
STMicroelectronics - STM32L433CBY6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 80MHz

Connectivity CANbus, I²C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, LCD, PWM, WDT

Number of I/O 39

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 3.6V

Data Converters A/D 10x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 49-UFBGA, WLCSP

Supplier Device Package 49-WLCSP (3.14x3.13)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l433cby6tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32l433cby6tr-4408642
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

RM0394

68/1472 DocID027295 Rev 3

The parity bits are computed and stored when writing into the SRAM2. Then, they are
automatically checked when reading. If one bit fails, an NMI is generated. The same error
can also be linked to the BRK_IN Break input of TIM1/TIM15/TIM16, with the SPL control bit
in the SYSCFG configuration register 2 (SYSCFG_CFGR2). The SRAM2 Parity Error flag
(SPF) is available in the SYSCFG configuration register 2 (SYSCFG_CFGR2).

Note: When enabling the RAM parity check, it is advised to initialize by software the whole RAM
memory at the beginning of the code, to avoid getting parity errors when reading non-
initialized locations.

2.4.2 SRAM2 Write protection

The SRAM2 can be write protected with a page granularity of 1 Kbyte.

Table 3. SRAM2 organization

Page number Start address End address

Page 0 0x1000 0000 0x1000 03FF

Page 1 0x1000 0400 0x1000 07FF

Page 2 0x1000 0800 0x1000 0BFF

Page 3 0x1000 0C00 0x1000 0FFF

Page 4 0x1000 1000 0x1000 13FF

Page 5 0x1000 1400 0x1000 17FF

Page 6 0x1000 1800 0x1000 1BFF

Page 7 0x1000 1C00 0x1000 1FFF

Page 8 0x1000 2000 0x1000 23FF

Page 9 0x1000 2400 0x1000 27FF

Page 10 0x1000 2800 0x1000 2BFF

Page 11 0x1000 2C00 0x1000 2FFF

Page 12 0x1000 3000 0x1000 33FF

Page 13 0x1000 3400 0x1000 37FF

Page 14 0x1000 3800 0x1000 3BFF

Page 15 0x1000 3C00 0x1000 3FFF

Table 4. SRAM2 organization
(continuation for STM32L45x and STM32L46x devices only)

Page number Start address End address

Page 16 0x1000 4000 0x1000 43FF

Page 17 0x1000 4400 0x1000 47FF

Page 18 0x1000 4800 0x1000 4BFF

Page 19 0x1000 4C00 0x1000 4FFF

Page 20 0x1000 5000 0x1000 53FF

DocID027295 Rev 3 225/1472

RM0394 Reset and clock control (RCC)

241

Reset value: 0xF7E6 CE31

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPTIM1
SMEN

OPAMP
SMEN

DAC1
SMEN

PWR
SMEN

Res.
USB

FSSM

EN(1)

CAN1
SMEN

CRSS
MEN

I2C3
SMEN

I2C2
SMEN

(2)

I2C1
SMEN

Res.
UART4

SMEN(3)
USART3

SMEN(2)
USART2
SMEN

Res.

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI3
SMEN

SPI2
SMEN

(2)
Res. Res.

WWDG
SMEN

RTCA
PBSM

EN

LCD
SMEN

(4)
Res. Res. Res.

TIM7
SMEN

(5)

TIM6
SMEN

Res. Res.
TIM3

SMEN(3)
TIM2

SMEN

rw rw rw rw rw rw rw rw rw

1. Available on STM32L4x2xx and STM32L4x3xx devices only.

2. Not available on STM32L432xx and STM32L442xx devices.

3. Available on STM32L45xxx and STM32L46xxx devices only.

4. Available on STM32L4x3xx devices only.

5. Available on STM32L43xxx and STM32L44xxx devices only.

Bit 31 LPTIM1SMEN: Low power timer 1 clocks enable during Sleep and Stop modes

Set and cleared by software.
0: LPTIM1 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: LPTIM1 clocks enabled by the clock gating(1) during Sleep and Stop modes

Bit 30 OPAMPSMEN: OPAMP interface clocks enable during Sleep and Stop modes

Set and cleared by software.
0: OPAMP interface clocks disabled by the clock gating(1) during Sleep and Stop modes
1: OPAMP interface clocks enabled by the clock gating(1) during Sleep and Stop modes

Bit 29 DAC1SMEN: DAC1 interface clocks enable during Sleep and Stop modes

Set and cleared by software.
0: DAC1 interface clocks disabled by the clock gating(1) during Sleep and Stop modes
1: DAC1 interface clocks enabled by the clock gating(1) during Sleep and Stop modes

Bit 28 PWRSMEN: Power interface clocks enable during Sleep and Stop modes

Set and cleared by software.
0: Power interface clocks disabled by the clock gating(1) during Sleep and Stop modes
1: Power interface clocks enabled by the clock gating(1) during Sleep and Stop modes

Bit 27 Reserved, must be kept at reset value.

Bit 26 USBFSSMEN(2): USB FS clock enable during Sleep and Stop modes

Set and cleared by software.
0: USB FS clock disabled by the clock gating(1) during Sleep and Stop modes
1: USB FS clock enabled by the clock gating(1) during Sleep and Stop modes

Bit 25 CAN1SMEN: CAN1 clocks enable during Sleep and Stop modes

Set and cleared by software.
0: CAN1 clocks disabled by the clock gating(1) during Sleep and Stop modes
1: CAN1 clocks enabled by the clock gating(1) during Sleep and Stop modes

Quad-SPI interface (QUADSPI) RM0394

342/1472 DocID027295 Rev 3

SDR mode

By default, the DDRM bit (QUADSPI_CCR[31]) is 0 and the QUADSPI operates in single
data rate (SDR) mode.

In SDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals, these
signals transition only with the falling edge of CLK.

When receiving data in SDR mode, the QUADSPI assumes that the Flash memories also
send the data using CLK’s falling edge. By default (when SSHIFT = 0), the signals are
sampled using the following (rising) edge of CLK.

DDR mode

When the DDRM bit (QUADSPI_CCR[31]) is set to 1, the QUADSPI operates in double data
rate (DDR) mode.

In DDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals in the
address/alternate-byte/data phases, a bit is sent on each of the falling and rising edges of
CLK.

The instruction phase is not affected by DDRM. The instruction is always sent using CLK’s
falling edge.

When receiving data in DDR mode, the QUADSPI assumes that the Flash memories also
send the data using both rising and falling CLK edges. When DDRM = 1, firmware must
clear SSHIFT bit (bit 4 of QUADSPI_CR). Thus, the signals are sampled one half of a CLK
cycle later (on the following, opposite edge).

Figure 34. An example of a DDR command in quad mode

Dual-flash mode

When the DFM bit (bit 6 of QUADSPI_CR) is 1, the QUADSPI is in dual-flash mode, where
two external quad SPI Flash memories (FLASH 1 and FLASH 2) are used in order to
send/receive 8 bits (or 16 bits in DDR mode) every cycle, effectively doubling the throughput
as well as the capacity.

Each of the Flash memories use the same CLK and optionally the same nCS signals, but
each have separate IO0, IO1, IO2, and IO3 signals.

Dual-flash mode can be used in conjunction with single-bit, dual-bit, and quad-bit modes, as
well as with either SDR or DDR mode.

DocID027295 Rev 3 469/1472

RM0394 Digital-to-analog converter (DAC)

492

Note: In the above formula the settling to the desired code value with ½ LSB or accuracy requires
10 constant time for 12 bits resolution. For 8 bits resolution, the settling time is 7 constant
time.

The tolerated voltage drop during the hold phase “Vd” is represented by the number of LSBs
after the capacitor discharging with the output leakage current. The settling back to the
desired value with ½ LSB error accuracy requires ln(2*Nlsb) constant time of the DAC.

The parameters “Tstab-BON“,“Tstab-BOFF“, “RBON” and “RBOFF” are specified in the datasheet

Example of the sample and refresh time calculation with output buffer on

Note: The values used in the example below are provided as indication only. Please refer to the
product datasheet for product data.

Cload = 100 nF

VDDA = 3.0 V

Sampling phase:

tsampling = 7 μs + (10 * 2000 * 100 * 10-9) = 2.007 ms

(where Tstab-BON = 7 μs, RBON = 2 kΩ)

Refresh phase:

trefresh = 7 μs + (2000 * 100 * 10-9) * ln(2*10) = 606.1 μs

(where Nlsb = 10 (10 LSB drop during the hold phase)

Hold phase:

Dv = ileak * thold / Cload = 0.0073 V (10 LSB of 12bit at 3 V)

ileak = 150 nA (worst case on the IO leakage on all the temperature range)

thold = 0.0073 * 100 * 10-9 / (150 * 10-9) = 4.867 ms

Comparator (COMP) RM0394

496/1472 DocID027295 Rev 3

19 Comparator (COMP)

19.1 Introduction

The device embeds two ultra-low power comparators COMP1, and COMP2

The comparators can be used for a variety of functions including:

• Wake-up from low-power mode triggered by an analog signal,

• Analog signal conditioning,

• Cycle-by-cycle current control loop when combined with a PWM output from a timer.

19.2 COMP main features

• Each comparator has configurable plus and minus inputs used for flexible voltage
selection:

– Multiplexed I/O pins

– DAC Channel1 and Channel2

– Internal reference voltage and three submultiple values (1/4, 1/2, 3/4) provided by
scaler (buffered voltage divider)

• Programmable hysteresis

• Programmable speed / consumption

• The outputs can be redirected to an I/O or to timer inputs for triggering:

– Break events for fast PWM shutdowns

• Comparator outputs with blanking source

• The two comparators can be combined in a window comparator

• Each comparator has interrupt generation capability with wake-up from Sleep and Stop
modes (through the EXTI controller)

Advanced-control timers (TIM1) RM0394

732/1472 DocID027295 Rev 3

26.4.3 TIM1 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000 0000

Bit 2 CCUS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit only
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit or when an rising edge occurs on TRGI

Note: This bit acts only on channels that have a complementary output.

Bit 1 Reserved, must be kept at reset value.

Bit 0 CCPC: Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when a commutation event (COM) occurs (COMG bit set or rising edge detected on
TRGI, depending on the CCUS bit).

Note: This bit acts only on channels that have a complementary output.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SMS[3]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] OCCS SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 SMS[3]: Slave mode selection - bit 3

Refer to SMS description - bits 2:0

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.

Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with
TRGI connected to ETRF (SMS=111 and TS=111).

2: It is possible to simultaneously use external clock mode 2 with the following slave
modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time,
the external clock input is ETRF.

Advanced-control timers (TIM1) RM0394

752/1472 DocID027295 Rev 3

26.4.17 TIM1 capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000

26.4.18 TIM1 break and dead-time register (TIMx_BDTR)

Address offset: 0x44

Reset value: 0x0000 0000

Note: As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR and DTG[7:0]
can be write-locked depending on the LOCK configuration, it can be necessary to configure
all of them during the first write access to the TIMx_BDTR register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw/r

Bits 15:0 CCR4[15:0]: Capture/Compare value

If channel CC4 is configured as output: CCR4 is the value to be loaded in the actual
capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.
If channel CC4 is configured as input: CCR4 is the counter value transferred by the last
input capture 4 event (IC4). The TIMx_CCR4 register is read-only and cannot be
programmed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R e s. Res. Res. Res.
Res. Res.

BK2P BK2E BK2F[3:0] BKF[3:0]

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOE AOE BKP BKE OSSR OSSI LOCK[1:0] DTG[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:26 Reserved, must be kept at reset value.

Bit 25 BK2P: Break 2 polarity

0: Break input BRK2 is active low
1: Break input BRK2 is active high

Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

DocID027295 Rev 3 777/1472

RM0394 General-purpose timer (TIM2/TIM3)

835

DMA request is sent). This is to avoid generating both update and capture interrupt when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 227. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 27.4.1: TIMx control register 1
(TIMx_CR1) on page 811).

DocID027295 Rev 3 803/1472

RM0394 General-purpose timer (TIM2/TIM3)

835

1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write
CC1P=1 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect low
level only).

2. Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

3. Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

Figure 253. Control circuit in gated mode

1. The configuration “CCxP=CCxNP=1” (detection of both rising and falling edges) does not have any effect
in gated mode because gated mode acts on a level and not on an edge.

Note: The configuration “CCxP=CCxNP=1” (detection of both rising and falling edges) does not
have any effect in gated mode because gated mode acts on a level and not on an edge.

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. CC2S bits are
selecting the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write

DocID027295 Rev 3 809/1472

RM0394 General-purpose timer (TIM2/TIM3)

835

aligned, TIMy3 must be configured in Master/Slave mode (slave with respect to TI1, master
with respect to TIMz2):

1. Configure TIMy3 master mode to send its Enable as trigger output (MMS=001 in the
TIMy3_CR2 register).

2. Configure TIMy slave mode to get the input trigger from TI1 (TS=100 in the
TIMy3_SMCR register).

3. Configure TIMy3 in trigger mode (SMS=110 in the TIMy3_SMCR register).

4. Configure the TIMy3 in Master/Slave mode by writing MSM=1 (TIMy3_SMCR register).

5. Configure TIMz2 to get the input trigger from TIMy (TS=000 in the TIMz2_SMCR
register).

6. Configure TIMz2 in trigger mode (SMS=110 in the TIMz2_SMCR register).

When a rising edge occurs on TI1 (TIMy3), both counters starts counting synchronously on
the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters starts from 0, but you can easily insert an offset between them by
writing any of the counter registers (TIMx_CNT). You can see that the master/slave mode
insert a delay between CNT_EN and CK_PSC on TIMy3.

Figure 261. Triggering TIMy3 and TIMz2 with TIMy3 TI1 input

Note: The clock of the slave timer must be enabled prior to receive events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.

27.3.20 DMA burst mode

The TIMx timers have the capability to generate multiple DMA requests upon a single event.
The main purpose is to be able to re-program part of the timer multiple times without
software overhead, but it can also be used to read several registers in a row, at regular
intervals.

The DMA controller destination is unique and must point to the virtual register TIMx_DMAR.
On a given timer event, the timer launches a sequence of DMA requests (burst). Each write
into the TIMx_DMAR register is actually redirected to one of the timer registers.

DocID027295 Rev 3 845/1472

RM0394 General-purpose timers (TIM15/TIM16)

914

Figure 270. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

Figure 271. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

DocID027295 Rev 3 863/1472

RM0394 General-purpose timers (TIM15/TIM16)

914

Figure 288. Output behavior in response to a break

Real-time clock (RTC) RM0394

992/1472 DocID027295 Rev 3

Bit 10 WUTF: Wakeup timer flag

This flag is set by hardware when the wakeup auto-reload counter reaches 0.
This flag is cleared by software by writing 0.
This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1
again.

Bit 9 ALRBF: Alarm B flag

This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm B register (RTC_ALRMBR).
This flag is cleared by software by writing 0.

Bit 8 ALRAF: Alarm A flag

This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm A register (RTC_ALRMAR).

This flag is cleared by software by writing 0.

Bit 7 INIT: Initialization mode

0: Free running mode
1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and
prescaler register (RTC_PRER). Counters are stopped and start counting from the new
value when INIT is reset.

Bit 6 INITF: Initialization flag

When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler
registers can be updated.

0: Calendar registers update is not allowed
1: Calendar registers update is allowed

Bit 5 RSF: Registers synchronization flag

This bit is set by hardware each time the calendar registers are copied into the shadow
registers (RTC_SSRx, RTC_TRx and RTC_DRx). This bit is cleared by hardware in
initialization mode, while a shift operation is pending (SHPF=1), or when in bypass shadow
register mode (BYPSHAD=1). This bit can also be cleared by software.

It is cleared either by software or by hardware in initialization mode.

0: Calendar shadow registers not yet synchronized
1: Calendar shadow registers synchronized

Bit 4 INITS: Initialization status flag

This bit is set by hardware when the calendar year field is different from 0 (Backup domain
reset state).

0: Calendar has not been initialized
1: Calendar has been initialized

Bit 3 SHPF: Shift operation pending

0: No shift operation is pending
1: A shift operation is pending

This flag is set by hardware as soon as a shift operation is initiated by a write to the
RTC_SHIFTR register. It is cleared by hardware when the corresponding shift operation has
been executed. Writing to the SHPF bit has no effect.

Inter-integrated circuit (I2C) interface RM0394

1044/1472 DocID027295 Rev 3

Figure 337. Transfer sequence flowchart for I2C master receiver for N >255 bytes

DocID027295 Rev 3 1065/1472

RM0394 Inter-integrated circuit (I2C) interface

1082

Depending on the product implementation, all these interrupts events can either share the
same interrupt vector (I2C global interrupt), or be grouped into 2 interrupt vectors (I2C event
interrupt and I2C error interrupt). Refer to Table 45: STM32L43xxx/44xxx/45xxx/46xxx vector
table for details.

In order to enable the I2C interrupts, the following sequence is required:

1. Configure and enable the I2C IRQ channel in the NVIC.

2. Configure the I2C to generate interrupts.

The I2C wakeup event is connected to the EXTI controller (refer to Section 13: Extended
interrupts and events controller (EXTI)).

Table 162. I2C Interrupt requests

Interrupt event Event flag
Event flag/Interrupt

clearing method
Interrupt enable

control bit

Receive buffer not empty RXNE
Read I2C_RXDR

register
RXIE

Transmit buffer interrupt status TXIS
Write I2C_TXDR

register
TXIE

Stop detection interrupt flag STOPF Write STOPCF=1 STOPIE

Transfer Complete Reload TCR
Write I2C_CR2 with
NBYTES[7:0] ≠ 0

TCIE

Transfer complete TC
Write START=1 or

STOP=1

Address matched ADDR Write ADDRCF=1 ADDRIE

NACK reception NACKF Write NACKCF=1 NACKIE

Bus error BERR Write BERRCF=1

ERRIE

Arbitration loss ARLO Write ARLOCF=1

Overrun/Underrun OVR Write OVRCF=1

PEC error PECERR Write PECERRCF=1

Timeout/tLOW error TIMEOUT Write TIMEOUTCF=1

SMBus Alert ALERT Write ALERTCF=1

Universal synchronous asynchronous receiver transmitter (USART) RM0394

1100/1415 DocID027295 Rev 3

Example 2

To obtain 921.6 Kbaud with fCK = 48 MHz.

• In case of oversampling by 16:

USARTDIV = 48 000 000/921 600

BRR = USARTDIV = 52d = 34h

• In case of oversampling by 8:

USARTDIV = 2 * 48 000 000/921 600

USARTDIV = 104 (104d = 68h)

BRR[3:0] = USARTDIV[3:0] >> 1 = 8h >> 1 = 4h

BRR = 0x64

Table 166. Error calculation for programmed baud rates at fCK = 72MHz in both cases of
oversampling by 16 or by 8(1)

Baud rate Oversampling by 16 (OVER8 = 0) Oversampling by 8 (OVER8 = 1)

S.No Desired Actual BRR

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual BRR % Error

1 2.4 KBps 2.4 KBps 0x7530 0 2.4 KBps 0xEA60 0

2 9.6 KBps 9.6 KBps 0x1D4C 0 9.6 KBps 0x3A94 0

3 19.2 KBps 19.2 KBps 0xEA6 0 19.2 KBps 0x1D46 0

4 38.4 KBps 38.4 KBps 0x753 0 38.4 KBps 0xEA3 0

5 57.6 KBps 57.6 KBps 0x4E2 0 57.6 KBps 0x9C2 0

6 115.2 KBps 115.2 KBps 0x271 0 115.2 KBps 0x4E1 0

7 230.4 KBps 230.03KBps 0x139 0.16 230.4 KBps 0x270 0

8 460.8 KBps 461.54KBps 0x9C 0.16 460.06KBps 0x134 0.16

9 921.6 KBps 923.08KBps 0x4E 0.16 923.07KBps 0x96 0.16

10 2 MBps 2 MBps 0x24 0 2 MBps 0x44 0

11 3 MBps 3 MBps 0x18 0 3 MBps 0x30 0

12 4MBps 4MBps 0x12 0 4MBps 0x22 0

13 5MBps N.A N.A N.A 4965.51KBps 0x16 0.69

14 6MBps N.A N.A N.A 6MBps 0x14 0

15 7MBps N.A N.A N.A 6857.14KBps 0x12 2

16 9MBps N.A N.A N.A 9MBps 0x10 0

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Low-power universal asynchronous receiver transmitter (LPUART) RM0394

1158/1415 DocID027295 Rev 3

Character transmission procedure

1. Program the M bits in LPUART_CR1 to define the word length.

2. Select the desired baud rate using the LPUART_BRR register.

3. Program the number of stop bits in LPUART_CR2.

4. Enable the LPUART by writing the UE bit in LPUART_CR1 register to 1.

5. Select DMA enable (DMAT) in LPUART_CR3 if multibuffer Communication is to take
place. Configure the DMA register as explained in multibuffer communication.

6. Set the TE bit in LPUART_CR1 to send an idle frame as first transmission.

7. Write the data to send in the LPUART_TDR register (this clears the TXE bit). Repeat
this for each data to be transmitted in case of single buffer.

8. After writing the last data into the LPUART_TDR register, wait until TC=1. This
indicates that the transmission of the last frame is complete. This is required for
instance when the LPUART is disabled or enters the Halt mode to avoid corrupting the
last transmission.

Single byte communication

Clearing the TXE bit is always performed by a write to the transmit data register.

The TXE bit is set by hardware and it indicates:

• The data has been moved from the LPUART_TDR register to the shift register and the
data transmission has started.

• The LPUART_TDR register is empty.

• The next data can be written in the LPUART_TDR register without overwriting the
previous data.

This flag generates an interrupt if the TXEIE bit is set.

When a transmission is taking place, a write instruction to the LPUART_TDR register stores
the data in the TDR register; next, the data is copied in the shift register at the end of the
currently ongoing transmission.

When no transmission is taking place, a write instruction to the LPUART_TDR register
places the data in the shift register, the data transmission starts, and the TXE bit is set.

If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the LPUART_CR1 register.

After writing the last data in the LPUART_TDR register, it is mandatory to wait for TC=1
before disabling the LPUART or causing the microcontroller to enter the low-power mode
(see Figure 350: TC/TXE behavior when transmitting).

Low-power universal asynchronous receiver transmitter (LPUART) RM0394

1164/1415 DocID027295 Rev 3

37.4.5 Tolerance of the LPUART receiver to clock deviation

The asynchronous receiver of the LPUART works correctly only if the total clock system
deviation is less than the tolerance of the LPUART receiver. The causes which contribute to
the total deviation are:

• DTRA: Deviation due to the transmitter error (which also includes the deviation of the
transmitter’s local oscillator)

• DQUANT: Error due to the baud rate quantization of the receiver

• DREC: Deviation of the receiver’s local oscillator

• DTCL: Deviation due to the transmission line (generally due to the transceivers which
can introduce an asymmetry between the low-to-high transition timing and the high-to-
low transition timing)

where

DWU is the error due to sampling point deviation when the wakeup from Stop mode is
used.

when M[1:0] = 01:

when M[1:0] = 00:

when M[1:0] = 10:

tWULPUART is the time between detecting the wakeup event and both clock (requested
by the peripheral) and regulator ready.

The LPUART receiver can receive data correctly at up to the maximum tolerated deviation
specified in Table 175:

• 7, 8 or 9-bit character length defined by the M bits in the LPUARTx_CR1 register

• 1 or 2 stop bits

DTRA DQUANT DREC DTCL DWU+ + + + LPUART receiver tolerance<

DWU
tWULPUART

11 Tbit×
------------------------------=

DWU
tWULPUART

10 Tbit×
------------------------------=

DWU
tWULPUART

9 Tbit×
------------------------------=

Table 175. Tolerance of the LPUART receiver

M bits 768 ≤ BRR <1024 1024 ≤ BRR < 2048 2048 ≤ BRR < 4096 4096 ≤ BRR

8 bits (M=00), 1 stop bit 1.82% 2.56% 3.90% 4.42%

9 bits (M=01), 1 stop bit 1.69% 2.33% 2.53% 4.14%

7 bits (M=10), 1 stop bit 2.08% 2.86% 4.35% 4.42%

8 bits (M=00), 2 stop bit 2.08% 2.86% 4.35% 4.42%

9 bits (M=01), 2 stop bit 1.82% 2.56% 3.90% 4.42%

7 bits (M=10), 2stop bit 2.34% 3.23% 4.92% 4.42%

DocID027295 Rev 3 1279/1472

RM0394 Single Wire Protocol Master Interface (SWPMI)

1294

Figure 423. SWPMI No software buffer mode reception

Single software buffer mode

This mode allows to receive a complete SWP frame without any CPU intervention using the
DMA. The DMA transfers received data from the 32-bit SWPMI_RDR register to the RAM
memory, and the software can poll the end of the frame reception using the SWPMI_RBFF
flag.

The Single software buffer mode is selected by setting RXDMA bit and clearing RXMODE
bit in the SWPMI_CR register.

The DMA must be configured as follows:

The DMA channel or stream must be configured in following mode (refer to DMA section):

• memory to memory mode disabled,

• memory increment mode enabled,

• memory size set to 32-bit,

• peripheral size set to 32-bit,

• peripheral increment mode disabled,

• circular mode disabled,

• data transfer direction set to read from peripheral,

• the number of words to be transfered must be set to 8,

• the source address is the SWPMI_RDR register,

• the destination address is the SWP frame buffer in RAM.

Then the user must:

1. Set RXDMA bit in the SWPMI_CR register

2. Set RXBFIE bit in the SWPMI_IER register

3. Enable stream or channel in DMA module.

A DMA request is issued by SWPMI when RXNE flag is set in SWPMI_ISR. The RXNE flag
is cleared automatically when the DMA is reading the SWPMI_RDR register.

In the SWPMI interrupt routine, the user must check RXBFF bit in the SWPMI_ISR register.
If it is set, the user must:

DocID027295 Rev 3 1383/1472

RM0394 Controller area network (bxCAN)

1396

Figure 455. Can mailbox registers

CAN TX mailbox identifier register (CAN_TIxR) (x = 0..2)

Address offsets: 0x180, 0x190, 0x1A0
Reset value: 0xXXXX XXXX (except bit 0, TXRQ = 0)

All TX registers are write protected when the mailbox is pending transmission (TMEx reset).

This register also implements the TX request control (bit 0) - reset value 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

STID[10:0]/EXID[28:18] EXID[17:13]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXID[12:0] IDE RTR TXRQ

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier

The standard identifier or the MSBs of the extended identifier (depending on the IDE bit
value).

Bit 20:3 EXID[17:0]: Extended identifier

The LSBs of the extended identifier.

Bit 2 IDE: Identifier extension

This bit defines the identifier type of message in the mailbox.
0: Standard identifier.
1: Extended identifier.

Bit 1 RTR: Remote transmission request

0: Data frame
1: Remote frame

Bit 0 TXRQ: Transmit mailbox request

Set by software to request the transmission for the corresponding mailbox.
Cleared by hardware when the mailbox becomes empty.

