
STMicroelectronics - STM32L433CCY6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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3.7.7 Flash ECC register (FLASH_ECCR)

Address offset: 0x18

Reset value: 0x0000 0000

Access: no wait state when no Flash memory operation is on going, word, half-word and 
byte access

         

Bits 23:19 Reserved, must be kept at reset value

Bit 18 FSTPG: Fast programming

0: Fast programming disabled
1: Fast programming enabled

Bit 17 OPTSTRT: Options modification start

This bit triggers an options operation when set.
This bit is set only by software, and is cleared when the BSY bit is cleared in 
FLASH_SR.

Bit 16 START: Start 

This bit triggers an erase operation when set. If MER1, MER2 and PER bits are 
reset and the STRT bit is set, an unpredictable behavior may occur without 
generating any error flag. This condition should be forbidden.
This bit is set only by software, and is cleared when the BSY bit is cleared in 
FLASH_SR.

Bits 15:11 Reserved, must be kept at reset value. 

Bits 10:3 PNB[7:0]: Page number selection

These bits select the page to erase:

00000000: page 0
00000001: page 1
...
11111111: page 255

Note: Bit 10 is used on STM32L45x and STM32L46x devices only.

Bit 2 MER1: Mass erase

This bit triggers the mass erase (all user pages) when set.

Bit 1 PER: Page erase

0: page erase disabled
1: page erase enabled

Bit 0 PG: Programming

0: Flash programming disabled
1: Flash programming enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ECCD ECCC Res. Res. Res. Res. Res.
ECCC 

IE
Res. Res. Res.

SYSF_
ECC Res.

ADDR_ECC[18:16]

rc_w1 rc_w1 rw r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR_ECC[15:0]

r r r r r r r r r r r r r r r r
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Bit 25 SRAM2_RST: SRAM2 Erase when system reset

0: SRAM2 erased when a system reset occurs
1: SRAM2 is not erased when a system reset occurs

Bit 24 SRAM2_PE: SRAM2 parity check enable

0: SRAM2 parity check enable
1: SRAM2 parity check disable

Bit 23 nBOOT1: Boot configuration

Together with the BOOT0 pin or option bit nBOOT0 (depending on nSWBOOT0 
option bit configuration), this bit selects boot mode from the Flash main memory, 
SRAM1 or the System memory. Refer to Section 2.6: Boot configuration.

Bits 22:20 Reserved, must be kept at reset value.

Bit 19 WWDG_SW: Window watchdog selection

0: Hardware window watchdog
1: Software window watchdog

Bit 18 IWDG_STDBY: Independent watchdog counter freeze in Standby mode

0: Independent watchdog counter is frozen in Standby mode
1: Independent watchdog counter is running in Standby mode

Bit 17 IWDG_STOP: Independent watchdog counter freeze in Stop mode

0: Independent watchdog counter is frozen in Stop mode
1: Independent watchdog counter is running in Stop mode

Bit 16 IDWG_SW: Independent watchdog selection

0: Hardware independent watchdog
1: Software independent watchdog

Bit 15 Reserved, must be kept cleared

Bit 14 nRST_SHDW

0: Reset generated when entering the Shutdown mode
1: No reset generated when entering the Shutdown mode

Bit 13 nRST_STDBY

0: Reset generated when entering the Standby mode
1: No reset generate when entering the Standby mode

Bit 12 nRST_STOP

0: Reset generated when entering the Stop mode
1: No reset generated when entering the Stop mode
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Table 19. Low-power mode summary 

Mode name Entry
Wakeup 
source(1)

Wakeup

system clock
Effect on clocks

Voltage 
regulators

MR LPR

Sleep

(Sleep-now or 
Sleep-on-exit)

WFI or Return

from ISR
Any interrupt Same as before 

entering Sleep 
mode

CPU clock OFF

no effect on other clocks 
or analog clock sources

ON ON

WFE Wakeup event

Low-power 
run

Set LPR bit Clear LPR bit
Same as Low-
power run clock

None OFF ON

Low-power 
sleep

Set LPR bit + 
WFI or Return

from ISR
Any interrupt Same as before 

entering Low-
power sleep 
mode

CPU clock OFF

no effect on other clocks 
or analog clock sources

OFF ON

Set LPR bit + 
WFE

Wakeup event OFF ON

Stop 0

 LPMS=”000” + 
SLEEPDEEP bit 
+ WFI or Return

from ISR or WFE
Any EXTI line 
(configured in the 
EXTI registers)

Specific 
peripherals 
events 

HSI16 when 
STOPWUCK=1 in 
RCC_CFGR

MSI with the 
frequency before 
entering the Stop 
mode when 
STOPWUCK=0.

All clocks OFF except 
LSI and LSE

ON

ON

Stop 1

LPMS=”001” + 
SLEEPDEEP bit 
+ WFI or Return

from ISR or WFE

OFF
Stop 2

LPMS=”010” + 
SLEEPDEEP bit 
+ WFI or Return

from ISR or WFE

Standby with 
SRAM2

LPMS=”011”+ 
Set RRS bit + 
SLEEPDEEP bit 
+ WFI or Return

from ISR or WFE 

WKUP pin edge, 
RTC event, 
external reset in 
NRST pin,
IWDG reset MSI from 1 MHz 

up to 8 MHz

Standby

LPMS=”011” + 
Clear RRS bit + 
SLEEPDEEP bit 
+ WFI or Return

from ISR or WFE 

WKUP pin edge, 
RTC event, 
external reset in 
NRST pin,
IWDG reset

OFF OFF

Shutdown

LPMS=”1--” + 
SLEEPDEEP bit 
+ WFI or Return

from ISR or WFE 

WKUP pin edge, 
RTC event, 
external reset in 
NRST pin

MSI 4 MHz
All clocks OFF except 
LSE

OFF OFF

1. Refer to Table 20: Functionalities depending on the working mode.
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Figure 23. Alternate function configuration

8.3.12 Analog configuration

When the I/O port is programmed as analog configuration:

• The output buffer is disabled

• The Schmitt trigger input is deactivated, providing zero consumption for every analog 
value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0).

• The weak pull-up and pull-down resistors are disabled by hardware

• Read access to the input data register gets the value “0”

Figure 24 shows the high-impedance, analog-input configuration of the I/O port bit.

Figure 24. High impedance-analog configuration
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12 Nested vectored interrupt controller (NVIC)

12.1 NVIC main features 

• 67 maskable interrupt channels (not including the sixteen Cortex®-M4 with FPU 
interrupt lines)

• 16 programmable priority levels (4 bits of interrupt priority are used)

• Low-latency exception and interrupt handling

• Power management control

• Implementation of System Control Registers

The NVIC and the processor core interface are closely coupled, which enables low latency 
interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information 
on exceptions and NVIC programming, refer to the PM0214 programming manual for 
CortexTM-M4 products.

12.2 SysTick calibration value register

The SysTick calibration value is set to 0x100270F, which gives a reference time base of 
1 ms with the SysTick clock set to 10 MHz (max fHCLK/8).
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Figure 47. Analog to digital conversion time

1. TSMPL depends on SMP[2:0]

2. TSAR depends on RES[2:0]

16.4.17 Stopping an ongoing conversion (ADSTP, JADSTP)

The software can decide to stop regular conversions ongoing by setting ADSTP=1 and 
injected conversions ongoing by setting JADSTP=1.

Stopping conversions will reset the ongoing ADC operation. Then the ADC can be 
reconfigured (ex: changing the channel selection or the trigger) ready for a new operation.

Note that it is possible to stop injected conversions while regular conversions are still 
operating and vice-versa. This allows, for instance, re-configuration of the injected 
conversion sequence and triggers while regular conversions are still operating (and vice-
versa).

When the ADSTP bit is set by software, any ongoing regular conversion is aborted with 
partial result discarded (ADC_DR register is not updated with the current conversion).

When the JADSTP bit is set by software, any ongoing injected conversion is aborted with 
partial result discarded (ADC_JDRy register is not updated with the current conversion). 
The scan sequence is also aborted and reset (meaning that relaunching the ADC would re-
start a new sequence).

Once this procedure is complete, bits ADSTP/ADSTART (in case of regular conversion), or 
JADSTP/JADSTART (in case of injected conversion) are cleared by hardware and the 
software must poll ADSTART (or JADSTART) until the bit is reset before assuming the ADC 
is completely stopped.

Note: In auto-injection mode (JAUTO=1), setting ADSTP bit aborts both regular and injected 
conversions (JADSTP must not be used).
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Figure 73. AUTODLY=1, regular HW conversions interrupted by injected conversions
(DISCEN=0; JDISCEN=0)

1. AUTDLY=1

2. Regular configuration: EXTEN=0x1 (HW trigger), CONT=0, DISCEN=0, CHANNELS = 1, 2, 3

3. Injected configuration: JEXTEN=0x1 (HW Trigger), JDISCEN=0, CHANNELS = 5,6
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There are no changes for conversion timings in oversampled mode: the sample time is 
maintained equal during the whole oversampling sequence. A new data is provided every N 
conversions, with an equivalent delay equal to N x TCONV = N x (tSMPL + tSAR). The flags are 
set as follow:

• the end of the sampling phase (EOSMP) is set after each sampling phase

• the end of conversion (EOC) occurs once every N conversions, when the oversampled 
result is available

• the end of sequence (EOS) occurs once the sequence of oversampled data is 
completed (i.e. after N x sequence length conversions total)

ADC operating modes supported when oversampling

In oversampling mode, most of the ADC operating modes are maintained:

• Single or continuous mode conversions

• ADC conversions start either by software or with triggers

• ADC stop during a conversion (abort)

• Data read via CPU or DMA with overrun detection

• Low-power modes (AUTDLY)

• Programmable resolution: in this case, the reduced conversion values (as per RES[1:0] 
bits in ADC_CFGR1 register) are accumulated, truncated, rounded and shifted in the 
same way as 12-bit conversions are

Note: The alignment mode is not available when working with oversampled data. The ALIGN bit in 
ADC_CFGR1 is ignored and the data are always provided right-aligned.

Offset correction is not supported in oversampling mode. When ROVSE and/or JOVSE bit is 
set, the value of the OFFSETy_EN bit in ADC_OFRy register is ignored (considered as 
reset).

Table 65. Maximum output results versus N and M (gray cells indicate truncation)

Over
sampling

ratio

Max
Raw data

No-shift

OVSS = 
0000

1-bit 
shift

OVSS = 
0001

2-bit 
shift

OVSS = 
0010

3-bit 
shift

OVSS = 
0011

4-bit 
shift

OVSS = 
0100

5-bit 
shift

OVSS = 
0101

6-bit 
shift

OVSS = 
0110

7-bit 
shift

OVSS = 
0111

8-bit 
shift

OVSS = 
1000

2x 0x1FFE 0x1FFE 0x0FFF 0x0800 0x0400 0x0200 0x0100 0x0080 0x0040 0x020

4x 0x3FFC 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400 0x0200 0x0100 0x0080 0x0040

8x 0x7FF8 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400 0x0200 0x0100 0x0080

16x 0xFFF0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400 0x0200 0x0100

32x 0x1FFE0 0xFFE0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400 0x0200

64x 0x3FFC0 0xFFC0 0xFFE0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800 0x0400

128x 0x7FF80 0xFF80 0xFFC0 0xFFE0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF 0x0800

256x 0xFFF00 0xFF00 0xFF80 0xFFC0 0xFFE0 0xFFF0 0x7FF8 0x3FFC 0x1FFE 0x0FFF



DocID027295 Rev 3 529/1472

RM0394 Digital filter for sigma delta modulators (DFSDM)

572

Figure 111. Channel transceiver timing diagrams
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Figure 170. Counter timing diagram, internal clock divided by N

Figure 171. Counter timing diagram, update event with ARPE=1 (counter underflow)
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26.3.4 External trigger input

The timer features an external trigger input ETR. It can be used as:

• external clock (external clock mode 2, see Section 26.3.5)

• trigger for the slave mode (see Section 26.3.26)

• PWM reset input for cycle-by-cycle current regulation (see Section 26.3.7)

Figure 174 below describes the ETR input conditioning. The input polarity is defined with the 
ETP bit in TIMxSMCR register. The trigger can be prescaled with the divider programmed 
by the ETPS[1:0] bitfield and digitally filtered with the ETF[3:0] bitfield.

Figure 174. External trigger input block

The ETR input comes from multiple sources: input pins (default configuration), comparator 
outputs and analog watchdogs. The selection is done with:

• the ETRSEL[2:0] bitfield in the TIMx_OR2 register

• the ETR_ADC1_RMP bitfield in the TIMxOR1[1:0] register

• the ETR_ADC3_RMP bitfield in the TIMxOR1[3:2] register.

Figure 175. TIM1 ETR input circuitry
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Figure 295. Counter timing diagram with prescaler division change from 1 to 2

Figure 296. Counter timing diagram with prescaler division change from 1 to 4
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33.4.2 Configuration register (WWDG_CFR)

Address offset: 0x04

Reset value: 0x0000 007F

         

         

33.4.3 Status register (WWDG_SR)

Address offset: 0x08

Reset value: 0x0000 0000

         

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. EWI WDGTB[1:0] W[6:0]

rs rw rw rw rw rw rw rw rw rw

Bits 31:10 Reserved, must be kept at reset value.

Bit 9 EWI: Early wakeup interrupt

When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is 
only cleared by hardware after a reset. 

Bits 8:7 WDGTB[1:0]: Timer base

The time base of the prescaler can be modified as follows:

00: CK Counter Clock (PCLK div 4096) div 1
01: CK Counter Clock (PCLK div 4096) div 2
10: CK Counter Clock (PCLK div 4096) div 4
11: CK Counter Clock (PCLK div 4096) div 8

Bits 6:0  W[6:0]: 7-bit window value

These bits contain the window value to be compared to the downcounter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EWIF

rc_w0

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 EWIF: Early wakeup interrupt flag

This bit is set by hardware when the counter has reached the value 0x40. It must be cleared by 
software by writing ‘0’. A write of ‘1’ has no effect. This bit is also set if the interrupt is not 
enabled. 
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34.3.13 Time-stamp function

Time-stamp is enabled by setting the TSE or ITSE bits of RTC_CR register to 1.

When TSE is set:

The calendar is saved in the time-stamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR) 
when a time-stamp event is detected on the RTC_TS pin.

When ITSE is set:

The calendar is saved in the time-stamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR) 
when an internal time-stamp event is detected. The internal timestamp event is generated 
by the switch to the VBAT supply.

When a time-stamp event occurs, due to internal or external event, the time-stamp flag bit 
(TSF) in RTC_ISR register is set. In case the event is internal, the ITSF flag is also set in 
RTC_ISR register.

By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a time-stamp 
event occurs. 

If a new time-stamp event is detected while the time-stamp flag (TSF) is already set, the 
time-stamp overflow flag (TSOVF) flag is set and the time-stamp registers (RTC_TSTR and 
RTC_TSDR) maintain the results of the previous event.

Note: TSF is set 2 ck_apre cycles after the time-stamp event occurs due to synchronization 
process.

There is no delay in the setting of TSOVF. This means that if two time-stamp events are 
close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is 
recommended to poll TSOVF only after TSF has been set.

Caution: If a time-stamp event occurs immediately after the TSF bit is supposed to be cleared, then 
both TSF and TSOVF bits are set.To avoid masking a time-stamp event occurring at the 
same moment, the application must not write ‘0’ into TSF bit unless it has already read it to 
‘1’.

Optionally, a tamper event can cause a time-stamp to be recorded. See the description of 
the TAMPTS control bit in Section 34.6.16: RTC tamper configuration register 
(RTC_TAMPCR).

34.3.14 Tamper detection

The RTC_TAMPx input events can be configured either for edge detection, or for level 
detection with filtering.

The tamper detection can be configured for the following purposes:

• erase the RTC backup registers (default configuration)

• generate an interrupt, capable to wakeup from Stop and Standby modes

• generate a hardware trigger for the low-power timers

RTC backup registers

The backup registers (RTC_BKPxR) are not reset by system reset or when the device 
wakes up from Standby mode.

The backup registers are reset when a tamper detection event occurs (see Section 34.6.20: 
RTC backup registers (RTC_BKPxR) and Tamper detection initialization on page 982) 
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34.6.4 RTC initialization and status register (RTC_ISR)

This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure 
is described in RTC register write protection on page 974.

Address offset: 0x0C

Backup domain reset value: 0x0000 0007

System reset: not affected except INIT, INITF, and RSF bits which are cleared to ‘0’

         

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ITSF RECALPF

rc_w0 r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TAMP3F TAMP2F TAMP1F TSOVF TSF WUTF ALRBF ALRAF INIT INITF RSF INITS SHPF WUTWF
ALRB
WF

ALRAWF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rw r rc_w0 r r r r r

Bits 31:18 Reserved, must be kept at reset value 

Bit 17 ITSF: Internal tTime-stamp flag

This flag is set by hardware when a time-stamp on the internal event occurs.
This flag is cleared by software by writing 0, and must be cleared together with TSF bit by 
writing 0 in both bits.

Bit 16 RECALPF: Recalibration pending Flag

The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR 
register, indicating that the RTC_CALR register is blocked. When the new calibration settings 
are taken into account, this bit returns to ‘0’. Refer to Re-calibration on-the-fly.

Bit 15 TAMP3F: RTC_TAMP3 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP3 
input.
It is cleared by software writing 0

Bit 14 TAMP2F: RTC_TAMP2 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP2 
input.

It is cleared by software writing 0

Bit 13 TAMP1F: RTC_TAMP1 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP1 
input.

It is cleared by software writing 0

Bit 12 TSOVF: Time-stamp overflow flag

This flag is set by hardware when a time-stamp event occurs while TSF is already set.

This flag is cleared by software by writing 0. It is recommended to check and then clear 
TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a time-
stamp event occurs immediately before the TSF bit is cleared.

Bit 11 TSF: Time-stamp flag

This flag is set by hardware when a time-stamp event occurs.

This flag is cleared by software by writing 0. If ITSF flag is set, TSF must be cleared together 
with ITSF by writing 0 in both bits.
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tLOW:MEXT for a master. As the standard specifies only a maximum, the user can choose 
the same value for the both. 

Then the timer is enabled by setting the TEXTEN bit in the I2C_TIMEOUTR register.

If the SMBus peripheral performs a cumulative SCL stretch for a time greater than 
(TIMEOUTB+1) x 2048 x tI2CCLK, and in the timeout interval described in Bus idle 
detection on page 1050 section, the TIMEOUT flag is set in the I2C_ISR register. 

Refer to Table 159: Examples of TIMEOUTB settings for various I2CCLK frequencies

Caution: Changing the TIMEOUTB configuration is not allowed when the TEXTEN bit is set.

Bus Idle detection

In order to enable the tIDLE check, the 12-bit TIMEOUTA[11:0] field must be programmed 
with the timer reload value in order to obtain the tIDLE parameter. The TIDLE bit must be 
configured to ‘1 in order to detect both SCL and SDA high level timeout. 

Then the timer is enabled by setting the TIMOUTEN bit in the I2C_TIMEOUTR register.

If both the SCL and SDA lines remain high for a time greater than (TIMEOUTA+1) x 4 x 
tI2CCLK, the TIMEOUT flag is set in the I2C_ISR register.

Refer to Table 160: Examples of TIMEOUTA settings for various I2CCLK frequencies (max 
tIDLE = 50 µs)

Caution: Changing the TIMEOUTA and TIDLE configuration is not allowed when the TIMEOUTEN is 
set.

35.4.12 SMBus: I2C_TIMEOUTR register configuration examples

This section is relevant only when SMBus feature is supported. Please refer to Section 35.3: 
I2C implementation.

• Configuring the maximum duration of tTIMEOUT to 25 ms:

         

• Configuring the maximum duration of tLOW:SEXT and tLOW:MEXT to 8 ms:

         

Table 158. Examples of TIMEOUTA settings for various I2CCLK frequencies
(max tTIMEOUT = 25 ms)

 fI2CCLK
 TIMEOUTA[11:0] 

bits
 TIDLE 

bit
TIMEOUTEN 

bit
tTIMEOUT 

8 MHz 0x61 0 1 98 x 2048 x 125 ns = 25 ms

16 MHz 0xC3 0 1 196 x 2048 x 62.5 ns = 25 ms

48 MHz 0x249 0 1 586 x 2048 x 20.08 ns = 25 ms

Table 159. Examples of TIMEOUTB settings for various I2CCLK frequencies

 fI2CCLK
 TIMEOUTB[11:0] 

bits
 TEXTEN bit tLOW:EXT 

8 MHz 0x1F 1 32 x 2048 x 125 ns = 8 ms

16 MHz 0x3F 1 64 x 2048 x 62.5 ns = 8 ms

48 MHz 0xBB 1 188 x 2048 x 20.08 ns = 8 ms
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36.5.2 USART transmitter

The transmitter can send data words of either 7, 8 or 9 bits depending on the M bits status. 
The Transmit Enable bit (TE) must be set in order to activate the transmitter function. The 
data in the transmit shift register is output on the TX pin and the corresponding clock pulses 
are output on the CK pin.

Character transmission

During an USART transmission, data shifts out least significant bit first (default 
configuration) on the TX pin. In this mode, the USART_TDR register consists of a buffer 
(TDR) between the internal bus and the transmit shift register (see Figure 347).

Every character is preceded by a start bit which is a logic level low for one bit period. The 
character is terminated by a configurable number of stop bits.

The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits.

Note: The TE bit must be set before writing the data to be transmitted to the USART_TDR. 

The TE bit should not be reset during transmission of data. Resetting the TE bit during the 
transmission will corrupt the data on the TX pin as the baud rate counters will get frozen. 
The current data being transmitted will be lost. 

An idle frame will be sent after the TE bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in 
Control register 2, bits 13,12.

• 1 stop bit: This is the default value of number of stop bits.

• 2 stop bits: This will be supported by normal USART, Single-wire and Modem modes.

• 1.5 stop bits: To be used in Smartcard mode.

• 0.5 stop bit: To be used when receiving data in Smartcard mode.

An idle frame transmission will include the stop bits.

A break transmission will be 10 low bits (when M[1:0] = 00) or 11 low bits (when M[1:0] = 01) 
or 9 low bits (when M[1:0] = 10) followed by 2 stop bits (see Figure 349). It is not possible to 
transmit long breaks (break of length greater than 9/10/11 low bits).
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Note: The error checking code (LRC/CRC) must be computed/verified by software.

Direct and inverse convention

The Smartcard protocol defines two conventions: direct and inverse.

The direct convention is defined as: LSB first, logical bit value of 1 corresponds to a H state 
of the line and parity is even. In order to use this convention, the following control bits must 
be programmed: MSBFIRST=0, DATAINV=0 (default values). 

The inverse convention is defined as: MSB first, logical bit value 1 corresponds to an L state 
on the signal line and parity is even. In order to use this convention, the following control bits 
must be programmed: MSBFIRST=1, DATAINV=1. 

Note: When logical data values are inverted (0=H, 1=L), the parity bit is also inverted in the same 
way.

In order to recognize the card convention, the card sends the initial character, TS, as the 
first character of the ATR (Answer To Reset) frame. The two possible patterns for the TS 
are: LHHL LLL LLH and LHHL HHH LLH.

• (H) LHHL LLL LLH sets up the inverse convention: state L encodes value 1 and 
moment 2 conveys the most significant bit (MSB first). when decoded by inverse 
convention, the conveyed byte is equal to '3F'.

• (H) LHHL HHH LLH sets up the direct convention: state H encodes value 1 and 
moment 2 conveys the least significant bit (LSB first). when decoded by direct 
convention, the conveyed byte is equal to '3B'.

Character parity is correct when there is an even number of bits set to 1 in the nine 
moments 2 to 10.

As the USART does not know which convention is used by the card, it needs to be able to 
recognize either pattern and act accordingly. The pattern recognition is not done in 
hardware, but through a software sequence. Moreover, supposing that the USART is 
configured in direct convention (default) and the card answers with the inverse convention, 
TS = LHHL LLL LLH => the USART received character will be ‘03’ and the parity will be odd. 

Therefore, two methods are available for TS pattern recognition:

Method 1

The USART is programmed in standard Smartcard mode/direct convention. In this case, the 
TS pattern reception generates a parity error interrupt and error signal to the card. 

• The parity error interrupt informs the software that the card didn’t answer correctly in 
direct convention. Software then reprograms the USART for inverse convention

• In response to the error signal, the card retries the same TS character, and it will be 
correctly received this time, by the reprogrammed USART

Alternatively, in answer to the parity error interrupt, the software may decide to reprogram 
the USART and to also generate a new reset command to the card, then wait again for the 
TS.
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In the SWPMI interrupt routine, the user must check TXBEF bit in the SWPMI_ISR register. 
If it is set, the user must set CTXBEF bit in SWPMI_ICR register to clear TXBEF flag and the 
user can update buffer1 in the RAM memory.

In the next SWPMI interrupt routine occurrence, the user will update buffer2, and so on.

The Software can also read the DMA counter (number of data to transfer) in the DMA 
registers in order to retrieve the frame which has already been transferred from the RAM 
memory and transmitted. For example, if the software works with 4 transmission buffers, 
and if the DMA counter equals 17, it means that two buffers are ready for updating in the 
RAM area. This is useful in case several frames are sent before the software can handle the 
SWPMI interrupt. If this happens, the software will have to update several buffers.

When there are no more frames to transmit, the user must disable the circular mode in the 
DMA module. The transmission will stop at the end of the buffer4 transmission.

If the transmission needs to stop before (for example at the end of buffer2), the user must 
set the low significant byte of the first word to 0 in buffer3 and buffer4.

TXDMA bit in the SWPMI_CR register will be cleared by hardware as soon as the number of 
data bytes in the payload is read as 0 in the least significant byte of the first word.

Figure 422. SWPMI Multi software buffer mode transmission


