupts either externally or internally generated. **STOP.** This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 microamperes or less. The STOP mode is terminated by a reset, which causes the processor to restart the application program at location 000Ch. In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. Therefore, the user must execute a NOP (Op Code = FFh) immediately before the appropriate sleep instruction. For example: FF NOP ; clear the pipeline 6F STOP ; enter STOP mode or FF NOP ; clear the pipeline 7F HALT ; enter HALT mode Figure 29. Port 0 and 1 Mode Register (F8h: Write Only) **Interrupt Priority Register.** The Interrupt Priority Register, IPR, prioritizes interrupt functions and is shown in Figure 30. Figure 30. Interrupt Priority Register (F9h: Write Only) # **Interrupt Request Register** The Interrupt Request Register, IRQ, controls interrupt functions and is shown in Figure 31. Figure 31. Interrupt Request Register (FAh: Read/Write) # **Interrupt Mask Register** The Interrupt Mask Register, IMR, controls interrupt functions and is shown in Figure 32. ZiLOG Figure 34. Register Pointer Register (FDh: Read/Write) # Stack Pointer High Register The Stack Pointer High Register, SPH, controls pointer functions in the upper byte when the external stack is used and is shown in Figure 35. Figure 35. Stack Pointer Register (FEh: Read/Write) ### **Stack Pointer Low Register** The Stack Pointer Low Register, SPL, controls pointer functions in the lower byte and is shown in Figure 36. Figure 36. Stack Pointer Register (FFh: Read/Write) Table 17. DC Electrical Characteristics at Standard and External Temperatures (Continued) | | | $T_A = 0$ °C to $+70$ °C | | $T_A = -40^{\circ} \text{C to } +105^{\circ} \text{C}$ | | Typical ² | | | |------------------------------|-----------------------------|--------------------------|----------|--|-----------------|----------------------|-------|---| | Sym | Parameter | Min | Max | Min | Max | @25°C | Units | Conditions | | $\overline{v_{\mathrm{CL}}}$ | Clock Input
Low Voltage | -0.3 | 0.8 | -0.3 | 0.8 | | V | Driven by
External Clock
Generator | | V_{IH} | Input High
Voltage | 2.0 | V_{CC} | 2.0 | V _{CC} | | V | | | $\overline{v_{IL}}$ | Input Low
Voltage | -0.3 | 0.8 | -0.3 | 0.8 | | V | | | V _{OH} | Output High
Voltage | 2.4 | | 2.4 | | | V | $I_{OH} = -2.0 \text{ mA}$ | | V _{OH} | Output High
Voltage | V _{CC} -100r | πV | V _{CC} -100 | mV | | V | $I_{OH} = -100 \ \mu A$ | | V _{OL} | Output Low
Voltage | | 0.4 | | 0.4 | | V | $I_{OH} = +2 \text{ mA}$ | | V_{RH} | Reset Input
High Voltage | 3.8 | V_{CC} | 3.8 | V_{CC} | | V | | | V_{RL} | Reset Input
Low Voltage | -0.3 | 0.8 | -0.3 | 0.8 | | V | | | I_{IL} | Input Leakage | -2 | 2 | -2 | 2 | | μΑ | Test at 0V, V _{CC} | | I_{OL} | Output
Leakage | -2 | 2 | -2 | 2 | | μΑ | Test at 0V, V _{CC} | | I _{IR} | Reset Input
Current | | -80 | | -80 | | μΑ | V _{RL} =0V | | I_{CC} | Supply Current | - | 35 | | 35 | 24 | mA | @ 16 MHz(¹) | | I _{CC1} | Standby
Current | | 7 | | 7 | 4.5 | mA | HALT Mode
V _{IN} = 0 V, V _{CC}
@ 16 MHz | | I _{CC2} | Standby
Current | | 10 | | 10 | 1 | μΑ | STOP Mode $V_{IN} = 0 V, V_{CC}$ (1) | | I _{ALL} | Autolatch Low
Current | -10 | 10 | -14 | 14 | | μΑ | | - 1. All inputs driven to 0V, V_{CC} and outputs floating. 2. V_{CC} = 5.0V # **AC Electrical Characteristics** Figure 38 illustrates the timing characteristics of the Z86C91MCU with respect to external input/output sources. See Table 18 for descriptions of the numbered timing parameters in the figure. Figure 38. External I/O or Memory READ and WRITE Timing Table 18. External I/O or Memory READ/WRITE Timing—Standard/Extended **Temperature** | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Notes | |---|-------| | 2 T _D AS(A) AS Rise to Address Float Delay 35 35 ns 3 T _D AS(DR) AS Rise to Read Data Req'd Valid 180 180 ns 4 T _W AS AS Low Width 40 40 ns 5 T _D AS(DS) Address Float to DS Fall 0 0 ns 6 T _W DSR DS (Read) Low Width 135 135 ns 7 T _W DSW DS (WRITE) Low Width 80 80 ns 8 T _D DSR(DR) DS Fall to Read Data Req'd Valid 75 75 ns 9 T _H DR(DS) Read Data to DS Rise Hold Time 0 0 ns 10 T _D DS(A) DS Rise to Address Active Delay 50 50 ns 11 T _D DS(AS) DS Rise to AS Fall Delay 35 35 ns 12 T _D R/W(AS) R/W Valid to AS Rise Delay 25 25 ns 13 T _D DS(DW) DS Rise to R/W Not Valid 35 35 ns < | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2,3 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2,3 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1,2,3 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2,3 | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1,2,3 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1,2,3 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1,2,3 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2,3 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2,3 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2,3 | | | 2,3 | | | 2,3 | | D · · · / | 2,3 | | Delay | 2,3 | | 16 T _D A(DR) Address Valid to Read Data Req'd 230 ns Valid | 1,2,3 | | $\overline{17}$ T _D AS(DS) \overline{AS} Rise to \overline{DS} Fall Delay 45 45 ns | 2,3 | | | 1,2,3 | | | 2,3 | ### Notes: - 1. When using extended memory timing add 2 TpC. - Timing numbers provided are for minimum T_PC. See Clock Cycle Dependent Characteristics table Figure 41. Output Handshake Timing Table 21. Handshake Timing (Standard and Extended Temperatures) | | | | $T_A = 0^\circ$ | C to +70° | $T_A = -40$ | 0°C to +105°C | Data | |----|---------------------------|------------------------------|-----------------|-----------|-------------|---------------|-----------| | No | Symbol | Parameter | Min | Max | Min | Max | Direction | | 1 | T _S DI(DAV) | Data In Setup Time | 0 | | 0 | | Input | | 2 | T _H DI(RDY) | Data In Hold Time | 145 | | 145 | | Input | | 3 | $T_{W}DAV$ | Data Available Width | 110 | | 110 | | Input | | 4 | T _D DAVI(RDY) | DAV Fall to RDY Fall Delay | | 115 | | 115 | Input | | 5 | T _D DAVId(RDY) | DAV Out to DAV Fall Delay | | 115 | | 115 | Input | | 6 | $RDY0_D(DAV)$ | RDY Rise to DAV Fall Delay | 0 | | 0 | | Input | | 7 | T _D D0(DAV) | Data Out to DAV Fall Delay | | ТрС | | ТрС | Output | | 8 | T _D DAV0(RDY) | DAV Fall to RDY Fall Delay 0 | | | 0 | | Output | | 9 | T _D RDY0(DAV) | RDY Fall to DAV Rise Delay | | 115 | | 115 | Output | | 10 | $T_{W}RDY$ | RDY Width | 110 | | 110 | | Output | | 11 | $T_DRDY0_D(DAV)$ | RDY Rise to DAV Fall Delay | | 115 | | 115 | Output | > **Note:** All timing references use 2.0V for a logic 1 and 0.8V for a logic 0. | SYMBOL | MILLIN | METER | INCH | | | |--------|-------------|-------|-------|-------|--| | JIMBOL | MIN | MAX | MIN | MAX | | | A | 4.27 4.57 | | 0.168 | 0.180 | | | A1 | 2.41 2.92 | | 0.095 | 0.115 | | | D/E | 17.40 17.65 | | 0.685 | 0.695 | | | D1/E1 | 16.51 16.66 | | 0.650 | 0.656 | | | D2 | 15.24 16.00 | | 0.600 | 0.630 | | | е | 1.27 BSC | | 0.050 | BSC | | NOTES: - 1. CONTROLLING DIMENSION: INCH 2. LEADS ARE COPLANAR WITHIN 0.004". 3. DIMENSION: MM/INCH Figure 43. 44-Pin PLCC Package Diagram PS018501-1002 Packaging # **Document Information** # **Document Number Description** The Document Control Number that appears in the footer of each page of this document contains unique identifying attributes, as indicated in the following table: | PS | Product Specification | |------|--------------------------| | 0185 | Unique Document Number | | 01 | Revision Number | | 0802 | Month and Year Published |