
STMicroelectronics - STM32L433RCT6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 80MHz

Connectivity CANbus, I²C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, LCD, PWM, WDT

Number of I/O 52

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package 64-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l433rct6tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32l433rct6tr-4391604
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Firewall (FW) RM0394

112/1472 DocID027295 Rev 3

4.3 Firewall functional description

4.3.1 Firewall AMBA bus snoop

The Firewall peripheral is snooping the AMBA buses on which the memories (volatile and
non-volatile) are connected. A global architecture view is illustrated in Figure 5.

Figure 5. STM32L43xxx/44xxx/45xxx/46xxx firewall connection schematics

4.3.2 Functional requirements

There are several requirements to guaranty the highest security level by the application
code/data which needs to be protected by the Firewall and to avoid unwanted Firewall alarm
(reset generation).

Debug consideration

In debug mode, if the Firewall is opened, the accesses by the debugger to the protected
segments are not blocked. For this reason, the Read out level 2 protection must be active in
conjunction with the Firewall implementation.

If the debug is needed, it is possible to proceed in the following way:

• A dummy code having the same API as the protected code may be developed during
the development phase of the final user code. This dummy code may send back
coherent answers (in terms of function and potentially timing if needed), as the
protected code should do in production phase.

• In the development phase, the protected code can be given to the customer-end under
NDA agreement and its software can be developed in level 0 protection. The customer-

DocID027295 Rev 3 121/1472

RM0394 Firewall (FW)

122

4.4.7 Configuration register (FW_CR)

Address offset: 0x20

Reset value: 0x0000 0000

This register is protected in the same way as the Non-volatile data segment (refer to
Section 4.3.5: Firewall initialization).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. VDE VDS FPA

rw rw rw

Bits 31:3 Reserved, must be kept at the reset value.

Bit 2 VDE: Volatile data execution

0: Volatile data segment cannot be executed if VDS = 0
1: Volatile data segment is declared executable whatever VDS bit value

When VDS = 1, this bit has no meaning. The Volatile data segment can be executed whatever
the VDE bit value.

If VDS = 1, the code can be executed whatever the Firewall state (opened or closed)

If VDS = 0, the code can only be executed if the Firewall is opened or applying the “call gate”
entry sequence if the Firewall is closed.

Refer to Segment access depending on the Firewall state.

Bit 1 VDS: Volatile data shared

0: Volatile data segment is not shared and cannot be hit by a non protected executable code
when the Firewall is closed. If it is accessed in such a condition, a system reset will be
generated by the Firewall.
1: Volatile data segment is shared with non protected application code. It can be accessed
whatever the Firewall state (opened or closed).

Refer to Segment access depending on the Firewall state.

Bit 0 FPA: Firewall prearm

0: any code executed outside the protected segment when the Firewall is opened will
generate a system reset.
1: any code executed outside the protected segment will close the Firewall.

Refer to Closing the Firewall.

Peripherals interconnect matrix RM0394

284/1472 DocID027295 Rev 3

10.3 Interconnection details

10.3.1 From timer (TIM1/TIM2/TIM15/TIM16) to
timer (TIM1/TIM2/TIM15/TIM16)

Purpose

Some of the TIMx timers are linked together internally for timer synchronization or chaining.

When one timer is configured in Master Mode, it can reset, start, stop or clock the counter of
another timer configured in Slave Mode.

A description of the feature is provided in: Section 27.3.19: Timer synchronization.

The modes of synchronization are detailed in:

• Section 26.3.26: Timer synchronization for advanced-control timers (TIM1)

• Section 27.3.18: Timers and external trigger synchronization for general-purpose
timers (TIM2)

• Section 28.4.17: External trigger synchronization (TIM15 only) for general-purpose
timer (TIM15)

Triggering signals

The output (from Master) is on signal TIMx_TRGO (and TIMx_TRGO2 for TIM1) following a
configurable timer event.

The input (to slave) is on signals TIMx_ITR0/ITR1/ITR2/ITR3

The input and output signals for TIM1 are shown in Figure 153: Advanced-control timer
block diagram.

S
ou

rc
e

MCO - - - - - 5 - - - - - - - - -

EXTI - - - - - - - - 2 - 4 4 - - -

RTC - - - - - 5 6 6 - - - - - - -

COMP1 10 10 - - 10 10 6 6 - - - - - - -

COMP2 10 10 - - 10 10 6 6 - - - - - - -

SYST ERR 11 - - - 11 11 - - - - - - - - -

USB(3) - 8 - - - - - - - - - - - - -

1. Numbers in table are links to corresponding detailed sub-section in Section 10.3: Interconnection details.

2. The “-” symbol in grayed cells means no interconnect.

3. Not available for STM32L431xx devices.

Table 38. STM32L43xxx/44xxx/45xxx/46xxx peripherals interconnect matrix(1) (2) (continued)

-

Destination

T
IM

1

T
IM

2

T
IM

6

T
IM

7

T
IM

15

T
IM

16

L
P

T
IM

1

L
P

T
IM

2

A
D

C
1

O
P

A
M

P
1

D
A

C
1

D
A

C
2

C
O

M
P

1

C
O

M
P

2

IR
T

IM

Analog-to-digital converters (ADC) RM0394

382/1472 DocID027295 Rev 3

Inside the regular sequence, after each conversion is complete:

• The converted data are stored into the 16-bit ADC_DR register

• The EOC (end of regular conversion) flag is set

• An interrupt is generated if the EOCIE bit is set

Inside the injected sequence, after each conversion is complete:

• The converted data are stored into one of the four 16-bit ADC_JDRy registers

• The JEOC (end of injected conversion) flag is set

• An interrupt is generated if the JEOCIE bit is set

After the regular sequence is complete:

• The EOS (end of regular sequence) flag is set

• An interrupt is generated if the EOSIE bit is set

After the injected sequence is complete:

• The JEOS (end of injected sequence) flag is set

• An interrupt is generated if the JEOSIE bit is set

Then the ADC stops until a new external regular or injected trigger occurs or until bit
ADSTART or JADSTART is set again.

Note: To convert a single channel, program a sequence with a length of 1.

16.4.14 Continuous conversion mode (CONT=1)

This mode applies to regular channels only.

In continuous conversion mode, when a software or hardware regular trigger event occurs,
the ADC performs once all the regular conversions of the channels and then automatically
re-starts and continuously converts each conversions of the sequence. This mode is started
with the CONT bit at 1 either by external trigger or by setting the ADSTART bit in the
ADC_CR register.

Inside the regular sequence, after each conversion is complete:

• The converted data are stored into the 16-bit ADC_DR register

• The EOC (end of conversion) flag is set

• An interrupt is generated if the EOCIE bit is set

After the sequence of conversions is complete:

• The EOS (end of sequence) flag is set

• An interrupt is generated if the EOSIE bit is set

Then, a new sequence restarts immediately and the ADC continuously repeats the
conversion sequence.

Note: To convert a single channel, program a sequence with a length of 1.

It is not possible to have both discontinuous mode and continuous mode enabled: it is
forbidden to set both DISCEN=1 and CONT=1.

Injected channels cannot be converted continuously. The only exception is when an injected
channel is configured to be converted automatically after regular channels in continuous
mode (using JAUTO bit), refer to Auto-injection mode section).

Analog-to-digital converters (ADC) RM0394

434/1472 DocID027295 Rev 3

16.6.4 ADC configuration register (ADC_CFGR)

Address offset: 0x0C

Reset value: 0x8000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

JQDIS AWD1CH[4:0] JAUTO
JAWD1

EN
AWD1

EN
AWD1S

GL
JQM

JDISC
EN

DISCNUM[2:0]
DISC
EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
AUT
DLY

CONT
OVR
MOD

EXTEN[1:0] EXTSEL[3:0] ALIGN RES[1:0]
DFSD
MCFG

DMA
CFG

DMA
EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 JQDIS: Injected Queue disable

These bits are set and cleared by software to disable the Injected Queue mechanism :
0: Injected Queue enabled
1: Injected Queue disabled

Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no regular nor injected conversion is ongoing).

A set or reset of JQDIS bit causes the injected queue to be flushed and the JSQR register is
cleared.

Bits 30:26 AWD1CH[4:0]: Analog watchdog 1 channel selection

These bits are set and cleared by software. They select the input channel to be guarded by the
analog watchdog.
00000: ADC analog input channel-0 monitored by AWD1 (available on ADC1 only)
00001: ADC analog input channel-1 monitored by AWD1
.....
10010: ADC analog input channel-18 monitored by AWD1
others: reserved, must not be used

Note: The channel selected by AWD1CH must be also selected into the SQRi or JSQRi registers.

Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).

Bit 25 JAUTO: Automatic injected group conversion

This bit is set and cleared by software to enable/disable automatic injected group conversion after
regular group conversion.
0: Automatic injected group conversion disabled
1: Automatic injected group conversion enabled

Note: Software is allowed to write this bit only when ADSTART=0 and JADSTART=0 (which ensures
that no regular nor injected conversion is ongoing).

Bit 24 JAWD1EN: Analog watchdog 1 enable on injected channels

This bit is set and cleared by software
0: Analog watchdog 1 disabled on injected channels
1: Analog watchdog 1 enabled on injected channels

Note: Software is allowed to write this bit only when JADSTART=0 (which ensures that no injected
conversion is ongoing).

Analog-to-digital converters (ADC) RM0394

454/1472 DocID027295 Rev 3

16.7.2 ADC common control register (ADC_CCR)

Address offset: 0x08 (this offset address is relative to the master ADC base address +
0x300)

Reset value: 0x0000 0000

Bit 8 AWD2_MST: Analog watchdog 2 flag of the master ADC

This bit is a copy of the AWD2 bit in the corresponding ADC_ISR register.

Bit 7 AWD1_MST: Analog watchdog 1 flag of the master ADC

This bit is a copy of the AWD1 bit in the corresponding ADC_ISR register.

Bit 6 JEOS_MST: End of injected sequence flag of the master ADC

This bit is a copy of the JEOS bit in the corresponding ADC_ISR register.

Bit 5 JEOC_MST: End of injected conversion flag of the master ADC

This bit is a copy of the JEOC bit in the corresponding ADC_ISR register.

Bit 4 OVR_MST: Overrun flag of the master ADC

This bit is a copy of the OVR bit in the corresponding ADC_ISR register.

Bit 3 EOS_MST: End of regular sequence flag of the master ADC

This bit is a copy of the EOS bit in the corresponding ADC_ISR register.

Bit 2 EOC_MST: End of regular conversion of the master ADC

This bit is a copy of the EOC bit in the corresponding ADC_ISR register.

Bit 1 EOSMP_MST: End of Sampling phase flag of the master ADC

This bit is a copy of the EOSMP bit in the corresponding ADC_ISR register.

Bit 0 ADRDY_MST: Master ADC ready

This bit is a copy of the ADRDY bit in the corresponding ADC_ISR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res.
CH18
SEL

CH17
SEL

VREF
EN

PRESC[3:0] CKMODE[1:0]

rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 CH18SEL: CH18 selection

This bit is set and cleared by software to control the channel 18 of ADC1
0: VBAT channel disabled, DAC2_int selected.
1: VBAT channel enabled

Bit 23 CH17SEL: CH17 selection

This bit is set and cleared by software to control the channel 17 of ADC1
0: Temperature sensor channel disabled, DAC1_int selected
1: Temperature sensor channel enabled

DocID027295 Rev 3 541/1472

RM0394 Digital filter for sigma delta modulators (DFSDM)

572

AWHTF[3:0], AWLTF[3:0] of DFSDM_FLTxAWSR register). Each channel request is
executed in 8 DFSDM clock cycles. So, the bandwidth from each channel is limited to 8
DFSDM clock cycles (if AWDCH[3:0] = 0x0F). Because the maximum input channel
sampling clock frequency is the DFSDM clock frequency divided by 4, the configuration
AWFOSR = 0 (analog watchdog filter is bypassed) cannot be used for analog watchdog
feature at this input clock speed. Therefore user must properly configure the number of
watched channels and analog watchdog filter parameters with respect to input sampling
clock speed and DFSDM frequency.

Analog watchdog filter data for given channel y is available for reading by firmware on field
WDATA[15:0] in DFSDM_CHyWDATR register. That analog watchdog filter data is
converted continuously (if CHEN=1 in DFSDM_CHyCFGR1 register) with the data rate
given by the analog watchdog filter setting and the channel input clock frequency.

The analog watchdog filter conversion works like a regular Fast Continuous Conversion
without the intergator. The number of serial samples needed for one result from analog
watchdog filter output (at channel input clock frequency fCKIN):

first conversion:

for Sincx filters (x=1..5): number of samples = [FOSR * FORD + FORD + 1]

for FastSinc filter: number of samples = [FOSR * 4 + 2 + 1]

next conversions:

for Sincx and FastSinc filters: number of samples = [FOSR * IOSR]

where:

FOSR filter oversampling ratio: FOSR = AWFOSR[4:0]+1 (see DFSDM_CHyAWSCDR
register)

FORD the filter order: FORD = AWFORD[1:0] (see DFSDM_CHyAWSCDR register)

In case of output data register monitoring (AWFSEL=0), the comparison is done after a right
bit shift and an offset correction of final data (see OFFSET[23:0] and DTRBS[4:0] fields in
DFSDM_CHyCFGR2 register). A comparison is performed after each injected or regular
end of conversion for the channels selected by AWDCH[3:0] field (in DFSDM_FLTxCR2
register).

The status of an analog watchdog event is signalized in DFSDM_FLTxAWSR register where
a given event is latched. AWHTF[y]=1 flag signalizes crossing AWHT[23:0] value on
channel y. AWLTF[y]=1 flag signalizes crossing AWLT[23:0] value on channel y. Latched
events in DFSDM_FLTxAWSR register are cleared by writing ‘1’ into the corresponding
clearing bit CLRAWHTF[y] or CLRAWLTF[y] in DFSDM_FLTxAWCFR register.

The global status of an analog watchdog is signalized by the AWDF flag bit in
DFSDM_FLTxISR register (it is used for the fast detection of an interrupt source). AWDF=1
signalizes that at least one watchdog occurred (AWHTF[y]=1 or AWLTF[y]=1 for at least one
channel). AWDF bit is cleared when all AWHTF[3:0] and AWLTF[3:0] are cleared.

An analog watchdog event can be assigned to break output signal. There are four break
outputs to be assigned to a high or low threshold crossing event (dfsdm_break[3:0]). The
break signal assignment to a given analog watchdog event is done by BKAWH[3:0] and
BKAWL[3:0] fields in DFSDM_FLTxAWHTR and DFSDM_FLTxAWLTR register.

DocID027295 Rev 3 589/1472

RM0394 Liquid crystal display controller (LCD)

603

Summary of COM and SEG functions versus duty and remap

All the possible ways of multiplexing the COM and SEG functions are described in
Table 101. Figure 127 gives examples showing the signal connections to the external pins.

Table 101. Remapping capability

Configuration bits
SEG x COM Output pin Function

DUTY MUX_SEG

 1/8

0/1 40x8

SEG[43:40]/SEG[31:28]/COM[7:4] COM[7:4]

COM[3:0] COM[3:0]

SEG[39:0] SEG[39:0]

0/1 28x8

SEG[43:40]/SEG[31:28]/COM[7:4] COM[7:4]

COM[3:0] COM[3:0]

SEG[27:0] SEG[27:0]

 1/4

0 44x4

COM[3:0] COM[3:0]

SEG[43:40]/SEG[31:28]/COM[7:4] SEG[43:40]

SEG[39:0] SEG[39:0]

1 40x4

COM[3:0] COM[3:0]

SEG[43:40]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[39:32] SEG[39:32]

SEG[31:28] not used

SEG[27:0] SEG[27:0]

0 28x4

COM[3:0] COM[3:0]

SEG[43:40]/SEG[31:28]/COM[7:4] not used

SEG[27:0] SEG[27:0]

1 32x4

COM[3:0] COM[3:0]

SEG[43:40]/SEG[31:28]/COM[7:4] SEG[31:28]

SEG[27:0] SEG[27:0]

Advanced encryption standard hardware accelerator (AES) RM0394

642/1472 DocID027295 Rev 3

The nonce value and 32-bit counter are accessible through the AES_IVRx register and
organized like below in Figure 144:

Figure 144. 32-bit counter + nonce organization

In counter mode, the counter is incremented from the initialized value for each block to be
processed in order to guarantee a unique sequence which is not repeated for a long time. It
is a 32-bit counter, meaning that the nonce message is kept to the initialized value stored
when the AES was disabled. Only the 32-bit LSB of the 128-bit initialization vector register
represents the counter. In contrast to CBC mode (which uses the AES_IVRx registers only
once when processing the first data block), in counter mode, the AES_IVRx registers are
used for processing each data block.

In counter mode, key derivation + decryption mode is not applicable.

Note: The AES_IVRx register has be written only when the AES is disabled (bit EN = 0) to
guarantee good AES behavior.

Reading it while AES is enabled returns the value 0x00000000.

Reading it while the AES is disabled returns the latest counter value (useful for managing
suspend mode).

In CTR mode, key derivation + decryption serves no purpose. Consequently it is forbidden
to set MODE[1:0] = 11 in the AES_CR register and any attempt to set this configuration is
forced to MODE[1:0] = 10 (which corresponds to CTR mode decryption). This uses the
encryption block of the AES processor to decipher the message as shown in Figure 143.

Suspend mode in CTR mode

Like for the CBC mode, it is possible to interrupt a message, sending a higher priority
message and resume the message which was interrupted. Refer to the Figure 141 and
Section 25.5.2 for more details about the suspend mode capability.

25.6 Galois counter mode (GCM)

GCM allows to encrypt and authenticate the plaintext, generating the corresponding
ciphertext and the TAG (also known as message authentication code or message integrity
check). It is based on AES in counter mode for confidentiality and it uses a multiplier over a
fixed finite field for generating the TAG. It requires an initialization vector at the beginning.
The message to process can be split in 2 different portions:

• The first that is authenticated only (the header of the message),

• The second that is authenticated and encrypted (the payload).

The header part must precede the payload and the two portions cannot be mixed. GCM
standard requires to pass at the end of the message a particular 128-bit block composed by

Advanced encryption standard hardware accelerator (AES) RM0394

652/1472 DocID027295 Rev 3

forced to CTR decryption mode if the software writes MODE[1:0] = 11 and CHMOD[2:0]
= 010.

3. Select key length 128-bit or 256-bit via KEYSIZE bits configuration in AES_CR register.

4. Write the AES_KEYRx register with the encryption key. Write the AES_IVRx register if
the CBC mode is selected.

5. Enable the AES by setting the EN bit in the AES_CR register.

6. Write the AES_DINR register 4 times to input the cipher text (MSB first) as shown in
Figure 150: Mode 4: key derivation and decryption with 128-bit key length.

7. Wait until the CCF flag is set in the AES_SR register.

8. Read the AES_DOUTR register 4 times to get the plain text (MSB first) as shown in
Figure 150: Mode 4: key derivation and decryption with 128-bit key length.

9. Repeat steps 6, 7, 8 to process all the blocks with the same encryption key.

Note: The AES_KEYRx registers contain the encryption key during all phases of the processing,
No derivation key is stored in these registers. The derivation key starting from the encryption
key is stored internally in the AES without storing a copy in the AES_KEYRx registers.

Figure 150. Mode 4: key derivation and decryption with 128-bit key length

25.10 AES DMA interface

The AES accelerator provides an interface to connect to the DMA controller.

The DMA must be configured to transfer words.

The AES can be associated with two distinct DMA request channels:

• A DMA request channel for the inputs: When the DMAINEN bit is set in the AES_CR
register, the AES initiates a DMA request (AES_IN) during the INPUT phase each time
it requires a word to be written to the AES_DINR register. The DMA channel must be
configured in memory-to-peripheral mode with 32-bit data size.

• A DMA request channel for the outputs: When the DMAOUTEN bit is enabled, the AES
initiates a DMA request (AES_OUT) during the OUTPUT phase each time it requires a
word to be read from the AES_DOUTR register. The DMA channel must be configured
in peripheral-to-memory mode with a data size equal to 32-bit.

Four DMA requests are asserted for each phase, these are described in Figure 151 and
Figure 152.

DMA requests are generated until the AES is disabled. So, after the data output phase at
the end of processing a 128-bit data block, the AES switches automatically to a new data
input phase for the next data block if any.

DocID027295 Rev 3 705/1472

RM0394 Advanced-control timers (TIM1)

765

Figure 195. Dead-time waveforms with delay greater than the positive pulse

The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIMx_BDTR register. Refer to Section 26.4.18: TIM1 break and dead-time
register (TIMx_BDTR) for delay calculation.

Re-directing OCxREF to OCx or OCxN

In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx
output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER
register.

This allows you to send a specific waveform (such as PWM or static active level) on one
output while the complementary remains at its inactive level. Other alternative possibilities
are to have both outputs at inactive level or both outputs active and complementary with
dead-time.

Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes
active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the
other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes
active when OCxREF is high whereas OCxN is complemented and becomes active when
OCxREF is low.

26.3.16 Using the break function

The purpose of the break function is to protect power switches driven by PWM signals
generated with the TIM1 timer. The two break inputs are usually connected to fault outputs
of power stages and 3-phase inverters. When activated, the break circuitry shuts down the
PWM outputs and forces them to a predefined safe state. A number of internal MCU events
can also be selected to trigger an output shut-down.

The break features two channels. A break channel which gathers both system-level fault
(clock failure, parity error,...) and application fault (from input pins and built-in comparator),
and can force the outputs to a predefined level (either active or inactive) after a deadtime
duration. A break2 channel which only includes application faults and is able to force the
outputs to an inactive state.

General-purpose timer (TIM2/TIM3) RM0394

768/1472 DocID027295 Rev 3

27.3 TIM2/TIM3 functional description

27.3.1 Time-base unit

The main block of the programmable timer is a 16-bit/32-bit counter with its related auto-
reload register. The counter can count up, down or both up and down but also down or both
up and down. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter Register (TIMx_CNT)

• Prescaler Register (TIMx_PSC):

• Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit/32-bit register (in the TIMx_PSC
register). It can be changed on the fly as this control register is buffered. The new prescaler
ratio is taken into account at the next update event.

Figure 214 and Figure 215 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

General-purpose timer (TIM2/TIM3) RM0394

772/1472 DocID027295 Rev 3

Figure 219. Counter timing diagram, internal clock divided by N

Figure 220. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not
preloaded)

General-purpose timer (TIM2/TIM3) RM0394

790/1472 DocID027295 Rev 3

Figure 242. Output compare mode, toggle on OC1

27.3.9 PWM mode

Pulse width modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by the CCxE bit in
the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction
of the counter). However, to comply with the OCREF_CLR functionality (OCREF can be
cleared by an external event through the ETR signal until the next PWM period), the
OCREF signal is asserted only:

• When the result of the comparison or

• When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes
(OCxM=‘110 or ‘111).

This forces the PWM by software while the timer is running.

General-purpose timers (TIM15/TIM16) RM0394

910/1472 DocID027295 Rev 3

28.6.14 TIM16 DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

28.6.15 TIM16 DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. DBL[4:0] Res. Res. Res. DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit field defines the length of DMA transfers (the timer recognizes a burst transfer when
a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers.
Transfers can be in half-words or in bytes (see example below).

00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bit field defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Example: Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx_CR1. In
this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address

(TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the
DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

DocID027295 Rev 3 1095/1472

RM0394 Universal synchronous asynchronous receiver transmitter (USART)

1192

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:

• The ORE bit is set.

• The RDR content will not be lost. The previous data is available when a read to
USART_RDR is performed.

• The shift register will be overwritten. After that point, any data received during overrun
is lost.

• An interrupt is generated if either the RXNEIE bit is set or EIE bit is set.

• The ORE bit is reset by setting the ORECF bit in the ICR register.

Note: The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:

- if RXNE=1, then the last valid data is stored in the receive register RDR and can be read,

- if RXNE=0, then it means that the last valid data has already been read and thus there is
nothing to be read in the RDR. This case can occur when the last valid data is read in the
RDR at the same time as the new (and lost) data is received.

Selecting the clock source and the proper oversampling method

The choice of the clock source is done through the Clock Control system (see Section Reset
and clock control (RCC))). The clock source must be chosen before enabling the USART
(by setting the UE bit).

The choice of the clock source must be done according to two criteria:

• Possible use of the USART in low-power mode

• Communication speed.

The clock source frequency is fCK.

 When the dual clock domain with the wakeup from Stop mode is supported, the clock
source can be one of the following sources: PCLK (default), LSE, HSI16 or SYSCLK.
Otherwise, the USART clock source is PCLK.

Choosing LSE or HSI16 as clock source may allow the USART to receive data while the
MCU is in low-power mode. Depending on the received data and wakeup mode selection,
the USART wakes up the MCU, when needed, in order to transfer the received data by
software reading the USART_RDR register or by DMA.

For the other clock sources, the system must be active in order to allow USART
communication.

The communication speed range (specially the maximum communication speed) is also
determined by the clock source.

The receiver implements different user-configurable oversampling techniques for data
recovery by discriminating between valid incoming data and noise. This allows a trade-off
between the maximum communication speed and noise/clock inaccuracy immunity.

SD/SDIO/MMC card host interface (SDMMC) RM0394

1296/1472 DocID027295 Rev 3

Figure 427. “No response” and “no data” operations

Figure 428. (Multiple) block read operation

Figure 429. (Multiple) block write operation

Note: The SDMMC will not send any data as long as the Busy signal is asserted (SDMMC_D0
pulled low).

DocID027295 Rev 3 1351/1472

RM0394 SD/SDIO/MMC card host interface (SDMMC)

1352

41.8.16 SDMMC register map

The following table summarizes the SDMMC registers.

Table 229. SDMMC register map

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00

SDMMC_
POWER R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
W

R
C

T
R

L

Reset value 0 0

0x04

SDMMC_
CLKCR R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

H
W

F
C

_
E

N

N
E

G
E

D
G

E

W
ID

B
U

S

B
Y

P
A

S
S

P
W

R
S

A
V

C
LK

E
N

C
LK

D
IV

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
SDMMC_ARG CMDARG

Reset value 0

0x0C
SDMMC_CMD

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
D

IO
S

u
sp

e
n

d

C
P

S
M

E
N

W
A

IT
P

E
N

D

W
A

IT
IN

T

W
A

IT
R

E
S

P

C
M

D
IN

D
E

X

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x10

SDMMC_
RESPCMD R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RESPCMD

Reset value 0 0 0 0 0 0

0x14

SDMMC_
RESP1

CARDSTATUS1

Reset value 0

0x18

SDMMC_
RESP2

CARDSTATUS2

Reset value 0

0x1C

SDMMC_
RESP3

CARDSTATUS3

Reset value 0

0x20

SDMMC_
RESP4

CARDSTATUS4

Reset value 0

0x24

SDMMC_
DTIMER

DATATIME

Reset value 0

0x28

SDMMC_
DLEN R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DATALENGTH

Reset value 0

0x2C

SDMMC_
DCTRL R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
D

IO
E

N

R
W

M
O

D

R
W

S
T

O
P

R
W

S
TA

R
T

D
B

L
O

C
K

S
IZ

E

D
M

A
E

N

D
T

M
O

D
E

D
T

D
IR

D
T

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x30

SDMMC_
DCOUNT R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DATACOUNT

Reset value 0

DocID027295 Rev 3 1437/1472

RM0394 Debug support (DBG)

1461

44.6.1 MCU device ID code

The STM32L43xxx/44xxx/45xxx/46xxx MCUs integrate an MCU ID code. This ID identifies
the ST MCU part-number and the die revision. It is part of the DBG_MCU component and is
mapped on the external PPB bus (see Section 44.16 on page 1449). This code is
accessible using the JTAG debug port (4 to 5 pins) or the SW debug port (two pins) or by
the user software. It is even accessible while the MCU is under system reset.

Only the DEV_ID(11:0) should be used for identification by the debugger/programmer tools.

DBGMCU_IDCODE

Address: 0xE004 2000

Only 32-bits access supported. Read-only

44.6.2 Boundary scan TAP

JTAG ID code

The TAP of the STM32L43xxx/44xxx/45xxx/46xxx BSC (boundary scan) integrates a JTAG
ID code equal to 0x06435041.

44.6.3 Cortex®-M4 TAP

The TAP of the ARM® Cortex®-M4 integrates a JTAG ID code. This ID code is the ARM®
default one and has not been modified. This code is only accessible by the JTAG Debug
Port.
This code is 0x4BA00477 (corresponds to Cortex®-M4 r0p1, see Section 44.2: Reference
ARM® documentation).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV_ID

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DEV_ID

r r r r r r r r r r r r

Bits 31:16 REV_ID[15:0] Revision identifier

This field indicates the revision of the device.
0x1000: Rev A
0x1001: Rev Z
Others: Reserved

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 DEV_ID[11:0]: Device identifier

The device ID is:

– 0x435 for STM32L43xxx and STM32L44xxx devices

– 0x462 for STM32L45xxx and STM32L46xxx devices

Device electronic signature RM0394

1464/1472 DocID027295 Rev 3

45.3 Package data register

Base address: 0x1FFF 7500

Address offset: 0x00

Read only = 0xXXXX where X is factory-programmed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PKG[4:0]

r r r r r

Bits 15:5 Reserved, must be kept at reset value

Bits 4:0 PKG[4:0]: Package type

00000: LQFP64
00001: WLCSP64
00010: LQFP100
01010: UFQFPN48
01011: LQFP48
01100: WLCSP49
01101: UFBGA64
01110: UFBGA100
Others: reserved

