
STMicroelectronics - STM32L433CBU6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 80MHz

Connectivity CANbus, I²C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, LCD, PWM, WDT

Number of I/O 38

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 3.6V

Data Converters A/D 10x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-UFQFN Exposed Pad

Supplier Device Package 48-UFQFPN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l433cbu6

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32l433cbu6-4386185
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Firewall (FW) RM0394

116/1472 DocID027295 Rev 3

Below is the initialization procedure to follow:

1. Configure the RCC to enable the clock to the Firewall module

2. Configure the RCC to enable the clock of the system configuration registers

3. Set the base address and length of each segment (CSSA, CSL, NVDSSA, NVDSL,
VDSSA, VDSL registers)

4. Set the configuration register of the Firewall (FW_CR register)

5. Enable the Firewall clearing the FWDIS bit in the system configuration register.

The Firewall configuration register (FW_CR register) is the only one which can be managed
in a dynamic way even if the Firewall is enabled:

• when the Non-Volatile data segment is undefined (meaning the NVDSL register is
equal to 0), the accesses to this register are possible whatever the Firewall state
(opened or closed).

• when the Non-Volatile data segment is defined (meaning the NVDSL register is
different from 0), the accesses to this register are only possible when the Firewall is
opened.

4.3.6 Firewall states

The Firewall has three different states as shown in Figure 6:

• Disabled: The FWDIS bit is set by default after the reset. The Firewall is not active.

• Closed: The Firewall protects the accesses to the three segments (Code, Non-volatile
data, and Volatile data segments).

• Opened: The Firewall allows access to the protected segments as defined in
Section 4.3.4: Segment accesses and properties.

Figure 6. Firewall functional states

DocID027295 Rev 3 337/1284

RM0394 Quad-SPI interface (QUADSPI)

365

15 Quad-SPI interface (QUADSPI)

15.1 Introduction

The QUADSPI is a specialized communication interface targeting single, dual or quad SPI
Flash memories. It can operate in any of the three following modes:

• indirect mode: all the operations are performed using the QUADSPI registers

• status polling mode: the external Flash memory status register is periodically read and
an interrupt can be generated in case of flag setting

• memory-mapped mode: the external Flash memory is mapped to the microcontroller
address space and is seen by the system as if it was an internal memory

Both throughput and capacity can be increased two-fold using dual-flash mode, where two
Quad-SPI Flash memories are accessed simultaneously.

15.2 QUADSPI main features

• Three functional modes: indirect, status-polling, and memory-mapped

• Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two
Flash memories in parallel.

• SDR and DDR support

• Fully programmable opcode for both indirect and memory mapped mode

• Fully programmable frame format for both indirect and memory mapped mode

• Integrated FIFO for reception and transmission

• 8, 16, and 32-bit data accesses are allowed

• DMA channel for indirect mode operations

• Interrupt generation on FIFO threshold, timeout, operation complete, and access error

15.3 QUADSPI functional description

15.3.1 QUADSPI block diagram

Figure 31. QUADSPI block diagram when dual-flash mode is disabled

Quad-SPI interface (QUADSPI) RM0394

356/1472 DocID027295 Rev 3

15.5.2 QUADSPI device configuration register (QUADSPI_DCR)

Address offset: 0x0004

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FSIZE

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. CSHT Res. Res. Res. Res. Res. Res. Res.
CK-

MODE

rw rw rw rw

Bits 31: 21 Reserved, must be kept at reset value.

Bits 20: 16 FSIZE[4:0]: Flash memory size

This field defines the size of external memory using the following formula:
Number of bytes in Flash memory = 2[FSIZE+1]

FSIZE+1 is effectively the number of address bits required to address the Flash
memory. The Flash memory capacity can be up to 4GB (addressed using 32 bits) in
indirect mode, but the addressable space in memory-mapped mode is limited to
256MB.
If DFM = 1, FSIZE indicates the total capacity of the two Flash memories together.
This field can be modified only when BUSY = 0.

Bits 15: 11 Reserved, must be kept at reset value.

Bits 10:8 CSHT[2:0]: Chip select high time

CSHT+1 defines the minimum number of CLK cycles which the chip select (nCS) must
remain high between commands issued to the Flash memory.
0: nCS stays high for at least 1 cycle between Flash memory commands
1: nCS stays high for at least 2 cycles between Flash memory commands
...
7: nCS stays high for at least 8 cycles between Flash memory commands
This field can be modified only when BUSY = 0.

Bits 7: 1 Reserved, must be kept at reset value.

Bit 0 CKMODE: Mode 0 / mode 3

This bit indicates the level that CLK takes between commands (when nCS = 1).
0: CLK must stay low while nCS is high (chip select released). This is referred to as
mode 0.
1: CLK must stay high while nCS is high (chip select released). This is referred to as
mode 3.
This field can be modified only when BUSY = 0.

DocID027295 Rev 3 425/1472

RM0394 Analog-to-digital converters (ADC)

458

Figure 91. VREFINT channel block diagram

1. The VREFEN bit into ADC_CCR register must be set to enable the conversion of internal channels
ADC1_IN0 (VREFINT).

Calculating the actual VDDA voltage using the internal reference voltage

The VDDA power supply voltage applied to the microcontroller may be subject to variation or
not precisely known. The embedded internal voltage reference (VREFINT) and its calibration
data acquired by the ADC during the manufacturing process at VDDA = 3.0 V can be used to
evaluate the actual VDDA voltage level.

The following formula gives the actual VDDA voltage supplying the device:

VDDA = 3.0 V x VREFINT_CAL / VREFINT_DATA

where:

• VREFINT_CAL is the VREFINT calibration value

• VREFINT_DATA is the actual VREFINT output value converted by ADC

Converting a supply-relative ADC measurement to an absolute voltage value

The ADC is designed to deliver a digital value corresponding to the ratio between the analog
power supply and the voltage applied on the converted channel. For most application use
cases, it is necessary to convert this ratio into a voltage independent of VDDA. For
applications where VDDA is known and ADC converted values are right-aligned you can use
the following formula to get this absolute value:

For applications where VDDA value is not known, you must use the internal voltage
reference and VDDA can be replaced by the expression provided in Section : Calculating the
actual VDDA voltage using the internal reference voltage, resulting in the following formula:

Where:

• VREFINT_CAL is the VREFINT calibration value

• ADC_DATA is the value measured by the ADC on channel x (right-aligned)

• VREFINT_DATA is the actual VREFINT output value converted by the ADC

• FULL_SCALE is the maximum digital value of the ADC output. For example with 12-bit
resolution, it will be 212 - 1 = 4095 or with 8-bit resolution, 28 - 1 = 255.

VCHANNELx

VDDA

FULL_SCALE
------------------------------------- ADCx_DATA×=

VCHANNELx
3.0 V VREFINT_CAL ADCx_DATA××

VREFINT_DATA FULL_SCALE×
--=

Digital-to-analog converter (DAC) RM0394

480/1472 DocID027295 Rev 3

Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable

These bits are set and cleared by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection

These bits select the external event used to trigger DAC channel1
000: Timer 6 TRGO event
001: Reserved
010: Timer 7 TRGO event (reserved on STM32L45xxx and STM32L46xxx)
011: Reserved
100: Timer 2 TRGO event
101: Reserved
110: External line9
111: Software trigger

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bit 2 TEN1: DAC channel1 trigger enable

This bit is set and cleared by software to enable/disable DAC channel1 trigger.
0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR1 register
1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR1 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR1 register takes only one APB1 clock cycle.

Bit 1 Reserved, must be kept at reset value.

Bit 0 EN1: DAC channel1 enable

This bit is set and cleared by software to enable/disable DAC channel1.
0: DAC channel1 disabled
1: DAC channel1 enabled

Touch sensing controller (TSC) RM0394

618/1472 DocID027295 Rev 3

23.6.6 TSC I/O analog switch control register (TSC_IOASCR)

Address offset: 0x18

Reset value: 0x0000 0000

23.6.7 TSC I/O sampling control register (TSC_IOSCR)

Address offset: 0x20

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:0 Gx_IOy: Gx_IOy analog switch enable

These bits are set and cleared by software to enable/disable the Gx_IOy analog switch.

0: Gx_IOy analog switch disabled (opened)
1: Gx_IOy analog switch enabled (closed)

Note: These bits control the I/O analog switch whatever the I/O control mode is (even if
controlled by standard GPIO registers).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. G7_IO4 G7_IO3 G7_IO2 G7_IO1 G6_IO4 G6_IO3 G6_IO2 G6_IO1 G5_IO4 G5_IO3 G5_IO2 G5_IO1

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G4_IO4 G4_IO3 G4_IO2 G4_IO1 G3_IO4 G3_IO3 G3_IO2 G3_IO1 G2_IO4 G2_IO3 G2_IO2 G2_IO1 G1_IO4 G1_IO3 G1_IO2 G1_IO1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 27:0 Gx_IOy: Gx_IOy sampling mode

These bits are set and cleared by software to configure the Gx_IOy as a sampling capacitor
I/O. Only one I/O per analog I/O group must be defined as sampling capacitor.

0: Gx_IOy unused
1: Gx_IOy used as sampling capacitor

Note: These bits must not be modified when an acquisition is ongoing.

During the acquisition phase and even if the TSC peripheral alternate function is not
enabled, as soon as the TSC_IOSCR bit is set, the corresponding GPIO analog switch
is automatically controlled by the touch sensing controller.

Advanced encryption standard hardware accelerator (AES) RM0394

644/1472 DocID027295 Rev 3

Repeat (p), (q), (r) and (s) until ciphering or deciphering of all the payload blocks.
Alternatively, DMA may be used.

• GCM Final Phase: In this last step, we generate the authentication tag.

t) Choose the combination GCMPH[1:0] = 11 in AES_CR.

u) Write 4 times the input into the AES_DINR register: the input must be composed
of the length of header coded on 64 bits followed with the length of payload coded
on 64 bits.

v) Wait until the computation flag CCF in AES_SR register is set to 1 (or use the
corresponding interrupt).

w) Read 4 times the AES_DOUTR register: the output is the “auth tag”.

x) Clear CCF flag in AES_SR register by setting CCFC bit in AES_CR to 1.

y) Disable AES processor by setting bit EN in AES_CR to 0.

No need to disable / enable AES processor when moving from header phase to tag phase.

AES can move directly from init to payload or/and to tag (bypassing header phase or/and
payload phase) in this case AES enable step should be added after selecting the next
phase.

AES Galois message authentication code (GMAC)

The AES processor supports also GMAC to authenticate the plaintext based on GCM
algorithm for generating the corresponding TAG.

It is based on a multiplier over a fixed finite field for generating the TAG. It requires an
initialization vector at the beginning.

Actually GMAC is the same as GCM applied on a message composed only by the header,
so all steps and settings are the same except phase 3 will not be used.

Suspend mode in GCM

In GCM algorithm, suspend mode can be performed during header phase and payload
phase. It is advised to not use suspend mode in init phase or tag phase since suspend
mode has no benefit in these phases:

Suspend mode during header phase: the user must respect the following steps:

• Before interrupting the current message:

a) Make sure that CCF flag read from AES_SR is set to 1.

b) Clear CCF flag in AES_SR register by setting CCFC in AES_CR to 1.

c) Save AES_SUSPxR registers in the memory.

d) Disable AES processor by setting EN in AES_CR to 0.

e) Save the current AES configuration in the memory.

• To resume:

f) Make sure that AES processor is disabled by reading the bit EN in AES_CR.

g) Write back AES_SUSPxR registers into their corresponding suspend registers.

h) Re-configure AES with the initial setting values in CR register, IV register and key
registers.

i) Enable the AES processor by setting EN in AES_CR register.

Advanced-control timers (TIM1) RM0394

676/1472 DocID027295 Rev 3

Figure 160. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

Figure 161. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

General-purpose timer (TIM2/TIM3) RM0394

776/1472 DocID027295 Rev 3

Figure 226. Counter timing diagram, Update event when repetition counter
is not used

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to
'00'. The Output compare interrupt flag of channels configured in output is set when: the
counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center
aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3,
CMS = "11").

In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or

General-purpose timer (TIM2/TIM3) RM0394

804/1472 DocID027295 Rev 3

CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low
level only).

2. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 254. Control circuit in trigger mode

Slave mode: External Clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input when operating in reset mode,
gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS
bits of TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS=00: prescaler disabled

– ETP=0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

2. Configure the channel 1 as follows, to detect rising edges on TI:

– IC1F=0000: no filter.

– The capture prescaler is not used for triggering and does not need to be
configured.

– CC1S=01in TIMx_CCMR1 register to select only the input capture source

– CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect
rising edge only).

3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

Real-time clock (RTC) RM0394

988/1472 DocID027295 Rev 3

34.6.3 RTC control register (RTC_CR)

Address offset: 0x08

Backup domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. ITSE COE OSEL[1:0] POL COSEL BKP SUB1H ADD1H

rw rw rw rw rw rw rw w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSIE WUTIE ALRBIE ALRAIE TSE WUTE ALRBE ALRAE Res. FMT
BYPS
HAD

REFCKON TSEDGE WUCKSEL[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 ITSE: timestamp on internal event enable

0: internal event timestamp disabled
1: internal event timestamp enabled

Bit 23 COE: Calibration output enable

This bit enables the RTC_CALIB output

0: Calibration output disabled
1: Calibration output enabled

Bits 22:21 OSEL[1:0]: Output selection

These bits are used to select the flag to be routed to RTC_ALARM output

00: Output disabled
01: Alarm A output enabled
10: Alarm B output enabled
11: Wakeup output enabled

Bit 20 POL: Output polarity

This bit is used to configure the polarity of RTC_ALARM output

0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0])
1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]).

Bit 19 COSEL: Calibration output selection

When COE=1, this bit selects which signal is output on RTC_CALIB.

0: Calibration output is 512 Hz (with default prescaler setting)
1: Calibration output is 1 Hz (with default prescaler setting)

These frequencies are valid for RTCCLK at 32.768 kHz and prescalers at their default values
(PREDIV_A=127 and PREDIV_S=255). Refer to Section 34.3.15: Calibration clock output

Bit 18 BKP: Backup

This bit can be written by the user to memorize whether the daylight saving time change has
been performed or not.

DocID027295 Rev 3 1035/1472

RM0394 Inter-integrated circuit (I2C) interface

1082

Figure 329. Master clock generation

Caution: In order to be I2C or SMBus compliant, the master clock must respect the timings given
below:

DocID027295 Rev 3 1071/1472

RM0394 Inter-integrated circuit (I2C) interface

1082

Bit 13 START: Start generation

This bit is set by software, and cleared by hardware after the Start followed by the address
sequence is sent, by an arbitration loss, by a timeout error detection, or when PE = 0. It can
also be cleared by software by writing ‘1’ to the ADDRCF bit in the I2C_ICR register.

0: No Start generation.
1: Restart/Start generation:

– If the I2C is already in master mode with AUTOEND = 0, setting this bit generates a
Repeated Start condition when RELOAD=0, after the end of the NBYTES transfer.

– Otherwise setting this bit will generate a START condition once the bus is free.

Note: Writing ‘0’ to this bit has no effect.

The START bit can be set even if the bus is BUSY or I2C is in slave mode.

This bit has no effect when RELOAD is set. In 10-bit addressing mode, if a NACK is
received on the first part of the address, the START bit is not cleared by hardware and
the master will resend the address sequence, unless the START bit is cleared by
software

Bit 12 HEAD10R: 10-bit address header only read direction (master receiver mode)

0: The master sends the complete 10 bit slave address read sequence: Start + 2 bytes 10bit
address in write direction + Restart + 1st 7 bits of the 10 bit address in read direction.
1: The master only sends the 1st 7 bits of the 10 bit address, followed by Read direction.

Note: Changing this bit when the START bit is set is not allowed.

Bit 11 ADD10: 10-bit addressing mode (master mode)

0: The master operates in 7-bit addressing mode,
1: The master operates in 10-bit addressing mode

Note: Changing this bit when the START bit is set is not allowed.

Bit 10 RD_WRN: Transfer direction (master mode)

0: Master requests a write transfer.
1: Master requests a read transfer.

Note: Changing this bit when the START bit is set is not allowed.

Bits 9:8 SADD[9:8]: Slave address bit 9:8 (master mode)

In 7-bit addressing mode (ADD10 = 0):

These bits are don’t care

In 10-bit addressing mode (ADD10 = 1):

These bits should be written with bits 9:8 of the slave address to be sent

Note: Changing these bits when the START bit is set is not allowed.

Bits 7:1 SADD[7:1]: Slave address bit 7:1 (master mode)

In 7-bit addressing mode (ADD10 = 0):

These bits should be written with the 7-bit slave address to be sent

In 10-bit addressing mode (ADD10 = 1):

These bits should be written with bits 7:1 of the slave address to be sent.

Note: Changing these bits when the START bit is set is not allowed.

Bit 0 SADD0: Slave address bit 0 (master mode)

In 7-bit addressing mode (ADD10 = 0):

This bit is don’t care

In 10-bit addressing mode (ADD10 = 1):

This bit should be written with bit 0 of the slave address to be sent

Note: Changing these bits when the START bit is set is not allowed.

Universal synchronous asynchronous receiver transmitter (USART) RM0394

1114/1415 DocID027295 Rev 3

• In transmission, the USART inserts the Guard Time (as programmed in the Guard Time
register) between two successive characters. As the Guard Time is measured after the
stop bit of the previous character, the GT[7:0] register must be programmed to the
desired CGT (Character Guard Time, as defined by the 7816-3 specification) minus 12
(the duration of one character).

• The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the Guard Time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the Guard Time counter
reaches the programmed value TC is asserted high.

• The TCBGT flag can be used to detect the end of data transfer without waiting for
guard time completion. This flag is set just after the end of frame transmission and if no
NACK has been received from the card.

• The de-assertion of TC flag is unaffected by Smartcard mode.

• If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK is not detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

• On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
does not detect the NACK as a start bit.

Note: A break character is not significant in Smartcard mode. A 0x00 data with a framing error is
treated as data and not as a break.

No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 363 details how the NACK signal is sampled by the USART. In this example the
USART is transmitting data and is configured with 1.5 stop bits. The receiver part of the
USART is enabled in order to check the integrity of the data and the NACK signal.

Figure 363. Parity error detection using the 1.5 stop bits

The USART can provide a clock to the smartcard through the CK output. In Smartcard
mode, CK is not associated to the communication but is simply derived from the internal
peripheral input clock through a 5-bit prescaler. The division ratio is configured in the
prescaler register USART_GTPR. CK frequency can be programmed from fCK/2 to fCK/62,
where fCK is the peripheral input clock.

DocID027295 Rev 3 1133/1472

RM0394 Universal synchronous asynchronous receiver transmitter (USART)

1192

Note: In order to provide correctly the CK clock to the Smartcard, the steps below must be
respected:
- UE = 0
- SCEN = 1
- GTPR configuration
- CLKEN= 1
- UE = 1

Bit 10 CPOL: Clock polarity

This bit allows the user to select the polarity of the clock output on the CK pin in synchronous mode.
It works in conjunction with the CPHA bit to produce the desired clock/data relationship
0: Steady low value on CK pin outside transmission window
1: Steady high value on CK pin outside transmission window
This bit can only be written when the USART is disabled (UE=0).

Note: If synchronous mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1085.

Bit 9 CPHA: Clock phase

This bit is used to select the phase of the clock output on the CK pin in synchronous mode. It works
in conjunction with the CPOL bit to produce the desired clock/data relationship (see Figure 359 and
Figure 360)
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge
This bit can only be written when the USART is disabled (UE=0).

Note: If synchronous mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1085.

Bit 8 LBCL: Last bit clock pulse

This bit is used to select whether the clock pulse associated with the last data bit transmitted (MSB)
has to be output on the CK pin in synchronous mode.
0: The clock pulse of the last data bit is not output to the CK pin
1: The clock pulse of the last data bit is output to the CK pin

Caution: The last bit is the 7th or 8th or 9th data bit transmitted depending on the 7 or 8 or 9 bit
format selected by the M bits in the USART_CR1 register.

This bit can only be written when the USART is disabled (UE=0).

Note: If synchronous mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1085.

Bit 7 Reserved, must be kept at reset value.

Bit 6 LBDIE: LIN break detection interrupt enable

Break interrupt mask (break detection using break delimiter).
0: Interrupt is inhibited
1: An interrupt is generated whenever LBDF=1 in the USART_ISR register

Note: If LIN mode is not supported, this bit is reserved and forced by hardware to ‘0’. Please refer to
Section 36.4: USART implementation on page 1085.

Universal synchronous asynchronous receiver transmitter (USART) RM0394

1144/1415 DocID027295 Rev 3

Bit 11 RTOF: Receiver timeout

This bit is set by hardware when the timeout value, programmed in the RTOR register has
lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in
the USART_ICR register.
An interrupt is generated if RTOIE=1 in the USART_CR1 register.
In Smartcard mode, the timeout corresponds to the CWT or BWT timings.
0: Timeout value not reached
1: Timeout value reached without any data reception

Note: If a time equal to the value programmed in RTOR register separates 2 characters,
RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8,
depending on the oversampling method), RTOF flag is set.

The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has
already elapsed when RE is set, then RTOF will be set.

If the USART does not support the Receiver timeout feature, this bit is reserved and
forced by hardware to ‘0’.

Bit 10 CTS: CTS flag

This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin.
0: CTS line set
1: CTS line reset

Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’.

Bit 9 CTSIF: CTS interrupt flag

This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by
software, by writing 1 to the CTSCF bit in the USART_ICR register.
An interrupt is generated if CTSIE=1 in the USART_CR3 register.
0: No change occurred on the CTS status line
1: A change occurred on the CTS status line

Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’.

Bit 8 LBDF: LIN break detection flag

This bit is set by hardware when the LIN break is detected. It is cleared by software, by
writing 1 to the LBDCF in the USART_ICR.
An interrupt is generated if LBDIE = 1 in the USART_CR2 register.
0: LIN Break not detected
1: LIN break detected

Note: If the USART does not support LIN mode, this bit is reserved and forced by hardware
to ‘0’. Please refer to Section 36.4: USART implementation on page 1085.

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the USART_TDR register has been
transferred into the shift register. It is cleared by a write to the USART_TDR register.
The TXE flag can also be cleared by writing 1 to the TXFRQ in the USART_RQR register, in
order to discard the data (only in Smartcard T=0 mode, in case of transmission failure).
An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register.
0: data is not transferred to the shift register
1: data is transferred to the shift register)

Note: This bit is used during single buffer transmission.

Universal synchronous asynchronous receiver transmitter (USART) RM0394

1148/1415 DocID027295 Rev 3

36.8.10 Receive data register (USART_RDR)

Address offset: 0x24

Reset value: Undefined

36.8.11 Transmit data register (USART_TDR)

Address offset: 0x28

Reset value: Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. RDR[8:0]

r r r r r r r r r

Bits 31:9 Reserved, must be kept at reset value.

Bits 8:0 RDR[8:0]: Receive data value

Contains the received data character.
The RDR register provides the parallel interface between the input shift register and the
internal bus (see Figure 347).
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. TDR[8:0]

rw rw rw rw rw rw rw rw rw

Bits 31:9 Reserved, must be kept at reset value.

Bits 8:0 TDR[8:0]: Transmit data value

Contains the data character to be transmitted.
The TDR register provides the parallel interface between the internal bus and the output
shift register (see Figure 347).
When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register),
the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect
because it is replaced by the parity.

Note: This register must be written only when TXE=1.

Serial peripheral interface (SPI) RM0394

1196/1472 DocID027295 Rev 3

Half-duplex communication

The SPI can communicate in half-duplex mode by setting the BIDIMODE bit in the
SPIx_CR1 register. In this configuration, one single cross connection line is used to link the
shift registers of the master and slave together. During this communication, the data is
synchronously shifted between the shift registers on the SCK clock edge in the transfer
direction selected reciprocally by both master and slave with the BDIOE bit in their
SPIx_CR1 registers. In this configuration, the master’s MISO pin and the slave’s MOSI pin
are free for other application uses and act as GPIOs.

Figure 386. Half-duplex single master/ single slave application

1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 38.4.5: Slave select (NSS) pin management.

2. In this configuration, the master’s MISO pin and the slave’s MOSI pin can be used as GPIOs.

3. A critical situation can happen when communication direction is changed not synchronously between two
nodes working at bidirectionnal mode and new transmitter accesses the common data line while former
transmitter still keeps an opposite value on the line (the value depends on SPI configuration and
communication data). Both nodes then fight while providing opposite output levels on the common line
temporary till next node changes its direction settings correspondingly, too. It is suggested to insert a serial
resistance between MISO and MOSI pins at this mode to protect the outputs and limit the current blowing
between them at this situation.

Simplex communications

The SPI can communicate in simplex mode by setting the SPI in transmit-only or in receive-
only using the RXONLY bit in the SPIx_CR2 register. In this configuration, only one line is
used for the transfer between the shift registers of the master and slave. The remaining
MISO and MOSI pins pair is not used for communication and can be used as standard
GPIOs.

• Transmit-only mode (RXONLY=0): The configuration settings are the same as for full-
duplex. The application has to ignore the information captured on the unused input pin.
This pin can be used as a standard GPIO.

• Receive-only mode (RXONLY=1): The application can disable the SPI output function
by setting the RXONLY bit. In slave configuration, the MISO output is disabled and the
pin can be used as a GPIO. The slave continues to receive data from the MOSI pin
while its slave select signal is active (see 38.4.5: Slave select (NSS) pin management).
Received data events appear depending on the data buffer configuration. In the master
configuration, the MOSI output is disabled and the pin can be used as a GPIO. The
clock signal is generated continuously as long as the SPI is enabled. The only way to
stop the clock is to clear the RXONLY bit or the SPE bit and wait until the incoming
pattern from the MISO pin is finished and fills the data buffer structure, depending on its
configuration.

SD/SDIO/MMC card host interface (SDMMC) RM0394

1328/1472 DocID027295 Rev 3

registers (IO_RW_EXTENDED, CMD53) to temporarily stall the data transfer while allowing
the MMC/SD module to send commands to any function within the SD I/O device. To
determine when a card supports the ReadWait protocol, the MMC/SD module must test
capability bits in the internal card registers. The timing for ReadWait is based on the
interrupt period.

41.4.14 Commands and responses

Application-specific and general commands

The SDMMC card host module system is designed to provide a standard interface for a
variety of applications types. In this environment, there is a need for specific
customer/application features. To implement these features, two types of generic
commands are defined in the standard: application-specific commands (ACMD) and general
commands (GEN_CMD).

When the card receives the APP_CMD (CMD55) command, the card expects the next
command to be an application-specific command. ACMDs have the same structure as
regular MultiMediaCard commands and can have the same CMD number. The card
recognizes it as ACMD because it appears after APP_CMD (CMD55). When the command
immediately following the APP_CMD (CMD55) is not a defined application-specific
command, the standard command is used. For example, when the card has a definition for
SD_STATUS (ACMD13), and receives CMD13 immediately following APP_CMD (CMD55),
this is interpreted as SD_STATUS (ACMD13). However, when the card receives CMD7
immediately following APP_CMD (CMD55) and the card does not have a definition for
ACMD7, this is interpreted as the standard (SELECT/DESELECT_CARD) CMD7.

To use one of the manufacturer-specific ACMDs the SD card Host must perform the
following steps:

1. Send APP_CMD (CMD55)
The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit
is set and an ACMD is now expected.

2. Send the required ACMD
The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit
is set and that the accepted command is interpreted as an ACMD. When a nonACMD
is sent, it is handled by the card as a normal MultiMediaCard command and the
APP_CMD bit in the card status register stays clear.

When an invalid command is sent (neither ACMD nor CMD) it is handled as a standard
MultiMediaCard illegal command error.

The bus transaction for a GEN_CMD is the same as the single-block read or write
commands (WRITE_BLOCK, CMD24 or READ_SINGLE_BLOCK,CMD17). In this case, the
argument denotes the direction of the data transfer rather than the address, and the data
block has vendor-specific format and meaning.

The card must be selected (in transfer state) before sending GEN_CMD (CMD56). The data
block size is defined by SET_BLOCKLEN (CMD16). The response to GEN_CMD (CMD56)
is in R1b format.

DocID027295 Rev 3 1363/1472

RM0394 Controller area network (bxCAN)

1396

Scalable width

To optimize and adapt the filters to the application needs, each filter bank can be scaled
independently. Depending on the filter scale a filter bank provides:

• One 32-bit filter for the STDID[10:0], EXTID[17:0], IDE and RTR bits.

• Two 16-bit filters for the STDID[10:0], RTR, IDE and EXTID[17:15] bits.

Refer to Figure 448.

Furthermore, the filters can be configured in mask mode or in identifier list mode.

Mask mode

In mask mode the identifier registers are associated with mask registers specifying which
bits of the identifier are handled as “must match” or as “don’t care”.

Identifier list mode

In identifier list mode, the mask registers are used as identifier registers. Thus instead of
defining an identifier and a mask, two identifiers are specified, doubling the number of single
identifiers. All bits of the incoming identifier must match the bits specified in the filter
registers.

Filter bank scale and mode configuration

The filter banks are configured by means of the corresponding CAN_FMR register. To
configure a filter bank it must be deactivated by clearing the FACT bit in the CAN_FAR
register. The filter scale is configured by means of the corresponding FSCx bit in the
CAN_FS1R register, refer to Figure 448. The identifier list or identifier mask mode for the
corresponding Mask/Identifier registers is configured by means of the FBMx bits in the
CAN_FMR register.

To filter a group of identifiers, configure the Mask/Identifier registers in mask mode.

To select single identifiers, configure the Mask/Identifier registers in identifier list mode.

Filters not used by the application should be left deactivated.

Each filter within a filter bank is numbered (called the Filter Number) from 0 to a maximum
dependent on the mode and the scale of each of the filter banks.

Concerning the filter configuration, refer to Figure 448.

