
STMicroelectronics - STM32L433RCY3TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 80MHz

Connectivity CANbus, I²C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, LCD, PWM, WDT

Number of I/O 52

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 64-UFBGA, WLCSP

Supplier Device Package 64-WLCSP (3.14x3.13)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l433rcy3tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32l433rcy3tr-4410846
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Embedded Flash memory (FLASH) RM0394

110/1472 DocID027295 Rev 3

Refer to Section 2.2.2 on page 64 for the register boundary addresses.

0x30

FLASH_
WRP1BR R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

WRP1B_END[7:0]

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

WRP1B_STRT[7:0]

Reset value X X X X X X X X X X X X X X X X

Table 14. Flash interface - register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID027295 Rev 3 147/1472

RM0394 Power control (PWR)

170

5.3.7 Stop 1 mode

The Stop 1 mode is the same as Stop 0 mode except that the main regulator is OFF, and
only the low-power regulator is ON. Stop 1 mode can be entered from Run mode and from
Low-power run mode.

Refer to Table 25: Stop 1 mode for details on how to enter and exit Stop 1 mode.

Table 24. Stop 0 mode

Stop 0 mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP bit is set in Cortex®-M4 System Control register

– No interrupt (for WFI) or event (for WFE) is pending

– LPMS = “000” in PWR_CR1

On Return from ISR while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register

– SLEEPONEXIT = 1

– No interrupt is pending

– LPMS = “000” in PWR_CR1

Note: To enter Stop 0 mode, all EXTI Line pending bits (in Pending
register 1 (EXTI_PR1)), and the peripheral flags generating wakeup
interrupts must be cleared. Otherwise, the Stop 0 mode entry
procedure is ignored and program execution continues.

Mode exit

If WFI or Return from ISR was used for entry

Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer to
Table 45: STM32L43xxx/44xxx/45xxx/46xxx vector table.

If WFE was used for entry and SEVONPEND = 0:

Any EXTI Line configured in event mode. Refer to Section 13.3.2:
Wakeup event management.

If WFE was used for entry and SEVONPEND = 1:
Any EXTI Line configured in Interrupt mode (even if the corresponding
EXTI Interrupt vector is disabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer
toTable 45: STM32L43xxx/44xxx/45xxx/46xxx vector table.
Wakeup event: refer to Section 13.3.2: Wakeup event management

Wakeup latency
Longest wakeup time between: MSI or HSI16 wakeup time and Flash
wakeup time from Stop 0 mode.

Power control (PWR) RM0394

148/1472 DocID027295 Rev 3

5.3.8 Stop 2 mode

The Stop 2 mode is based on the Cortex®-M4 deepsleep mode combined with peripheral
clock gating. In Stop 2 mode, all clocks in the VCORE domain are stopped, the PLL, the MSI,
the HSI16 and the HSE oscillators are disabled. Some peripherals with wakeup capability
(I2C3 and LPUART) can switch on the HSI16 to receive a frame, and switch off the HSI16
after receiving the frame if it is not a wakeup frame. In this case the HSI16 clock is
propagated only to the peripheral requesting it.

SRAM1, SRAM2 and register contents are preserved.

The BOR is always available in Stop 2 mode. The consumption is increased when
thresholds higher than VBOR0 are used.

Note: The comparators outputs, the LPUART outputs and the LPTIM1 outputs are forced to low
speed (OSPEEDy=00) during the Stop 2 mode.

Table 25. Stop 1 mode

Stop 1 mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP bit is set in Cortex®-M4 System Control register

– No interrupt (for WFI) or event (for WFE) is pending

– LPMS = “001” in PWR_CR1

On Return from ISR while:
– SLEEPDEEP bit is set in Cortex®-M4 System Control register

– SLEEPONEXIT = 1

– No interrupt is pending

– LPMS = “001” in PWR_CR1

Note: To enter Stop 1 mode, all EXTI Line pending bits (in Pending
register 1 (EXTI_PR1)), and the peripheral flags generating wakeup
interrupts must be cleared. Otherwise, the Stop 1 mode entry
procedure is ignored and program execution continues.

Mode exit

If WFI or Return from ISR was used for entry

Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer to
Table 45: STM32L43xxx/44xxx/45xxx/46xxx vector table.

If WFE was used for entry and SEVONPEND = 0:

Any EXTI Line configured in event mode. Refer to Section 13.3.2:
Wakeup event management.

If WFE was used for entry and SEVONPEND = 1:
Any EXTI Line configured in Interrupt mode (even if the corresponding
EXTI Interrupt vector is disabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer
toTable 45: STM32L43xxx/44xxx/45xxx/46xxx vector table.
Wakeup event: refer to Section 13.3.2: Wakeup event management

Wakeup latency
Longest wakeup time between: MSI or HSI16 wakeup time and regulator
wakeup time from Low-power mode + Flash wakeup time from Stop 1
mode.

DocID027295 Rev 3 399/1472

RM0394 Analog-to-digital converters (ADC)

458

16.4.23 End of conversion, end of sampling phase (EOC, JEOC, EOSMP)

The ADC notifies the application for each end of regular conversion (EOC) event and each
injected conversion (JEOC) event.

The ADC sets the EOC flag as soon as a new regular conversion data is available in the
ADC_DR register. An interrupt can be generated if bit EOCIE is set. EOC flag is cleared by
the software either by writing 1 to it or by reading ADC_DR.

The ADC sets the JEOC flag as soon as a new injected conversion data is available in one
of the ADC_JDRy register. An interrupt can be generated if bit JEOCIE is set. JEOC flag is
cleared by the software either by writing 1 to it or by reading the corresponding ADC_JDRy
register.

The ADC also notifies the end of Sampling phase by setting the status bit EOSMP (for
regular conversions only). EOSMP flag is cleared by software by writing 1 to it. An interrupt
can be generated if bit EOSMPIE is set.

16.4.24 End of conversion sequence (EOS, JEOS)

The ADC notifies the application for each end of regular sequence (EOS) and for each end
of injected sequence (JEOS) event.

The ADC sets the EOS flag as soon as the last data of the regular conversion sequence is
available in the ADC_DR register. An interrupt can be generated if bit EOSIE is set. EOS
flag is cleared by the software either by writing 1 to it.

The ADC sets the JEOS flag as soon as the last data of the injected conversion sequence is
complete. An interrupt can be generated if bit JEOSIE is set. JEOS flag is cleared by the
software either by writing 1 to it.

Table 60. TSAR timings depending on resolution

RES
(bits)

TSAR

(ADC clock cycles)
TSAR (ns) at

FADC=80 MHz

TCONV (ADC clock cycles)

(with Sampling Time=
2.5 ADC clock cycles)

TCONV (ns) at
FADC=80 MHz

12 12.5 ADC clock cycles 156.25 ns 15 ADC clock cycles 187.5 ns

10 10.5 ADC clock cycles 131.25 ns 13 ADC clock cycles 162.5 ns

8 8.5 ADC clock cycles 106.25 ns 11 ADC clock cycles 137.5 ns

6 6.5 ADC clock cycles 81.25 ns 9 ADC clock cycles 112.5 ns

Digital-to-analog converter (DAC) RM0394

476/1472 DocID027295 Rev 3

Simultaneous trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude
configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into
DAC_DOR1 (three APB clock cycles later). Then the DAC channel1 triangle counter is
updated.

At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured
by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated.

DocID027295 Rev 3 547/1472

RM0394 Digital filter for sigma delta modulators (DFSDM)

572

– enabled by JOVRIE bit in DFSDM_FLTxCR2 register

– indicated in JOVRF bit in DFSDM_FLTxISR register

– cleared by writing ‘1’ into CLRJOVRF bit in DFSDM_FLTxICR register

• Data overrun interrupt for regular conversions:

– occurred when regular converted data were not read from DFSDM_FLTxRDATAR
register (by CPU or DMA) and were overwritten by a new regular conversion

– enabled by ROVRIE bit in DFSDM_FLTxCR2 register

– indicated in ROVRF bit in DFSDM_FLTxISR register

– cleared by writing ‘1’ into CLRROVRF bit in DFSDM_FLTxICR register

• Analog watchdog interrupt:

– occurred when converted data (output data or data from analog watchdog filter -
according to AWFSEL bit setting in DFSDM_FLTxCR1 register) crosses
over/under high/low thresholds in DFSDM_FLTxAWHTR / DFSDM_FLTxAWLTR
registers

– enabled by AWDIE bit in DFSDM_FLTxCR2 register (on selected channels
AWDCH[3:0])

– indicated in AWDF bit in DFSDM_FLTxISR register

– separate indication of high or low analog watchdog threshold error by AWHTF[3:0]
and AWLTF[3:0] fields in DFSDM_FLTxAWSR register

– cleared by writing ‘1’ into corresponding CLRAWHTF[3:0] or CLRAWLTF[3:0] bits
in DFSDM_FLTxAWCFR register

• Short-circuit detector interrupt:

– occurred when the number of stable data crosses over thresholds in
DFSDM_CHyAWSCDR register

– enabled by SCDIE bit in DFSDM_FLTxCR2 register (on channel selected by
SCDEN bi tin DFSDM_CHyCFGR1 register)

– indicated in SCDF[3:0] bits in DFSDM_FLTxISR register (which also reports the
channel on which the short-circuit detector event occurred)

– cleared by writing ‘1’ into the corresponding CLRSCDF[3:0] bit in
DFSDM_FLTxICR register

• Channel clock absence interrupt:

– occurred when there is clock absence on CKINy pin (see Clock absence detection
in Section 21.4.4: Serial channel transceivers)

– enabled by CKABIE bit in DFSDM_FLTxCR2 register (on channels selected by
CKABEN bit in DFSDM_CHyCFGR1 register)

– indicated in CKABF[y] bit in DFSDM_FLTxISR register

– cleared by writing ‘1’ into CLRCKABF[y] bit in DFSDM_FLTxICR register

Table 97. DFSDM interrupt requests

Interrupt event Event flag
Event/Interrupt clearing

method
Interrupt enable

control bit

End of injected conversion JEOCF reading DFSDM_FLTxJDATAR JEOCIE

End of regular conversion REOCF reading DFSDM_FLTxRDATAR REOCIE

Injected data overrun JOVRF writing CLRJOVRF = 1 JOVRIE

Liquid crystal display controller (LCD) RM0394

578/1472 DocID027295 Rev 3

COM[n] n[0 to 7] is active during phase n in the odd frame, so the COM pin is driven to
VLCD.

During phase n of the even frame the COM pin is driven to VSS.

In the case of 1/3 or 1/4) bias:

• COM[n] is inactive during phases other than n so the COM pin is driven to 1/3 (1/4)
VLCD during odd frames and to 2/3 (3/4) VLCD during even frames

In the case of 1/2 bias:

• If COM[n] is inactive during phases other than n, the COM pin is always driven (odd
and even frame) to 1/2 VLCD.

When static duty is selected, the segment lines are not multiplexed, which means that each
segment output corresponds to one pixel. In this way only up to 44 pixels can be driven.
COM[0] is always active while COM[7:1] are not used and are driven to VSS.

When the LCDEN bit in the LCD_CR register is reset, all common lines are pulled down to
VSS and the ENS flag in the LCD_SR register becomes 0. Static duty means that COM[0] is
always active and only two voltage levels are used for the segment and common lines: VLCD
and VSS. A pixel is active if the corresponding SEG line has a voltage opposite to that of the
COM, and inactive when the voltages are equal. In this way the LCD has maximum contrast
(see Figure 119, Figure 120). In the Figure 119 pixel 0 is active while pixel 1 is inactive.

Figure 119. Static duty case 1

In each frame there is only one phase, this is why fframe is equal to fLCD. If 1/4 duty is
selected there are four phases in a frame in which COM[0] is active during phase 0, COM[1]
is active during phase 1, COM[2] is active during phase 2, and COM[3] is active during
phase 3.

Advanced-control timers (TIM1) RM0394

692/1472 DocID027295 Rev 3

Figure 182. Capture/compare channel 1 main circuit

Figure 183. Output stage of capture/compare channel (channel 1, idem ch. 2 and 3)

1. OCxREF, where x is the rank of the complementary channel

General-purpose timers (TIM15/TIM16) RM0394

858/1472 DocID027295 Rev 3

28.4.12 Complementary outputs and dead-time insertion

The TIM15/TIM16 general-purpose timers can output one complementary signal and
manage the switching-off and switching-on of the outputs.

This time is generally known as dead-time and you have to adjust it depending on the
devices you have connected to the outputs and their characteristics (intrinsic delays of level-
shifters, delays due to power switches...)

You can select the polarity of the outputs (main output OCx or complementary OCxN)
independently for each output. This is done by writing to the CCxP and CCxNP bits in the
TIMx_CCER register.

The complementary signals OCx and OCxN are activated by a combination of several
control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx,
OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to
Table 129: Output control bits for complementary OCx and OCxN channels with break
feature (TIM15) on page 885 for more details. In particular, the dead-time is activated when
switching to the idle state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the
break circuit is present. There is one 10-bit dead-time generator for each channel. From a
reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are
active high:

• The OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.

• The OCxN output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCx or OCxN) then the
corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1,
CCxE=1 and CCxNE=1 in these examples)

Figure 284. Complementary output with dead-time insertion.

Real-time clock (RTC) RM0394

978/1472 DocID027295 Rev 3

SUBFS[14:0] value to the synchronous prescaler counter SS[15:0]: this will delay the clock.
If at the same time the ADD1S bit is set, this results in adding one second and at the same
time subtracting a fraction of second, so this will advance the clock.

Caution: Before initiating a shift operation, the user must check that SS[15] = 0 in order to ensure that
no overflow will occur.

As soon as a shift operation is initiated by a write to the RTC_SHIFTR register, the SHPF
flag is set by hardware to indicate that a shift operation is pending. This bit is cleared by
hardware as soon as the shift operation has completed.

Caution: This synchronization feature is not compatible with the reference clock detection feature:
firmware must not write to RTC_SHIFTR when REFCKON=1.

34.3.11 RTC reference clock detection

The update of the RTC calendar can be synchronized to a reference clock, RTC_REFIN,
which is usually the mains frequency (50 or 60 Hz). The precision of the RTC_REFIN
reference clock should be higher than the 32.768 kHz LSE clock. When the RTC_REFIN
detection is enabled (REFCKON bit of RTC_CR set to 1), the calendar is still clocked by the
LSE, and RTC_REFIN is used to compensate for the imprecision of the calendar update
frequency (1 Hz).

Each 1 Hz clock edge is compared to the nearest RTC_REFIN clock edge (if one is found
within a given time window). In most cases, the two clock edges are properly aligned. When
the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts
the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism,
the calendar becomes as precise as the reference clock.

The RTC detects if the reference clock source is present by using the 256 Hz clock
(ck_apre) generated from the 32.768 kHz quartz. The detection is performed during a time
window around each of the calendar updates (every 1 s). The window equals 7 ck_apre
periods when detecting the first reference clock edge. A smaller window of 3 ck_apre
periods is used for subsequent calendar updates.

Each time the reference clock is detected in the window, the asynchronous prescaler which
outputs the ck_apre clock is forced to reload. This has no effect when the reference clock
and the 1 Hz clock are aligned because the prescaler is being reloaded at the same
moment. When the clocks are not aligned, the reload shifts future 1 Hz clock edges a little
for them to be aligned with the reference clock.

If the reference clock halts (no reference clock edge occurred during the 3 ck_apre window),
the calendar is updated continuously based solely on the LSE clock. The RTC then waits for
the reference clock using a large 7 ck_apre period detection window centered on the
ck_spre edge.

When the RTC_REFIN detection is enabled, PREDIV_A and PREDIV_S must be set to their
default values:

• PREDIV_A = 0x007F

• PREVID_S = 0x00FF

Note: RTC_REFIN clock detection is not available in Standby mode.

DocID027295 Rev 3 991/1472

RM0394 Real-time clock (RTC)

1011

34.6.4 RTC initialization and status register (RTC_ISR)

This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure
is described in RTC register write protection on page 974.

Address offset: 0x0C

Backup domain reset value: 0x0000 0007

System reset: not affected except INIT, INITF, and RSF bits which are cleared to ‘0’

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ITSF RECALPF

rc_w0 r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TAMP3F TAMP2F TAMP1F TSOVF TSF WUTF ALRBF ALRAF INIT INITF RSF INITS SHPF WUTWF
ALRB
WF

ALRAWF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rw r rc_w0 r r r r r

Bits 31:18 Reserved, must be kept at reset value

Bit 17 ITSF: Internal tTime-stamp flag

This flag is set by hardware when a time-stamp on the internal event occurs.
This flag is cleared by software by writing 0, and must be cleared together with TSF bit by
writing 0 in both bits.

Bit 16 RECALPF: Recalibration pending Flag

The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR
register, indicating that the RTC_CALR register is blocked. When the new calibration settings
are taken into account, this bit returns to ‘0’. Refer to Re-calibration on-the-fly.

Bit 15 TAMP3F: RTC_TAMP3 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP3
input.
It is cleared by software writing 0

Bit 14 TAMP2F: RTC_TAMP2 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP2
input.

It is cleared by software writing 0

Bit 13 TAMP1F: RTC_TAMP1 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP1
input.

It is cleared by software writing 0

Bit 12 TSOVF: Time-stamp overflow flag

This flag is set by hardware when a time-stamp event occurs while TSF is already set.

This flag is cleared by software by writing 0. It is recommended to check and then clear
TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a time-
stamp event occurs immediately before the TSF bit is cleared.

Bit 11 TSF: Time-stamp flag

This flag is set by hardware when a time-stamp event occurs.

This flag is cleared by software by writing 0. If ITSF flag is set, TSF must be cleared together
with ITSF by writing 0 in both bits.

DocID027295 Rev 3 1055/1472

RM0394 Inter-integrated circuit (I2C) interface

1082

SMBus Slave receiver

When the I2C is used in SMBus mode, SBC must be programmed to ‘1’ in order to allow the
PEC checking at the end of the programmed number of data bytes. In order to allow the
ACK control of each byte, the reload mode must be selected (RELOAD=1). Refer to Slave
Byte Control mode on page 1027 for more details.

In order to check the PEC byte, the RELOAD bit must be cleared and the PECBYTE bit
must be set. In this case, after NBYTES-1 data have been received, the next received byte
is compared with the internal I2C_PECR register content. A NACK is automatically
generated if the comparison does not match, and an ACK is automatically generated if the
comparison matches, whatever the ACK bit value. Once the PEC byte is received, it is
copied into the I2C_RXDR register like any other data, and the RXNE flag is set.

In the case of a PEC mismatch, the PECERR flag is set and an interrupt is generated if the
ERRIE bit is set in the I2C_CR1 register.

If no ACK software control is needed, the user can program PECBYTE=1 and, in the same
write operation, program NBYTES with the number of bytes to be received in a continuous
flow. After NBYTES-1 are received, the next received byte is checked as being the PEC.

Caution: The PECBYTE bit has no effect when the RELOAD bit is set.

Universal synchronous asynchronous receiver transmitter (USART) RM0394

1114/1415 DocID027295 Rev 3

• In transmission, the USART inserts the Guard Time (as programmed in the Guard Time
register) between two successive characters. As the Guard Time is measured after the
stop bit of the previous character, the GT[7:0] register must be programmed to the
desired CGT (Character Guard Time, as defined by the 7816-3 specification) minus 12
(the duration of one character).

• The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the Guard Time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the Guard Time counter
reaches the programmed value TC is asserted high.

• The TCBGT flag can be used to detect the end of data transfer without waiting for
guard time completion. This flag is set just after the end of frame transmission and if no
NACK has been received from the card.

• The de-assertion of TC flag is unaffected by Smartcard mode.

• If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK is not detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

• On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
does not detect the NACK as a start bit.

Note: A break character is not significant in Smartcard mode. A 0x00 data with a framing error is
treated as data and not as a break.

No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 363 details how the NACK signal is sampled by the USART. In this example the
USART is transmitting data and is configured with 1.5 stop bits. The receiver part of the
USART is enabled in order to check the integrity of the data and the NACK signal.

Figure 363. Parity error detection using the 1.5 stop bits

The USART can provide a clock to the smartcard through the CK output. In Smartcard
mode, CK is not associated to the communication but is simply derived from the internal
peripheral input clock through a 5-bit prescaler. The division ratio is configured in the
prescaler register USART_GTPR. CK frequency can be programmed from fCK/2 to fCK/62,
where fCK is the peripheral input clock.

DocID027295 Rev 3 1143/1472

RM0394 Universal synchronous asynchronous receiver transmitter (USART)

1192

Bit 17 CMF: Character match flag

This bit is set by hardware, when the character defined by ADD[7:0] is received. It is cleared
by software, writing 1 to the CMCF in the USART_ICR register.
An interrupt is generated if CMIE=1in the USART_CR1 register.
0: No Character match detected
1: Character Match detected

Bit 16 BUSY: Busy flag

This bit is set and reset by hardware. It is active when a communication is ongoing on the
RX line (successful start bit detected). It is reset at the end of the reception (successful or
not).
0: USART is idle (no reception)
1: Reception on going

Bit 15 ABRF: Auto baud rate flag

This bit is set by hardware when the automatic baud rate has been set (RXNE will also be
set, generating an interrupt if RXNEIE = 1) or when the auto baud rate operation was
completed without success (ABRE=1) (ABRE, RXNE and FE are also set in this case)
It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to
the ABRRQ in the USART_RQR register.

Note: If the USART does not support the auto baud rate feature, this bit is reserved and
forced by hardware to ‘0’.

Bit 14 ABRE: Auto baud rate error

This bit is set by hardware if the baud rate measurement failed (baud rate out of range or
character comparison failed)
It is cleared by software, by writing 1 to the ABRRQ bit in the USART_CR3 register.

Note: If the USART does not support the auto baud rate feature, this bit is reserved and
forced by hardware to ‘0’.

Bit 13 Reserved, must be kept at reset value.

Bit 12 EOBF: End of block flag

This bit is set by hardware when a complete block has been received (for example T=1
Smartcard mode). The detection is done when the number of received bytes (from the start
of the block, including the prologue) is equal or greater than BLEN + 4.
An interrupt is generated if the EOBIE=1 in the USART_CR2 register.
It is cleared by software, writing 1 to the EOBCF in the USART_ICR register.
0: End of Block not reached
1: End of Block (number of characters) reached

Note: If Smartcard mode is not supported, this bit is reserved and forced by hardware to ‘0’.
Please refer to Section 36.4: USART implementation on page 1085.

Low-power universal asynchronous receiver transmitter (LPUART) RM0394

1158/1415 DocID027295 Rev 3

Character transmission procedure

1. Program the M bits in LPUART_CR1 to define the word length.

2. Select the desired baud rate using the LPUART_BRR register.

3. Program the number of stop bits in LPUART_CR2.

4. Enable the LPUART by writing the UE bit in LPUART_CR1 register to 1.

5. Select DMA enable (DMAT) in LPUART_CR3 if multibuffer Communication is to take
place. Configure the DMA register as explained in multibuffer communication.

6. Set the TE bit in LPUART_CR1 to send an idle frame as first transmission.

7. Write the data to send in the LPUART_TDR register (this clears the TXE bit). Repeat
this for each data to be transmitted in case of single buffer.

8. After writing the last data into the LPUART_TDR register, wait until TC=1. This
indicates that the transmission of the last frame is complete. This is required for
instance when the LPUART is disabled or enters the Halt mode to avoid corrupting the
last transmission.

Single byte communication

Clearing the TXE bit is always performed by a write to the transmit data register.

The TXE bit is set by hardware and it indicates:

• The data has been moved from the LPUART_TDR register to the shift register and the
data transmission has started.

• The LPUART_TDR register is empty.

• The next data can be written in the LPUART_TDR register without overwriting the
previous data.

This flag generates an interrupt if the TXEIE bit is set.

When a transmission is taking place, a write instruction to the LPUART_TDR register stores
the data in the TDR register; next, the data is copied in the shift register at the end of the
currently ongoing transmission.

When no transmission is taking place, a write instruction to the LPUART_TDR register
places the data in the shift register, the data transmission starts, and the TXE bit is set.

If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the LPUART_CR1 register.

After writing the last data in the LPUART_TDR register, it is mandatory to wait for TC=1
before disabling the LPUART or causing the microcontroller to enter the low-power mode
(see Figure 350: TC/TXE behavior when transmitting).

Low-power universal asynchronous receiver transmitter (LPUART) RM0394

1162/1415 DocID027295 Rev 3

Framing error

A framing error is detected when the stop bit is not recognized on reception at the expected
time, following either a de-synchronization or excessive noise.

When the framing error is detected:

• The FE bit is set by hardware.

• The invalid data is transferred from the Shift register to the LPUART_RDR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
LPUART_CR3 register.

The FE bit is reset by writing 1 to the FECF in the LPUART_ICR register.

Configurable stop bits during reception

The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode.

• 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

• 2 stop bits: Sampling for the 2 stop bits is done in the middle of the second stop bit.
The RXNE and FE flags are set just after this sample i.e. during the second stop bit.
The first stop bit is not checked for framing error.

37.4.4 LPUART baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the LPUART_BRR register.

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the LPUART_BRR register.

LPUARTDIV is coded on the LPUART_BRR register.

Note: The baud counters are updated to the new value in the baud registers after a write operation
to LPUART_BRR. Hence the baud rate register value should not be changed during
communication.

It is forbidden to write values less than 0x300 in the LPUART_BRR register.

fck must be in the range [3 x baud rate, 4096 x baud rate].

The maximum baud rate that can be reached when the LPUART clock source is the LSE, is
9600 baud. Higher baud rates can be reached when the LPUART is clocked by clock
sources different than the LSE clock. For example, if the LPUART clock source is the
system clock (maximum is 80 MHz), the maximum baud rate that can be reached is
26 Mbaud.

Tx/Rx baud
256 f× CK

LPUARTDIV
------------------------------------=

DocID027295 Rev 3 1281/1472

RM0394 Single Wire Protocol Master Interface (SWPMI)

1294

In order to work with n reception buffers in RAM, the DMA channel or stream must be
configured in following mode (refer to DMA section):

• memory to memory mode disabled,

• memory increment mode enabled,

• memory size set to 32-bit,

• peripheral size set to 32-bit,

• peripheral increment mode disabled,

• circular mode enabled,

• data transfer direction set to read from peripheral,

• the number of words to be transfered must be set to 8 x n (8 words per buffer),

• the source address is the SWPMI_TDR register,

• the destination address is the buffer1 address in RAM

Then the user must:

1. Set RXDMA in the SWPMI_CR register

2. Set RXBFIE in the SWPMI_IER register

3. Enable stream or channel in the DMA module.

In the SWPMI interrupt routine, the user must check RXBFF in the SWPMI_ISR register. If it
is set, the user must set CRXBFF bit in the SWPMI_ICR register to clear RXBFF flag and
the user can read the first frame payload received in the first buffer (at the RAM address set
in DMA2_CMAR1).

The number of data bytes in the payload is available in bits [23:16] of the last 8th word.

In the next SWPMI interrupt routine occurrence, the user will read the second frame
received in the second buffer (address set in DMA2_CMAR1 + 8), and so on (refer to
Figure 425: SWPMI Multi software buffer mode reception).

In case the application software cannot ensure to handle the SMPMI interrupt before the
next frame reception, each buffer status is available in the most significant byte of the 8th
buffer word:

• The CRC error flag (equivalent to RXBERF flag in the SWPMI_ISR register) is
available in bit 24 of the 8th word. Refer to Section 40.3.9: Error management for an
CRC error description.

• The receive overrun flag (equivalent to RXOVRF flag in the SWPMI_ISR register) is
available in bit 25 of the 8th word. Refer to Section 40.3.9: Error management for an
overrun error description.

• The receive buffer full flag (equivalent to RXBFF flag in the SWPMI_ISR register) is
available in bit 26 of the 8th word.

In case of a CRC error, both RXBFF and RXBERF flags are set, thus bit 24 and bit 26 are
set.

In case of an overrun, an overrun flag is set, thus bit 25 is set. The receive buffer full flag is
set only in case of an overrun during the last word reception; then, both bit 25 and bit 26 are
set for the current and the next frame reception.

The software can also read the DMA counter (number of data to transfer) in the DMA
registers in order to retrieve the frame which has already been received and transferred into
the RAM memory through DMA. For example, if the software works with 4 reception buffers,

SD/SDIO/MMC card host interface (SDMMC) RM0394

1330/1472 DocID027295 Rev 3

Table 216. Block-oriented write protection commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD28 ac
[31:0] data
address

R1b SET_WRITE_PROT

If the card has write protection features,
this command sets the write protection bit
of the addressed group. The properties of
write protection are coded in the card-
specific data (WP_GRP_SIZE).

CMD29 ac
[31:0] data
address

R1b CLR_WRITE_PROT
If the card provides write protection
features, this command clears the write
protection bit of the addressed group.

CMD30 adtc
[31:0] write
protect data
address

R1 SEND_WRITE_PROT

If the card provides write protection
features, this command asks the card to
send the status of the write protection
bits.

CMD31 Reserved

Table 217. Erase commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD32

...

CMD34

Reserved. These command indexes cannot be used in order to maintain backward compatibility with older
versions of the MultiMediaCard.

CMD35 ac [31:0] data address R1 ERASE_GROUP_START
Sets the address of the first erase
group within a range to be selected
for erase.

CMD36 ac [31:0] data address R1 ERASE_GROUP_END
Sets the address of the last erase
group within a continuous range to be
selected for erase.

CMD37
Reserved. This command index cannot be used in order to maintain backward compatibility with older
versions of the MultiMediaCards

CMD38 ac [31:0] stuff bits R1 ERASE
Erases all previously selected write
blocks.

Table 218. I/O mode commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD39 ac

[31:16] RCA
[15:15] register
write flag
[14:8] register
address
[7:0] register data

R4 FAST_IO

Used to write and read 8-bit (register) data
fields. The command addresses a card and a
register and provides the data for writing if
the write flag is set. The R4 response
contains data read from the addressed
register. This command accesses
application-dependent registers that are not
defined in the MultiMediaCard standard.

DocID027295 Rev 3 1351/1472

RM0394 SD/SDIO/MMC card host interface (SDMMC)

1352

41.8.16 SDMMC register map

The following table summarizes the SDMMC registers.

Table 229. SDMMC register map

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00

SDMMC_
POWER R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
W

R
C

T
R

L

Reset value 0 0

0x04

SDMMC_
CLKCR R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

H
W

F
C

_
E

N

N
E

G
E

D
G

E

W
ID

B
U

S

B
Y

P
A

S
S

P
W

R
S

A
V

C
LK

E
N

C
LK

D
IV

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
SDMMC_ARG CMDARG

Reset value 0

0x0C
SDMMC_CMD

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
D

IO
S

u
sp

e
n

d

C
P

S
M

E
N

W
A

IT
P

E
N

D

W
A

IT
IN

T

W
A

IT
R

E
S

P

C
M

D
IN

D
E

X

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x10

SDMMC_
RESPCMD R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RESPCMD

Reset value 0 0 0 0 0 0

0x14

SDMMC_
RESP1

CARDSTATUS1

Reset value 0

0x18

SDMMC_
RESP2

CARDSTATUS2

Reset value 0

0x1C

SDMMC_
RESP3

CARDSTATUS3

Reset value 0

0x20

SDMMC_
RESP4

CARDSTATUS4

Reset value 0

0x24

SDMMC_
DTIMER

DATATIME

Reset value 0

0x28

SDMMC_
DLEN R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DATALENGTH

Reset value 0

0x2C

SDMMC_
DCTRL R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
D

IO
E

N

R
W

M
O

D

R
W

S
T

O
P

R
W

S
TA

R
T

D
B

L
O

C
K

S
IZ

E

D
M

A
E

N

D
T

M
O

D
E

D
T

D
IR

D
T

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x30

SDMMC_
DCOUNT R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DATACOUNT

Reset value 0

DocID027295 Rev 3 1375/1472

RM0394 Controller area network (bxCAN)

1396

CAN transmit status register (CAN_TSR)

Address offset: 0x08
Reset value: 0x1C00 0000

Bit 4 SLAKI: Sleep acknowledge interrupt

When SLKIE=1, this bit is set by hardware to signal that the bxCAN has entered Sleep
Mode. When set, this bit generates a status change interrupt if the SLKIE bit in the
CAN_IER register is set.
This bit is cleared by software or by hardware, when SLAK is cleared.

Note: When SLKIE=0, no polling on SLAKI is possible. In this case the SLAK bit can be
polled.

Bit 3 WKUI: Wakeup interrupt

This bit is set by hardware to signal that a SOF bit has been detected while the CAN
hardware was in Sleep mode. Setting this bit generates a status change interrupt if the
WKUIE bit in the CAN_IER register is set.
This bit is cleared by software.

Bit 2 ERRI: Error interrupt

This bit is set by hardware when a bit of the CAN_ESR has been set on error detection and
the corresponding interrupt in the CAN_IER is enabled. Setting this bit generates a status
change interrupt if the ERRIE bit in the CAN_IER register is set.
This bit is cleared by software.

Bit 1 SLAK: Sleep acknowledge

This bit is set by hardware and indicates to the software that the CAN hardware is now in
Sleep mode. This bit acknowledges the Sleep mode request from the software (set SLEEP
bit in CAN_MCR register).
This bit is cleared by hardware when the CAN hardware has left Sleep mode (to be
synchronized on the CAN bus). To be synchronized the hardware has to monitor a
sequence of 11 consecutive recessive bits on the CAN RX signal.

Note: The process of leaving Sleep mode is triggered when the SLEEP bit in the CAN_MCR
register is cleared. Refer to the AWUM bit of the CAN_MCR register description for
detailed information for clearing SLEEP bit

Bit 0 INAK: Initialization acknowledge

This bit is set by hardware and indicates to the software that the CAN hardware is now in
initialization mode. This bit acknowledges the initialization request from the software (set
INRQ bit in CAN_MCR register).
This bit is cleared by hardware when the CAN hardware has left the initialization mode (to
be synchronized on the CAN bus). To be synchronized the hardware has to monitor a
sequence of 11 consecutive recessive bits on the CAN RX signal.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOW2 LOW1 LOW0 TME2 TME1 TME0 CODE[1:0] ABRQ2 Res. Res. Res. TERR2 ALST2 TXOK2 RQCP2

r r r r r r r r rs rc_w1 rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ABRQ1 Res. Res. Res. TERR1 ALST1 TXOK1 RQCP1 ABRQ0 Res. Res. Res. TERR0 ALST0 TXOK0 RQCP0

rs rc_w1 rc_w1 rc_w1 rc_w1 rs rc_w1 rc_w1 rc_w1 rc_w1

