
STMicroelectronics - STM32L433RCT6P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 80MHz

Connectivity CANbus, I²C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, LCD, PWM, WDT

Number of I/O 52

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package 64-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l433rct6p

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32l433rct6p-4392144
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Contents RM0394

4/1472 DocID027295 Rev 3

4.4 Firewall registers .118

4.4.1 Code segment start address (FW_CSSA) . 118

4.4.2 Code segment length (FW_CSL) . 118

4.4.3 Non-volatile data segment start address (FW_NVDSSA) 119

4.4.4 Non-volatile data segment length (FW_NVDSL) 119

4.4.5 Volatile data segment start address (FW_VDSSA) 120

4.4.6 Volatile data segment length (FW_VDSL) . 120

4.4.7 Configuration register (FW_CR) . 121

4.4.8 Firewall register map . 122

5 Power control (PWR) . 123

5.1 Power supplies . 123

5.1.1 Independent analog peripherals supply . 125

5.1.2 Independent USB transceivers supply . 126

5.1.3 Independent LCD supply . 126

5.1.4 Battery backup domain . 127

5.1.5 Voltage regulator . 128

5.1.6 VDD12 domain . 129

5.1.7 Dynamic voltage scaling management . 130

5.2 Power supply supervisor . 131

5.2.1 Power-on reset (POR) / power-down reset (PDR) / brown-out reset
(BOR) . 131

5.2.2 Programmable voltage detector (PVD) . 132

5.2.3 Peripheral Voltage Monitoring (PVM) . 133

5.3 Low-power modes . 134

5.3.1 Run mode . 141

5.3.2 Low-power run mode (LP run) . 141

5.3.3 Low power modes . 142

5.3.4 Sleep mode . 143

5.3.5 Low-power sleep mode (LP sleep) . 144

5.3.6 Stop 0 mode . 145

5.3.7 Stop 1 mode . 147

5.3.8 Stop 2 mode . 148

5.3.9 Standby mode . 150

5.3.10 Shutdown mode . 153

5.3.11 Auto-wakeup from low-power mode . 154

5.4 PWR registers . 155

Reset and clock control (RCC) RM0394

200/1472 DocID027295 Rev 3

6.4.6 Clock interrupt enable register (RCC_CIER)

Address offset: 0x18

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 15 Reserved, must be kept at reset value.

Bits 14:8 PLLSAI1N[6:0]: PLLSAI1 multiplication factor for VCO

Set and cleared by software to control the multiplication factor of the VCO. These bits can be
written only when the PLLSAI1 is disabled.
VCOSAI1 output frequency = VCOSAI1 input frequency x PLLSAI1N
with 8 =< PLLSAI1N =< 86
0000000: PLLSAI1N = 0 wrong configuration
0000001: PLLSAI1N = 1 wrong configuration
...
0000111: PLLSAI1N = 7 wrong configuration
0001000: PLLSAI1N = 8
0001001: PLLSAI1N = 9
...
1010101: PLLSAI1N = 85
1010110: PLLSAI1N = 86
1010111: PLLSAI1N = 87 wrong configuration
...
1111111: PLLSAI1N = 127 wrong configuration

Caution: The software has to set correctly these bits to ensure that the VCO
output frequency is between 64 and 344 MHz.

Bits 7:0 Reserved, must be kept at reset value.

1. Available on STM32L4x2xx and STM32L4x3xx devices only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res.
HSI48
RDYIE

LSE
CSSIE

Res. Res.
PLL
SAI1

RDYIE

PLL
RDYIE

HSE
RDYIE

HSI
RDYIE

MSI
RDYIE

LSE
RDYIE

LSI
RDYIE

rw rw rw rw rw rw rw rw rw

DocID027295 Rev 3 203/1472

RM0394 Reset and clock control (RCC)

241

6.4.8 Clock interrupt clear register (RCC_CICR)

Address offset: 0x20

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 3 HSIRDYF: HSI16 ready interrupt flag

Set by hardware when the HSI16 clock becomes stable and HSIRDYDIE is set in a
response to setting the HSION (refer to Clock control register (RCC_CR)). When HSION is
not set but the HSI16 oscillator is enabled by the peripheral through a clock request, this bit
is not set and no interrupt is generated.
Cleared by software setting the HSIRDYC bit.
0: No clock ready interrupt caused by the HSI16 oscillator
1: Clock ready interrupt caused by the HSI16 oscillator

Bit 2 MSIRDYF: MSI ready interrupt flag

Set by hardware when the MSI clock becomes stable and MSIRDYDIE is set.
Cleared by software setting the MSIRDYC bit.
0: No clock ready interrupt caused by the MSI oscillator
1: Clock ready interrupt caused by the MSI oscillator

Bit 1 LSERDYF: LSE ready interrupt flag

Set by hardware when the LSE clock becomes stable and LSERDYDIE is set.
Cleared by software setting the LSERDYC bit.
0: No clock ready interrupt caused by the LSE oscillator
1: Clock ready interrupt caused by the LSE oscillator

Bit 0 LSIRDYF: LSI ready interrupt flag

Set by hardware when the LSI clock becomes stable and LSIRDYDIE is set.
Cleared by software setting the LSIRDYC bit.
0: No clock ready interrupt caused by the LSI oscillator
1: Clock ready interrupt caused by the LSI oscillator

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res.
HSI48
RDYC

LSE
CSSC

CSSC Res.
PLL
SAI1

RDYC

PLL
RDYC

HSE
RDYC

HSI
RDYC

MSI
RDYC

LSE
RDYC

LSI
RDYC

w w w w w w w w w w

Bits 31:11 Reserved, must be kept at reset value.

Bit 10 HSI48RDYC: HSI48 oscillator ready interrupt clear

This bit is set by software to clear the HSI48RDYF flag.
0: No effect
1: Clear the HSI48RDYC flag

Bit 9 LSECSSC: LSE Clock security system interrupt clear

This bit is set by software to clear the LSECSSF flag.
0: No effect
1: Clear LSECSSF flag

DocID027295 Rev 3 205/1472

RM0394 Reset and clock control (RCC)

241

6.4.10 AHB2 peripheral reset register (RCC_AHB2RSTR)

Address offset: 0x2C

Reset value: 0x00000 0000

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
TSC
RST

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.
CRC
RST

Res. Res. Res.
FLASH

RST
Res. Res. Res. Res. Res. Res.

DMA2
RST

DMA1
RST

rw rw rw rw

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 TSCRST: Touch Sensing Controller reset

Set and cleared by software.
0: No effect
1: Reset TSC

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 CRCRST: CRC reset

Set and cleared by software.
0: No effect
1: Reset CRC

Bits 11:9 Reserved, must be kept at reset value.

Bit 8 FLASHRST: Flash memory interface reset

Set and cleared by software. This bit can be activated only when the Flash memory is in
power down mode.
0: No effect
1: Reset Flash memory interface

Bits 7:2 Reserved, must be kept at reset value.

Bit 1 DMA2RST: DMA2 reset

Set and cleared by software.
0: No effect
1: Reset DMA2

Bit 0 DMA1RST: DMA1 reset

Set and cleared by software.
0: No effect
1: Reset DMA1

General-purpose I/Os (GPIO) RM0394

258/1472 DocID027295 Rev 3

8.3.6 GPIO locking mechanism

It is possible to freeze the GPIO control registers by applying a specific write sequence to
the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When
the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used
to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must
be the same). When the LOCK sequence has been applied to a port bit, the value of the port
bit can no longer be modified until the next MCU reset or peripheral reset. Each
GPIOx_LCKR bit freezes the corresponding bit in the control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

The LOCK sequence (refer to Section 8.4.8: GPIO port configuration lock register
(GPIOx_LCKR) (x = A..E and H)) can only be performed using a word (32-bit long) access
to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the
same time as the [15:0] bits.

For more details refer to LCKR register description in Section 8.4.8: GPIO port configuration
lock register (GPIOx_LCKR) (x = A..E and H).

8.3.7 I/O alternate function input/output

Two registers are provided to select one of the alternate function inputs/outputs available for
each I/O. With these registers, the user can connect an alternate function to some other pin
as required by the application.

This means that a number of possible peripheral functions are multiplexed on each GPIO
using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can
thus select any one of the possible functions for each I/O. The AF selection signal being
common to the alternate function input and alternate function output, a single channel is
selected for the alternate function input/output of a given I/O.

To know which functions are multiplexed on each GPIO pin, refer to the device datasheet.

No alternate function is mapped on PH3.

8.3.8 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be
configured in input mode.Section 13: Extended interrupts and events controller (EXTI) and
to Section 13.3.2: Wakeup event management.

8.3.9 Input configuration

When the I/O port is programmed as input:

• The output buffer is disabled

• The Schmitt trigger input is activated

• The pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

• A read access to the input data register provides the I/O state

DocID027295 Rev 3 321/1472

RM0394 Extended interrupts and events controller (EXTI)

330

Figure 29. External interrupt/event GPIO mapping

The 38 lines are connected as shown in Table 46: EXTI lines connections.

Table 46. EXTI lines connections

EXTI line Line source(1) Line type

0-15 GPIO configurable

16 PVD configurable

17 USB FS wakeup event(3)(2) direct

18 RTC alarms configurable

19
RTC tamper or timestamp or

CSS_LSE
configurable

20 RTC wakeup timer configurable

21 COMP1 output configurable

22 COMP2 output configurable

23 I2C1 wakeup(3) direct

DocID027295 Rev 3 333/1472

RM0394 Cyclic redundancy check calculation unit (CRC)

336

The input data can be reversed, to manage the various endianness schemes. The reversing
operation can be performed on 8 bits, 16 bits and 32 bits depending on the REV_IN[1:0] bits
in the CRC_CR register.

For example: input data 0x1A2B3C4D is used for CRC calculation as:

0x58D43CB2 with bit-reversal done by byte

0xD458B23C with bit-reversal done by half-word

0xB23CD458 with bit-reversal done on the full word

The output data can also be reversed by setting the REV_OUT bit in the CRC_CR register.

The operation is done at bit level: for example, output data 0x11223344 is converted into
0x22CC4488.

The CRC calculator can be initialized to a programmable value using the RESET control bit
in the CRC_CR register (the default value is 0xFFFFFFFF).

The initial CRC value can be programmed with the CRC_INIT register. The CRC_DR
register is automatically initialized upon CRC_INIT register write access.

The CRC_IDR register can be used to hold a temporary value related to CRC calculation. It
is not affected by the RESET bit in the CRC_CR register.

Polynomial programmability

The polynomial coefficients are fully programmable through the CRC_POL register, and the
polynomial size can be configured to be 7, 8, 16 or 32 bits by programming the
POLYSIZE[1:0] bits in the CRC_CR register. Even polynomials are not supported.

If the CRC data is less than 32-bit, its value can be read from the least significant bits of the
CRC_DR register.

To obtain a reliable CRC calculation, the change on-fly of the polynomial value or size can
not be performed during a CRC calculation. As a result, if a CRC calculation is ongoing, the
application must either reset it or perform a CRC_DR read before changing the polynomial.

The default polynomial value is the CRC-32 (Ethernet) polynomial: 0x4C11DB7.

DocID027295 Rev 3 377/1472

RM0394 Analog-to-digital converters (ADC)

458

Figure 44. Updating the ADC calibration factor

Converting single-ended and differential analog inputs with a single ADC

If the ADC is supposed to convert both differential and single-ended inputs, two calibrations
must be performed, one with ADCALDIF=0 and one with ADCALDIF=1. The procedure is
the following:

1. Disable the ADC.

2. Calibrate the ADC in single-ended input mode (with ADCALDIF=0). This updates the
register CALFACT_S[6:0].

3. Calibrate the ADC in differential input modes (with ADCALDIF=1). This updates the
register CALFACT_D[6:0].

4. Enable the ADC, configure the channels and launch the conversions. Each time there
is a switch from a single-ended to a differential inputs channel (and vice-versa), the
calibration will automatically be injected into the analog ADC.

Figure 45. Mixing single-ended and differential channels

DocID027295 Rev 3 397/1472

RM0394 Analog-to-digital converters (ADC)

458

Figure 60. Flushing JSQR queue of context by setting JADSTP=1 (JQM=1)

1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1

Figure 61. Flushing JSQR queue of context by setting ADDIS=1 (JQM=0)

1. Parameters:
P1: sequence of 1 conversion, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 1 conversion, hardware trigger 1

DocID027295 Rev 3 443/1472

RM0394 Analog-to-digital converters (ADC)

458

16.6.10 ADC watchdog threshold register 3 (ADC_TR3)

Address offset: 0x28

Reset value: 0x00FF 0000

Bits 23:16 HT2[7:0]: Analog watchdog 2 higher threshold

These bits are written by software to define the higher threshold for the analog watchdog 2.
Refer to Section 16.4.29: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)

Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:0 LT2[7:0]: Analog watchdog 2 lower threshold

These bits are written by software to define the lower threshold for the analog watchdog 2.
Refer to Section 16.4.29: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)

Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. HT3[7:0]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. LT3[7:0]

rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:16 HT3[7:0]: Analog watchdog 3 higher threshold

These bits are written by software to define the higher threshold for the analog watchdog 3.
Refer to Section 16.4.29: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)

Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:0 LT3[7:0]: Analog watchdog 3 lower threshold

These bits are written by software to define the lower threshold for the analog watchdog 3.
This watchdog compares the 8-bit of LT3 with the 8 MSB of the converted data.

Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).

DocID027295 Rev 3 587/1472

RM0394 Liquid crystal display controller (LCD)

603

In buffer mode, intermediate voltages are generated by the high value resistor bridge RHN to
reduce power consumption, the low value resistor bridge RLN is automatically disabled
whatever the HD bit or PON bits configuration.

Buffers can be used independently of the VLCD supply source (internal or external) but can
only be enabled or disabled when LCD controller is not activated.

After the LCDEN bit is activated, the RDY bit is set in the LCD_SR register to indicate that
voltage levels are stable and the LCD controller can start to work.

Deadtime

In addition to using the CC[2:0] bits, the contrast can be controlled by programming a dead
time between each frame. During the dead time the COM and SEG values are put to VSS.
The DEAD[2:0] bits in the LCD_FCR register can be used to program a time of up to eight
phase periods. This dead time reduces the contrast without modifying the frame rate.

Figure 126. Deadtime

DocID027295 Rev 3 677/1472

RM0394 Advanced-control timers (TIM1)

765

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

If the repetition counter is used, the update event (UEV) is generated after downcounting is
repeated for the number of times programmed in the repetition counter register
(TIMx_RCR) + 1. Else the update event is generated at each counter underflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register.

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

DocID027295 Rev 3 785/1472

RM0394 General-purpose timer (TIM2/TIM3)

835

Figure 238. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 239. Capture/compare channel 1 main circuit

DocID027295 Rev 3 815/1472

RM0394 General-purpose timer (TIM2/TIM3)

835

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

DocID027295 Rev 3 867/1472

RM0394 General-purpose timers (TIM15/TIM16)

914

28.4.17 External trigger synchronization (TIM15 only)

The TIM timers are linked together internally for timer synchronization or chaining.

The TIM15 timer can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

1. Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=’0’ and CC1NP=’0’ in the TIMx_CCER register to validate the polarity (and
detect rising edges only).

2. Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

3. Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 291. Control circuit in reset mode

General-purpose timers (TIM15/TIM16) RM0394

886/1472 DocID027295 Rev 3

28.5.9 TIM15 counter (TIM15_CNT)

Address offset: 0x24

Reset value: 0x0000 0000

28.5.10 TIM15 prescaler (TIM15_PSC)

Address offset: 0x28

Reset value: 0x0000

28.5.11 TIM15 auto-reload register (TIM15_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UIF
CPY

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 UIFCPY: UIF Copy
This bit is a read-only copy of the UIF bit in the TIMx_ISR register.

Bits 30:16 Reserved, must be kept at reset value.

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through trigger
controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Prescaler value
ARR is the value to be loaded in the actual auto-reload register.

Refer to the Section 28.4.1: Time-base unit on page 840 for more details about ARR update
and behavior.

The counter is blocked while the auto-reload value is null.

DocID027295 Rev 3 999/1472

RM0394 Real-time clock (RTC)

1011

34.6.11 RTC shift control register (RTC_SHIFTR)

This register is write protected. The write access procedure is described in RTC register
write protection on page 974.

Address offset: 0x2C

Backup domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADD1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. SUBFS[14:0]

w w w w w w w w w w w w w w w

Bit 31 ADD1S: Add one second

0: No effect
1: Add one second to the clock/calendar

This bit is write only and is always read as zero. Writing to this bit has no effect when a shift
operation is pending (when SHPF=1, in RTC_ISR).

This function is intended to be used with SUBFS (see description below) in order to effectively
add a fraction of a second to the clock in an atomic operation.

Bits 30:15 Reserved, must be kept at reset value

Bits 14:0 SUBFS: Subtract a fraction of a second

These bits are write only and is always read as zero. Writing to this bit has no effect when a
shift operation is pending (when SHPF=1, in RTC_ISR).

The value which is written to SUBFS is added to the synchronous prescaler counter. Since this
counter counts down, this operation effectively subtracts from (delays) the clock by:

Delay (seconds) = SUBFS / (PREDIV_S + 1)

A fraction of a second can effectively be added to the clock (advancing the clock) when the
ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by:

Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))).

Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF=1 to be
sure that the shadow registers have been updated with the shifted time.

DocID027295 Rev 3 1033/1472

RM0394 Inter-integrated circuit (I2C) interface

1082

Figure 328. Transfer bus diagrams for I2C slave receiver

35.4.8 I2C master mode

I2C master initialization

Before enabling the peripheral, the I2C master clock must be configured by setting the
SCLH and SCLL bits in the I2C_TIMINGR register.

The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C
Configuration window.

A clock synchronization mechanism is implemented in order to support multi-master
environment and slave clock stretching.

In order to allow clock synchronization:

• The low level of the clock is counted using the SCLL counter, starting from the SCL low
level internal detection.

• The high level of the clock is counted using the SCLH counter, starting from the SCL
high level internal detection.

The I2C detects its own SCL low level after a tSYNC1 delay depending on the SCL falling
edge, SCL input noise filters (analog + digital) and SCL synchronization to the I2CxCLK
clock. The I2C releases SCL to high level once the SCLL counter reaches the value
programmed in the SCLL[7:0] bits in the I2C_TIMINGR register.

DocID027295 Rev 3 1395/1472

RM0394 Controller area network (bxCAN)

1396

0x1B4
CAN_RDT0R TIME[15:0] FMI[7:0]

R
es

.

R
es

.

R
es

.

R
es

.

DLC[3:0]

Reset value x - - - - x x x x

0x1B8
CAN_RDL0R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x1BC
CAN_RDH0R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x1C0
CAN_RI1R STID[10:0]/EXID[28:18] EXID[17:0] ID

E

R
T

R

R
es

.

Reset value x -

0x1C4
CAN_RDT1R TIME[15:0] FMI[7:0]

R
es

.

R
es

.

R
es

.

R
es

.

DLC[3:0]

Reset value x - - - - x x x x

0x1C8
CAN_RDL1R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x1CC
CAN_RDH1R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x1D0-
0x1FF -

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.
0x200

CAN_FMR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

F
IN

IT

Reset value - 1

0x204
CAN_FM1R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

FBM[13:0]

Reset value - - - - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x208
-

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

- -

0x20C
CAN_FS1R

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

FSC[13:0]

Reset value - - - - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x210 -

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Table 232. bxCAN register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Universal serial bus full-speed device interface (USB) RM0394

1406/1472 DocID027295 Rev 3

43.5.3 Double-buffered endpoints

All different endpoint types defined by the USB standard represent different traffic models,
and describe the typical requirements of different kind of data transfer operations. When
large portions of data are to be transferred between the host PC and the USB function, the
bulk endpoint type is the most suited model. This is because the host schedules bulk
transactions so as to fill all the available bandwidth in the frame, maximizing the actual
transfer rate as long as the USB function is ready to handle a bulk transaction addressed to
it. If the USB function is still busy with the previous transaction when the next one arrives, it
will answer with a NAK handshake and the host PC will issue the same transaction again
until the USB function is ready to handle it, reducing the actual transfer rate due to the
bandwidth occupied by re-transmissions. For this reason, a dedicated feature called
‘double-buffering’ can be used with bulk endpoints.

When ‘double-buffering’ is activated, data toggle sequencing is used to select, which buffer
is to be used by the USB peripheral to perform the required data transfers, using both
‘transmission’ and ‘reception’ packet memory areas to manage buffer swapping on each
successful transaction in order to always have a complete buffer to be used by the
application, while the USB peripheral fills the other one. For example, during an OUT
transaction directed to a ‘reception’ double-buffered bulk endpoint, while one buffer is being
filled with new data coming from the USB host, the other one is available for the
microcontroller software usage (the same would happen with a ‘transmission’ double-
buffered bulk endpoint and an IN transaction).

Since the swapped buffer management requires the usage of all 4 buffer description table
locations hosting the address pointer and the length of the allocated memory buffers, the
USB_EPnR registers used to implement double-buffered bulk endpoints are forced to be
used as unidirectional ones. Therefore, only one STAT bit pair must be set at a value
different from ‘00 (Disabled): STAT_RX if the double-buffered bulk endpoint is enabled for
reception, STAT_TX if the double-buffered bulk endpoint is enabled for transmission. In
case it is required to have double-buffered bulk endpoints enabled both for reception and
transmission, two USB_EPnR registers must be used.

To exploit the double-buffering feature and reach the highest possible transfer rate, the
endpoint flow control structure, described in previous chapters, has to be modified, in order
to switch the endpoint status to NAK only when a buffer conflict occurs between the USB
peripheral and application software, instead of doing it at the end of each successful
transaction. The memory buffer which is currently being used by the USB peripheral is
defined by the DTOG bit related to the endpoint direction: DTOG_RX (bit 14 of USB_EPnR
register) for ‘reception’ double-buffered bulk endpoints or DTOG_TX (bit 6 of USB_EPnR
register) for ‘transmission’ double-buffered bulk endpoints. To implement the new flow
control scheme, the USB peripheral should know which packet buffer is currently in use by
the application software, so to be aware of any conflict. Since in the USB_EPnR register,
there are two DTOG bits but only one is used by USB peripheral for data and buffer
sequencing (due to the unidirectional constraint required by double-buffering feature) the
other one can be used by the application software to show which buffer it is currently using.
This new buffer flag is called SW_BUF. In the following table the correspondence between
USB_EPnR register bits and DTOG/SW_BUF definition is explained, for the cases of
‘transmission’ and ‘reception’ double-buffered bulk endpoints.

