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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Memory
2.5  Random-Access Memory (RAM)

This MCU includes static RAM. The locations in RAM below $0100 can be accessed using the more 
efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation 
instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program 
variables in this area of RAM is preferred.

The RAM retains data when the MCU is in low-power wait or stop mode. At power-on, the contents of 
RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage does not drop 
below the minimum value for RAM retention.

For compatibility with older M68HC05 MCUs, the HC08 resets the stack pointer to $00FF. In the devices 
that have RAM above $00FF, it is usually best to reinitialize the stack pointer to the top of the RAM so the 
direct page RAM can be used for frequently accessed RAM variables and bit-addressable program 
variables.

Include the following 2-instruction sequence in your reset initialization routine (where RamLast is equated 
to the highest address of the RAM).

             LDHX     #RamLast+1    ;point one past RAM
             TXS                    ;SP<-(H:X-1)

2.6  FLASH Memory (FLASH)

The FLASH memory is intended primarily for program storage. In-circuit programming allows the 
operating program to be loaded into the FLASH memory after final assembly of the application product. 
It is possible to program the entire array through the single-wire monitor mode interface. Because no 
special voltages are needed for FLASH erase and programming operations, in-application programming 
is also possible through other software-controlled communication paths.

This subsection describes the operation of the embedded FLASH memory. The FLASH memory can be 
read, programmed, and erased from the internal VDD supply. The program and erase operations are 
enabled through the use of an internal charge pump.

The minimum size of FLASH memory that can be erased is 64 bytes; and the maximum size of FLASH 
memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase operations 
are facilitated through control bits in the FLASH control register (FLCR). Details for these operations 
appear later in this section.

NOTE
An erased bit reads as a 1 and a programmed bit reads as a 0. A security 
feature prevents viewing of the FLASH contents.(1)

1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult 
for unauthorized users.
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Analog-to-Digital Converter (ADC10) Module
Whichever clock is selected, its frequency must fall within the acceptable frequency range for ADCK. If 
the available clocks are too slow, the ADC10 will not perform according to specifications. If the available 
clocks are too fast, then the clock must be divided to the appropriate frequency. This divider is specified 
by the ADIV[1:0] bits and can be divide-by 1, 2, 4, or 8.

3.3.2  Input Select and Pin Control

Only one analog input may be used for conversion at any given time. The channel select bits in ADCSC 
are used to select the input signal for conversion.

3.3.3  Conversion Control

Conversions can be performed in either 10-bit mode or 8-bit mode as determined by the MODE bits. 
Conversions can be initiated by either a software or hardware trigger. In addition, the ADC10 module can 
be configured for low power operation, long sample time, and continuous conversion.

3.3.3.1  Initiating Conversions

A conversion is initiated:

• Following a write to ADCSC (with ADCH bits not all 1s) if software triggered operation is selected.

• Following a hardware trigger event if hardware triggered operation is selected.

• Following the transfer of the result to the data registers when continuous conversion is enabled.

If continuous conversions are enabled a new conversion is automatically initiated after the completion of 
the current conversion. In software triggered operation, continuous conversions begin after ADCSC is 
written and continue until aborted. In hardware triggered operation, continuous conversions begin after a 
hardware trigger event and continue until aborted.

3.3.3.2  Completing Conversions

A conversion is completed when the result of the conversion is transferred into the data result registers, 
ADRH and ADRL. This is indicated by the setting of the COCO bit. An interrupt is generated if AIEN is 
high at the time that COCO is set.

A blocking mechanism prevents a new result from overwriting previous data in ADRH and ADRL if the 
previous data is in the process of being read while in 10-bit mode (ADRH has been read but ADRL has 
not). In this case the data transfer is blocked, COCO is not set, and the new result is lost. When a data 
transfer is blocked, another conversion is initiated regardless of the state of ADCO (single or continuous 
conversions enabled). If single conversions are enabled, this could result in several discarded 
conversions and excess power consumption. To avoid this issue, the data registers must not be read after 
initiating a single conversion until the conversion completes.

3.3.3.3  Aborting Conversions

Any conversion in progress will be aborted when:

• A write to ADCSC occurs (the current conversion will be aborted and a new conversion will be 
initiated, if ADCH are not all 1s).

• A write to ADCLK occurs. 

• The MCU is reset.

• The MCU enters stop mode with ACLK not enabled.
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Computer Operating Properly (COP)
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System Integration Module (SIM)
13.4  Reset and System Initialization

The MCU has these reset sources:

• Power-on reset module (POR)

• External reset pin (RST)

• Computer operating properly module (COP)

• Low-voltage inhibit module (LVI)

• Illegal opcode

• Illegal address

All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the 
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all 
modules to be returned to their reset states. 

An internal reset clears the SIM counter (see 13.5 SIM Counter), but an external reset does not. Each of 
the resets sets a corresponding bit in the SIM reset status register (SRSR). See 13.8 SIM Registers.

13.4.1  External Pin Reset

The RST pin circuits include an internal pullup device. Pulling the asynchronous RST pin low halts all 
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for at 
least the minimum tRL time. Figure 13-3 shows the relative timing. The RST pin function is only available 
if the RSTEN bit is set in the CONFIG2 register.

 
Figure 13-3. External Reset Timing

13.4.2  Active Resets from Internal Sources

The RST pin is initially setup as a general-purpose input after a POR. Setting the RSTEN bit in the 
CONFIG2 register enables the pin for the reset function. This section assumes the RSTEN bit is set when 
describing activity on the RST pin.

NOTE
For POR and LVI resets, the SIM cycles through 4096 BUSCLKX4 cycles. 
The internal reset signal then follows the sequence from the falling edge of 
RST shown in Figure 13-4.

The COP reset is asynchronous to the bus clock.

The active reset feature allows the part to issue a reset to peripherals and other chips within a system 
built around the MCU.

All internal reset sources actively pull the RST pin low for 32 BUSCLKX4 cycles to allow resetting of 
external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles 
(see Figure 13-4). An internal reset can be caused by an illegal address, illegal opcode, COP time out, 
LVI, or POR (see Figure 13-5). 

RST

ADDRESS BUS PC VECT H VECT L

BUSCLKX2
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Exception Control
13.6.2  Interrupt Status Registers

The flags in the interrupt status registers identify maskable interrupt sources. Table 13-3 summarizes the 
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be 
useful for debugging.

IF1 and IF3–IF6 — Interrupt Flags
These flags indicate the presence of interrupt requests from the sources shown in Table 13-3.

1 = Interrupt request present
0 = No interrupt request present

Bit 0, 1, and 3— Always read 0

13.6.2.1  Interrupt Status Register 2

IF7–IF14 — Interrupt Flags
This flag indicates the presence of interrupt requests from the sources shown in Table 13-3.

1 = Interrupt request present
0 = No interrupt request present

Table 13-3. Interrupt Sources

Priority Source Flag Mask(1)

1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.

INT
Register Flag

Vector
Address

Highest

Lowest

Reset — — — $FFFE–$FFFF

SWI instruction — — — $FFFC–$FFFD

IRQ pin IRQF1 IMASK1 IF1 $FFFA–$FFFB

Timer channel 0 interrupt CH0F CH0IE IF3 $FFF6–$FFF7

Timer channel 1 interrupt CH1F CH1IE IF4 $FFF4–$FFF5

Timer overflow interrupt TOF TOIE IF5 $FFF2–$FFF3

SLIC interrupt SLCF SLCIE IF9 $FFEA–$FFEB

Keyboard interrupt KEYF IMASKK IF14 $FFE0–$FFE1

ADC conversion complete interrupt COCO AIEN IF15 $FFDE–$FFDF

Bit 7 6 5 4 3 2 1 Bit 0

Read: IF6 IF5 IF4 IF3 0 IF1 0 0

Write: R R R R R R R R

Reset: 0 0 0 0 0 0 0 0

R = Reserved

Figure 13-11. Interrupt Status Register 1 (INT1)

Bit 7 6 5 4 3 2 1 Bit 0

Read: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7

Write: R R R R R R R R
Reset: 0 0 0 0 0 0 0 0

R = Reserved

Figure 13-12. Interrupt Status Register 2 (INT2)
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Slave LIN Interface Controller (SLIC) Module
14.4  Interrupts 

The SLIC module contains one interrupt vector, which can be triggered by sources encoded in the SLIC 
state vector register. See 14.8.6 SLIC State Vector Register.

14.5  Modes of Operation

Figure 14-3 shows the modes in which the SLIC will operate.

Figure 14-3. SLIC Operating Modes

14.5.1  Power Off

This mode is entered from the reset mode whenever the SLIC module supply voltage VDD drops below 
its minimum specified value for the SLIC module to guarantee operation. The SLIC module will be placed 
in the reset mode by a system low-voltage reset (LVR) before being powered down. In this mode, the pin 
input and output specifications are not guaranteed.

14.5.2  Reset

This mode is entered from the power off mode whenever the SLIC module supply voltage VDD rises above 
its minimum specified value (VDD(MIN)) and some MCU reset source is asserted. To prevent the SLIC from 
entering an unknown state, the internal MCU reset is asserted while powering up the SLIC module. SLIC 
reset mode is also entered from any other mode as soon as one of the MCU's possible reset sources (e.g., 

VDD > VDD (MIN) AND ANY

SLIC RESET

SLIC DISABLED

SLIC RUN

SLIC INIT
REQUESTED

SLIC STOP SLIC WAIT

MCU RESET SOURCE ASSERTED

POWER OFF

NO MCU RESET SOURCE ASSERTED

SLCE SET IN SLCC2 REGISTER

NETWORK ACTIVITY OR OTHER
MCU WAKEUP

(WAIT INSTRUCTION
AND SLCWCM = 0)STOP INSTRUCTION

(WAIT INSTRUCTION 
AND SLCWCM = 1)

NETWORK ACTIVITY
OR OTHER MCU

WAKEUP

SLCE CLEARED IN 
SLCC2 REGISTER

(INITACK = 1)

(FROM ANY MODE)
INITREQ SET TO 1 IN 

SLCC1 REGISTER

(FROM ANY MODE)
ANY MCU RESET SOURCE

ASSERTED

VDD <= VDD (MIN)

INITREQ = 0; (INITACK = 0)
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Slave LIN Interface Controller (SLIC) Module
instruction the CPU executes to cause the SLIC module to enter SLIC stop, the message which wakes 
up the SLIC module (and the CPU) may or may not be received. 

There are two different possibilities: 

1. Wakeup from SLIC Stop with CPU in STOP

When the CPU executes the STOP instruction, all clocks in the MCU, including clocks to the SLIC 
module, are turned off. Therefore, the message which wakes up the SLIC module and the CPU 
from stop mode will not be received. This is due primarily to the amount of time required for the 
MCU's oscillator to stabilize before the clocks can be applied internally to the other MCU modules, 
including the SLIC module.

2. Wakeup from SLIC Stop with CPU in WAIT 

If the CPU executes the WAIT instruction and the SLIC module enters the stop mode 
(SLCWCM = 1), the clocks to the SLIC module are turned off, but the clocks in the MCU continue 
to run. Therefore, the message which wakes up the SLIC module from stop and the CPU from wait 
mode will be received correctly by the SLIC module. This is because very little time is required for 
the CPU to turn the clocks to the SLIC module back on after the wakeup interrupt occurs.

NOTE
While the SLIC module will correctly receive a message which arrives when 
the SLIC module is in stop or wait mode and the MCU is in wait mode, if the 
user enters this mode while a message is being received, the data in the 
message will become corrupted. This is due to the steps required for the 
SLIC module to resume operation upon exiting stop or wait mode, and its 
subsequent resynchronization with the LIN bus.

14.5.8  Normal and Emulation Mode Operation 

The SLIC module operates in the same manner in all normal and emulation modes. All SLIC module 
registers can be read and written except those that are reserved, unimplemented, or write once. The user 
must be careful not to unintentionally write a register when using 16-bit writes to avoid unexpected SLIC 
module behavior.

14.5.9  Special Mode Operation 

Some aspects of SLIC module operation can be modified in special test mode. This mode is reserved for 
internal use only.

14.5.10  Low-Power Options 

The SLIC module can save power in disabled, wait, and stop modes. A complete description of what the 
SLIC module does while in a low-power mode can be found in 14.5 Modes of Operation.

14.6  SLIC During Break Interrupts

The BCFE bit in the BSCR register has no affect on the SLIC module. Therefore the SLIC modules status 
bits cannot be protected during break.
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Registers
• No Interrupts Pending
This value indicates that all pending interrupt sources have been serviced. In polling mode, the 
SLCSV is read and interrupts serviced until this value reads back 0. This source will not generate 
an interrupt of the CPU, regardless of state of SLCIE.

• No Bus Activity (LIN specified error) 
The No-Bus-Activity condition occurs if no valid SYNCH BREAK FIELD or BYTE FIELD was 
received for more than 223 SLIC clock counts since the reception of the last valid message. For 
example, with 6.4 MHz SLIC clock frequency, a No-Bus-Activity interrupt will occur about 1.31 
seconds after the bus begins to idle. 

• TX Message Buffer Empty — Checksum Transmitted 
When the entire LIN message frame has been transmitted successfully, complete with the 
appropriately selected checksum byte, this interrupt source is asserted. This source is used for all 
standard LIN message frames and the final set of bytes with extended LIN message frames.

• TX Message Buffer Empty
This interrupt source indicates that all 8 bytes in the LIN message buffer have been transmitted 
with no checksum appended. This source is used for intermediate sets of 8 bytes in extended LIN 
message frames.

• RX Message Buffer Full — Checksum OK
When the entire LIN message frame has been received successfully, complete with the 
appropriately selected checksum byte, and the checksum calculates correctly, this interrupt source 
is asserted. This source is used for all standard LIN message frames and the final set of bytes with 
extended LIN message frames. To clear this source, SLCD0 must be read first.

• RX Data Buffer Full — No Errors 
This interrupt source indicates that 8 bytes have been received with no checksum byte and are 
waiting in the LIN message buffer. This source is used for intermediate sets of 8 bytes in extended 
LIN message frames. To clear this source, SLCD0 must be read first.

• Bit Error
A unit that is sending a bit on the bus also monitors the bus. A BIT_ERROR must be detected at 
that bit time, when the bit value that is monitored is different from the bit value that is sent. The 
SLIC will terminate the data transmission upon detection of a bit error, according to the LIN 

$1C 0 1 1 1 Receiver Buffer Overrun 7

$20 1 0 0 0 Reserved 8

$24 1 0 0 1 Checksum Error 9

$28 1 0 1 0 Byte Framing Error 10

$2C 1 0 1 1 Identifier Received Successfully 11

$30 1 1 0 0 Identifier Parity Error 12

$34 1 1 0 1 Inconsistent-Synch-Field-Error 13

$38 1 1 1 0 Reserved 14

$3C 1 1 1 1 Wakeup 15 (Highest)

Table 14-2. Interrupt Sources Summary (BTM = 0) (Continued)

SLCSV I3 I2 I1 I0 Interrupt Source Priority
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Registers
14.8.8  SLIC Identifier and Data Registers

The SLIC identifier (SLCID) and eight data registers (SLCD7–SLCD0) comprise the transmit and receive 
buffer and are used to read/write the identifier and message buffer 8 data bytes. In BTM mode (BTM = 1), 
only SLCID is used to send and receive bytes, as only one byte is handled at any one time. The number 
of bytes to be read from or written to these registers is determined by the user software and written to 
SLCDLC. To obtain proper data, reads and writes to these registers must be made based on the proper 
length corresponding to a particular message. It is the responsibility of the user software to keep track of 
this value to prevent data corruption. For example, it is possible to read data from locations in the 
message buffer which contain erroneous or old data if the user software reads more data registers than 
were updated by the incoming message, as indicated in SLCDLC. 

NOTE
An incorrect length value written to SLCDLC can result in the user software 
misreading or miswriting data in the message buffer. An incorrect length 
value might also result in SLIC error messages. For example, if a 4-byte 
message is to be received, but the user software incorrectly reports a 
3-byte length to the DLC, the SLIC will assume the 4th data byte is actually 
a checksum value and attempt to validate it as such. If this value doesn’t 
match the calculated value, an incorrect checksum error will occur. If it does 
happen to match the expected value, then the message would be received 
as a 3-byte message with valid checksum. Either case is incorrect behavior 
for the application and can be avoided by ensuring that the correct length 
code is used for each identifier.

The first data byte received after the LIN identifier in a LIN message frame will be loaded into SLCD0. The 
next byte (if applicable) will be loaded into SLCD1, and so forth.

. 

The SLIC identifier register is used to capture the incoming LIN identifier and when the SLCSV value 
indicates that the identifier has been received successfully, this register contains the received identifier 
value. If the incoming identifier contained a parity error, this register value will not contain valid data.

In byte transfer mode (BTM = 1), this register is used for sending and receiving each byte of data. When 
transmitting bytes, the data is loaded into this register, then TXGO in SLCDLC is set to initiate the 
transmission. When receiving bytes, they are read from this register only.

R — Read SLC Receive Data

T — Write SLC Transmit Data

Bit 7 6 5 4 3 2 1 Bit 0

Read: R7 R6 R5 R4 R3 R2 R1 R0

Write: T7 T6 T5 T4 T3 T2 T1 T0

Reset: 0 0 0 0 0 0 0 0

Figure 14-12. SLIC Identifier Register (SLCID)

Bit 7 6 5 4 3 2 1 Bit 0

Read: R7 R6 R5 R4 R3 R2 R1 R0

Write: T7 T6 T5 T4 T3 T2 T1 T0

Reset: 0 0 0 0 0 0 0 0

Figure 14-13. SLIC Data Register x (SLCD7–SLCD0)
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Slave LIN Interface Controller (SLIC) Module
data bytes will fit in the buffer and only one interrupt should occur. At this time, the final interrupt may be 
handled normally, continuing to use the software counter to read the proper number of bytes from the 
appropriate SLCD registers.

NOTE 
Do not write SLCDLC more than one time per LIN message frame. The 
SLIC tracks the number of sent or received bytes based on the value written 
to this register at the beginning of the data field and rewriting this register 
will corrupt the checksum calculation and cause unpredictable behavior in 
the SLIC module. The application software must track the number of sent 
or received bytes to know what the current byte count in the SLIC is. If 
programming in C, make sure to use the VOLATILE modifier on this 
variable (or make it a global variable) to ensure that it keeps its value 
between interrupts.

14.9.8.3  Possible Errors on Command Message Data

Possible errors on command message data are:

• Byte Framing Error

• Checksum-Error (LIN specified error)

• No-Bus-Activity (LIN specified error)

• Receiver Buffer Overrun Error

14.9.9  Handling Request LIN Message Frames

Figure 14-17 shows how to handle request message frames, where the SLIC module is sending data to 
the master node.

Request message frames refer to LIN messages frames where the master node is “requesting” the slave 
node to supply information. The implication is that the slave will then be transmitting data to the master 
for this message frame. This can be a standard LIN message frame of 1–8 data bytes, a reserved LIN 
system message (using 0x3D identifier), or an extended request message frame utilizing the reserved 
0x3E identifier or perhaps the 0x3F LIN reserved extended identifier. The SLIC module is capable of 
handling request message frames containing up to 64 bytes of data, while still automatically calculating 
and/or verifying the checksum.

14.9.9.1  Standard Request Message Frames

Dealing with request messages with the SLIC is very similar to dealing with command messages, with 
one important difference. Because the SLIC is now to be transmitting data in the LIN message frame, the 
user software must load the data to be transmitted into the message buffer prior to initiating the 
transmission. This means an extra step is taken inside the interrupt service routine after the identifier has 
been decoded and is determined to be an ID for a request message frame.

Figure 14-17 deals with request messages, where the SLIC will be transmitting data to the master node. 
If the received identifier corresponds to a standard LIN command frame (i.e., 1-8 data bytes), the 
message processing is very simple. The user must load the data to be transmitted into the transmit buffer 
by writing it to the SLCD registers. The first byte to be transmitted on the LIN bus must be loaded into 
SLCD0, then SLCD1 for the second byte, etc. After all of the bytes to be transmitted are loaded in this 
way, a single write to SLCDLC will allow the user to encode the number of data bytes to be transmitted 
(1–8 bytes for standard request frames), set the proper checksum calculation method for the data 
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Slave LIN Interface Controller (SLIC) Module
will resume. If the SLIC was in SLIC stop mode, SLCSV will indicate wakeup as the interrupt source so 
that the user knows that the SLIC module brought the MCU out of stop or wait. 

In a LIN system, a system message is generally sent to all nodes to indicate that they are to enter 
low-power network sleep mode. After a node enters sleep mode, it waits for outside events, such as 
switch or sensor inputs or network traffic to bring it out of network sleep mode. If the node using the SLIC 
module is awakened by a source other than network traffic, such as a switch input, the LIN specification 
requires this node to issue a wake-up signal to the rest of the network. The SLIC module supports this 
feature using WAKETX in SLCC2. The user software may set this bit and one LIN wake-up signal is 
immediately transmitted on the bus, then the bit is automatically cleared by the SLIC module. If another 
wake-up signal is required to be sent, the user must set WAKETX again.

In a LIN system, the LIN physical interface can often also provide an output to the IRQ pin to provide a 
wake-up mechanism on network activity. The physical layer might also control voltage regulation supply 
to the MCU, cutting power to the MCU when the physical layer is placed in its low-power mode. The user 
must take care to ensure that the interaction between the physical layer, IRQ pin, SLIC transmit and 
receive pins, and power supply regulator is fully understood and designed to ensure proper operation.

14.9.12  Polling Operation

It is possible to operate the SLIC module in polling mode, if desired. The primary difference is that the 
SLIC interrupt request should not be enabled (SLCIE = 0).   The SLCSV will update and operate properly 
and interrupt requests will be indicated with the SLCF flag, which can be polled to determine status 
changes in the SLIC module. It is required that the polling rate be fast enough to ensure that SLIC status 
changes be recognized and processed in time to ensure that all application timings can be met.

14.9.13  LIN Data Integrity Checking Methods

The SLIC module supports two different LIN-based data integrity options:

• The first option supports LIN 1.3 and older methods of checksum calculations. 

• The second option supports an optional additional enhanced checksum calculation which has 
greater data integrity coverage.

The LIN 1.3 and earlier specifications transmit a checksum byte in the “CHECKSUM FIELD” of the LIN 
message frame. This CHECKSUM FIELD contains the inverted modulo-256 sum over all data bytes. The 
sum is calculated by an “ADD with Carry” where the carry bit of each addition is added to the least 
significant bit (LSB) of its resulting sum. This guarantees security also for the MSBs of the data bytes. The 
sum of modulo-256 sum over all data bytes and the checksum byte must be ’0xFF’.

An optional checksum calculation can also be performed on a LIN data frame which is very similar to the 
LIN 1.3 calculation, but with one important distinction. This enhanced calculation simply includes the 
identifier field as the first value in the calculation, whereas the LIN 1.3 calculation begins with the least 
significant byte of the data field (which is the first byte to be transmitted on the bus). This enhanced 
calculation further ensures that the identifier field is correct and ties the identifier and data together under 
a common calculation, ensuring greater reliability.

In the SLIC module, either checksum calculation can be performed on any given message frame by 
simply writing or clearing CHKMOD in SLCDLC, as desired, when the identifier for the message frame is 
decoded. The appropriate calculation for each message frame should be decided at system design time 
and documented in the LIN description file, indicating to the user which calculation to use for a particular 
identifier.
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Timer Interface Module (TIM)
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Development Support
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 
64-Kbyte memory map.

Table 16-4. WRITE (Write Memory) Command

Description Write byte to memory

Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte

Data Returned None

Opcode $49

Command Sequence

Table 16-5. IREAD (Indexed Read) Command

Description Read next 2 bytes in memory from last address accessed

Operand None

Data Returned Returns contents of next two addresses

Opcode $1A

Command Sequence

Table 16-6. IWRITE (Indexed Write) Command

Description Write to last address accessed + 1

Operand Single data byte

Data Returned None

Opcode $19

Command Sequence

WRITEWRITE

ECHO

FROM HOST

ADDRESS
HIGH

ADDRESS
HIGH

ADDRESS
LOW

ADDRESS
LOW

DATA DATA

IREADIREAD

ECHO

FROM HOST

DATA

RETURN

DATA

IWRITEIWRITE

ECHO

FROM HOST

DATA DATA
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Electrical Specifications
17.3  Functional Operating Range

17.4  Thermal Characteristics

17.5  5-V DC Electrical Characteristics

Characteristic Symbol Value Unit
Temperature

Code

Operating temperature range
TA

(TL to TH)

– 40 to +125 
– 40 to +105 
– 40 to +85

°C
M
V
C

Operating voltage range VDD 3.0 to 5.5 V —

Characteristic Symbol Value Unit

Thermal resistance
16-pin SOIC
16-pin TSSOP

θJA 90
133

°C/W

I/O pin power dissipation PI/O User determined W

Power dissipation(1)

1. Power dissipation is a function of temperature.

PD
PD = (IDD x VDD)

+ PI/O = K/(TJ + 273°C)
W

Constant(2)

2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ 
can be determined for any value of TA.

K
PD x (TA + 273°C) 

+ PD
2
 x θJA

W/°C

Average junction temperature TJ TA + (PD x θJA) °C

Maximum junction temperature TJM 150 °C

Characteristic(1) Symbol Min Typ(2) Max Unit

Output high voltage
ILoad = –2.0 mA, all I/O pins
ILoad = –10.0 mA, all I/O pins
ILoad = –15.0 mA, PTA0, PTA1, PTA3–PTA5 only

VOH
VDD–0.4
VDD–1.5
VDD–0.8

—
—
—

—
—
—

V

Maximum combined IOH (all I/O pins) IOHT — — 50 mA

Output low voltage
ILoad = 1.6 mA, all I/O pins
ILoad = 10.0 mA, all I/O pins
ILoad = 15.0 mA, PTA0, PTA1, PTA3–PTA5 only

VOL
—
—
—

—
—
—

0.4
1.5
0.8

V

Maximum combined IOL (all I/O pins) IOHL — — 50 mA

Input high voltage
PTA0–PTA5, PTB0–PTB7

VIH 0.7 x VDD — VDD V

Table continued on next page.
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Timer Interface Module Characteristics
17.14  Timer Interface Module Characteristics

 

Figure 17-11. Input Capture Timing

Characteristic Symbol Min Max Unit

Timer input capture pulse width(1)

1. Values are based on characterization results, not tested in production.

tTH, tTL 2 — tcyc

Timer input capture period tTLTL Note(2)

2. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc.

— tcyc

Timer input clock pulse width(1) tTCL, tTCH tcyc + 5 — ns

INPUT CAPTURE
RISING EDGE

INPUT CAPTURE
FALLING EDGE

INPUT CAPTURE
BOTH EDGES

tTH

tTL

tTLTL

tTLTL

tTLTL

tTLtTH

TCLK

tTCL

tTCH
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