
STMicroelectronics - STM32L433VCI6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 80MHz

Connectivity CANbus, I²C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, LCD, PWM, WDT

Number of I/O 83

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.71V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-UFBGA

Supplier Device Package 100-UFBGA (7x7)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l433vci6

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32l433vci6-4411292
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

DocID027295 Rev 3 19/1472

RM0394 Contents

40

22.3 LCD functional description . 575

22.3.1 General description . 575

22.3.2 Frequency generator . 576

22.3.3 Common driver . 577

22.3.4 Segment driver . 580

22.3.5 Voltage generator and contrast control . 584

22.3.6 Double buffer memory . 588

22.3.7 COM and SEG multiplexing . 588

22.3.8 Flowchart . 593

22.4 LCD low-power modes . 594

22.5 LCD interrupts . 594

22.6 LCD registers . 595

22.6.1 LCD control register (LCD_CR) . 595

22.6.2 LCD frame control register (LCD_FCR) . 596

22.6.3 LCD status register (LCD_SR) . 599

22.6.4 LCD clear register (LCD_CLR) . 600

22.6.5 LCD display memory (LCD_RAM) . 601

22.6.6 LCD register map . 601

23 Touch sensing controller (TSC) . 604

23.1 Introduction . 604

23.2 TSC main features . 604

23.3 TSC functional description . 605

23.3.1 TSC block diagram . 605

23.3.2 Surface charge transfer acquisition overview 605

23.3.3 Reset and clocks . 607

23.3.4 Charge transfer acquisition sequence . 608

23.3.5 Spread spectrum feature . 609

23.3.6 Max count error . 609

23.3.7 Sampling capacitor I/O and channel I/O mode selection 610

23.3.8 Acquisition mode . 611

23.3.9 I/O hysteresis and analog switch control . 611

23.4 TSC low-power modes . 612

23.5 TSC interrupts . 612

23.6 TSC registers . 613

23.6.1 TSC control register (TSC_CR) . 613

Contents RM0394

34/1472 DocID027295 Rev 3

38.4.11 SPI error flags . 1214

38.4.12 NSS pulse mode . 1215

38.4.13 TI mode . 1215

38.4.14 CRC calculation . 1216

38.5 SPI interrupts . 1218

38.6 SPI registers . 1219

38.6.1 SPI control register 1 (SPIx_CR1) . 1219

38.6.2 SPI control register 2 (SPIx_CR2) . 1221

38.6.3 SPI status register (SPIx_SR) . 1224

38.6.4 SPI data register (SPIx_DR) . 1225

38.6.5 SPI CRC polynomial register (SPIx_CRCPR) 1225

38.6.6 SPI Rx CRC register (SPIx_RXCRCR) . 1226

38.6.7 SPI Tx CRC register (SPIx_TXCRCR) . 1226

38.6.8 SPI register map . 1227

39 Serial audio interface (SAI) . 1228

39.1 Introduction . 1228

39.2 SAI main features . 1228

39.3 SAI implementation . 1229

39.4 SAI functional description . 1230

39.4.1 SAI block diagram . 1230

39.4.2 SAI pins and internal signals . 1231

39.4.3 Main SAI modes . 1231

39.4.4 SAI synchronization mode . 1232

39.4.5 Audio data size . 1233

39.4.6 Frame synchronization . 1233

39.4.7 Slot configuration . 1236

39.4.8 SAI clock generator . 1238

39.4.9 Internal FIFOs . 1240

39.4.10 AC’97 link controller . 1242

39.4.11 SPDIF output . 1243

39.4.12 Specific features . 1245

39.4.13 Error flags . 1250

39.4.14 Disabling the SAI . 1253

39.4.15 SAI DMA interface . 1253

39.5 SAI interrupts . 1254

DocID027295 Rev 3 127/1472

RM0394 Power control (PWR)

170

5.1.4 Battery backup domain

To retain the content of the Backup registers and supply the RTC function when VDD is
turned off, the VBAT pin can be connected to an optional backup voltage supplied by a
battery or by another source.

VBAT pin is not available on low pin-count packages, VBAT is internally connected to VDD.

The VBAT pin powers the RTC unit, the LSE oscillator and the PC13 to PC15 I/Os, allowing
the RTC to operate even when the main power supply is turned off. The switch to the VBAT
supply is controlled by the power-down reset embedded in the Reset block.

Warning: During tRSTTEMPO (temporization at VDD startup) or after a PDR
has been detected, the power switch between VBAT and VDD
remains connected to VBAT.
During the startup phase, if VDD is established in less than
tRSTTEMPO (refer to the datasheet for the value of tRSTTEMPO)
and VDD > VBAT + 0.6 V, a current may be injected into VBAT
through an internal diode connected between VDD and the
power switch (VBAT).
If the power supply/battery connected to the VBAT pin cannot
support this current injection, it is strongly recommended to
connect an external low-drop diode between this power
supply and the VBAT pin.

If no external battery is used in the application, it is recommended to connect VBAT
externally to VDD with a 100 nF external ceramic decoupling capacitor.

When the backup domain is supplied by VDD (analog switch connected to VDD), the
following pins are available:

• PC13, PC14 and PC15, which can be used as GPIO pins

• PC13, PC14 and PC15, which can be configured by RTC or LSE (refer to Section 34.3:
RTC functional description on page 969)

• PA0/RTC_TAMP2 and PE6/RTC_TAMP3 when they are configured by the RTC as
tamper pins

Note: Due to the fact that the analog switch can transfer only a limited amount of current (3 mA),
the use of GPIO PC13 to PC15 in output mode is restricted: the speed has to be limited to
2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source
(e.g. to drive a LED).

When the backup domain is supplied by VBAT (analog switch connected to VBAT because
VDD is not present), the following functions are available:

• PC13, PC14 and PC15 can be controlled only by RTC or LSE (refer to Section 34.3:
RTC functional description)

• PA0/RTC_TAMP2 and PE6/RTC_TAMP3 when they are configured by the RTC as
tamper pins

Analog-to-digital converters (ADC) RM0394

368/1472 DocID027295 Rev 3

input events) for both regular and injected conversions

• Conversion modes

– The ADC can convert a single channel or can scan a sequence of channels

– Single mode converts selected inputs once per trigger

– Continuous mode converts selected inputs continuously

– Discontinuous mode

• Interrupt generation at ADC ready, the end of sampling, the end of conversion (regular
or injected), end of sequence conversion (regular or injected), analog watchdog 1, 2 or
3 or overrun events

• 3 analog watchdogs

• ADC supply requirements: 1.62 to 3.6 V

• ADC input range: VREF– ≤ VIN ≤ VREF+

Figure 39 shows the block diagram of one ADC.

16.3 ADC implementation

Table 53. Main ADC features

References ADC1

Dual mode -

DFSDM interface(1)

1. Available only on STM32L451xx/452xx/462xx.

X

SMPPLUS control -

Analog-to-digital converters (ADC) RM0394

442/1472 DocID027295 Rev 3

16.6.9 ADC watchdog threshold register 2 (ADC_TR2)

Address offset: 0x24

Reset value: 0x00FF 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. HT1[11:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. LT1[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:16 HT1[11:0]: Analog watchdog 1 higher threshold

These bits are written by software to define the higher threshold for the analog watchdog 1.
Refer to Section 16.4.29: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)

Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 LT1[11:0]: Analog watchdog 1 lower threshold

These bits are written by software to define the lower threshold for the analog watchdog 1.
Refer to Section 16.4.29: Analog window watchdog (AWD1EN, JAWD1EN, AWD1SGL, AWD1CH,
AWD2CH, AWD3CH, AWD_HTx, AWD_LTx, AWDx)

Note: Software is allowed to write these bits only when ADSTART=0 and JADSTART=0 (which
ensures that no conversion is ongoing).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. HT2[7:0]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. LT2[7:0]

rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

DocID027295 Rev 3 503/1472

RM0394 Comparator (COMP)

508

19.6 COMP registers

19.6.1 Comparator 1 control and status register (COMP1_CSR)

The COMP1_CSR is the Comparator 1 control/status register. It contains all the bits /flags
related to comparator1.

Address offset: 0x00

System reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOCK VALUE Res. Res. Res. INMESEL Res.
SCAL

EN
BRG
EN

Res. BLANKING HYST

rs r rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

POLA
RITY

Res. Res. Res. Res. Res. Res.
INP
SEL.

INMSEL PWRMODE Res. EN

rw rw rw rw rw

Bit 31 LOCK: COMP1_CSR register lock bit

This bit is set by software and cleared by a hardware system reset. It locks the whole
content of the comparator 1 control register, COMP1_CSR[31:0].
0: COMP1_CSR[31:0] for comparator 1 are read/write
1: COMP1_CSR[31:0] for comparator 1 are read-only

Bit 30 VALUE: Comparator 1 output status bit

This bit is read-only. It reflects the current comparator 1 output taking into account
POLARITY bit effect.

Bits 29:27 Reserved, must be kept at reset value.

Bits 26:25 INMESEL: comparator 1 input minus extended selection bits.

These bits are set and cleared by software (only if LOCK is not set). They select which
extended GPIO input is connected to the input minus of comparator if INMSEL = 111.
00: PC4
01: PA0
10: PA4
11: PA5

Bit 24 Reserved, must be kept at reset value.

Bit 23 SCALEN: Voltage scaler enable bit

This bit is set and cleared by software. This bit enable the outputs of the VREFINT divider
available on the minus input of the Comparator 1.
0: Bandgap scaler disable (if SCALEN bit of COMP2_CSR register is also reset)
1: Bandgap scaler enable

DocID027295 Rev 3 507/1472

RM0394 Comparator (COMP)

508

Bits 6:4 INMSEL: Comparator 2 input minus selection bits

These bits are set and cleared by software (only if LOCK not set). They select which input is
connected to the input minus of comparator 2.
000 = 1/4 VREFINT
001 = 1/2 VREFINT
010 = 3/4 VREFINT
011 = VREFINT
100 = DAC Channel1
101 = DAC Channel2
110 = PB3
111: GPIOx selected by INMESEL bits

Bits 3:2 PWRMODE[1:0]: Power Mode of the comparator 2

These bits are set and cleared by software (only if LOCK not set). They control the
power/speed of the Comparator 2.
00: High speed
01 or 10: Medium speed
11: Ultra low power

Bit 1 Reserved, must be kept cleared.

Bit 0 EN: Comparator 2 enable bit

This bit is set and cleared by software (only if LOCK not set). It switches oncomparator2.
0: Comparator 2 switched OFF
1: Comparator 2 switched ON

DocID027295 Rev 3 621/1472

RM0394 Touch sensing controller (TSC)

622

23.6.11 TSC register map

Table 110. TSC register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0000
TSC_CR CTPH[3:0] CTPL[3:0] SSD[6:0]

S
S

E

S
S

P
S

C

P
G

P
S

C
[2

:0
]

R
es

.

R
es

.

R
es

.

R
es

. MCV
[2:0]

IO
D

E
F

S
Y

N
C

P
O

L

A
M

S
TA

R
T

T
S

C
E

Reset value 0

0x0004
TSC_IER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
C

E
IE

E
O

A
IE

Reset value 0 0

0x0008
TSC_ICR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
C

E
IC

E
O

A
IC

Reset value 0 0

0x000C
TSC_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
C

E
F

E
O

A
F

Reset value 0 0

0x0010
TSC_IOHCR

R
es

.

R
es

.

R
es

.

R
es

.

G
7

_
IO

4

G
7

_
IO

3

G
7

_
IO

2

G
7

_
IO

1

G
6

_
IO

4

G
6

_
IO

3

G
6

_
IO

2

G
6

_
IO

1

G
5

_
IO

4

G
5

_
IO

3

G
5

_
IO

2

G
5

_
IO

1

G
4

_
IO

4

G
4

_
IO

3

G
4

_
IO

2

G
4

_
IO

1

G
3

_
IO

4

G
3

_
IO

3

G
3

_
IO

2

G
3

_
IO

1

G
2

_
IO

4

G
2

_
IO

3

G
2

_
IO

2

G
2

_
IO

1

G
1

_
IO

4

G
1

_
IO

3

G
1

_
IO

2

G
1

_
IO

1

Reset value 1

0x0014 Reserved

0x0018
TSC_IOASCR

R
es

.

R
es

.

R
es

.

R
es

.

G
7_

IO
4

G
7_

IO
3

G
7_

IO
2

G
7_

IO
1

G
6_

IO
4

G
6_

IO
3

G
6_

IO
2

G
6_

IO
1

G
5_

IO
4

G
5_

IO
3

G
5_

IO
2

G
5_

IO
1

G
4_

IO
4

G
4_

IO
3

G
4_

IO
2

G
4_

IO
1

G
3_

IO
4

G
3_

IO
3

G
3_

IO
2

G
3_

IO
1

G
2_

IO
4

G
2_

IO
3

G
2_

IO
2

G
2_

IO
1

G
1_

IO
4

G
1_

IO
3

G
1_

IO
2

G
1_

IO
1

Reset value 0

0x001C Reserved

0x0020
TSC_IOSCR

R
es

.

R
es

.

R
es

.

R
es

.

G
7

_I
O

4

G
7

_I
O

3

G
7

_I
O

2

G
7

_I
O

1

G
6

_I
O

4

G
6

_I
O

3

G
6

_I
O

2

G
6

_I
O

1

G
5

_I
O

4

G
5

_I
O

3

G
5

_I
O

2

G
5

_I
O

1

G
4

_I
O

4

G
4

_I
O

3

G
4

_I
O

2

G
4

_I
O

1

G
3

_I
O

4

G
3

_I
O

3

G
3

_I
O

2

G
3

_I
O

1

G
2

_I
O

4

G
2

_I
O

3

G
2

_I
O

2

G
2

_I
O

1

G
1

_I
O

4

G
1

_I
O

3

G
1

_I
O

2

G
1

_I
O

1

Reset value 0

0x0024 Reserved

0x0028
TSC_IOCCR

R
es

.

R
es

.

R
es

.

R
es

.

G
7

_
IO

4

G
7

_
IO

3

G
7

_
IO

2

G
7

_
IO

1

G
6

_
IO

4

G
6

_
IO

3

G
6

_
IO

2

G
6

_
IO

1

G
5

_
IO

4

G
5

_
IO

3

G
5

_
IO

2

G
5

_
IO

1

G
4

_
IO

4

G
4

_
IO

3

G
4

_
IO

2

G
4

_
IO

1

G
3

_
IO

4

G
3

_
IO

3

G
3

_
IO

2

G
3

_
IO

1

G
2

_
IO

4

G
2

_
IO

3

G
2

_
IO

2

G
2

_
IO

1

G
1

_
IO

4

G
1

_
IO

3

G
1

_
IO

2

G
1

_
IO

1

Reset value 0

0x002C Reserved

0x0030
TSC_IOGCSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

G
7

S

G
6

S

G
5

S

G
4

S

G
3

S

G
2

S

G
1

S

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

G
7

E

G
6

E

G
5

E

G
4

E

G
3

E

G
2

E

G
1

E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0034
TSC_IOG1CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0038
TSC_IOG2CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[13:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DocID027295 Rev 3 629/1472

RM0394 True Random Number Generator (RNG)

632

The user can enable or disable the above interrupt sources individually by changing the
mask bits or the general interrupt control bit IE in the RNG_CR register. The status of the
individual interrupt sources can be read from the RNG_SR register.

Note: Interrupts are generated only when RNG is enabled.

24.6 RNG processing time

The RNG can produce one 32-bit random numbers every 42 RNG clock cycles.

After enabling or re-enabling the RNG using the RNGEN bit it takes 46 RNG clock cycles
before random data are available.

24.7 Entropy source validation

24.7.1 Introduction

In order to assess of the amount of entropy available from the RNG, STMicroelectronics has
tested the RNG against AIS-31 PTG.2 set of tests. The results can be provided on demand
or the customer can reproduce the measurements using the AIS reference software. The
customer could also test the RNG against an older NIST SP800-22 set of tests.

24.7.2 Validation conditions

STMicroelectronics has validated the RNG true random number generator in the following
conditions:

• RNG clock rng_clk= 48 MHz

• AHB clock rng_hclk= 60 MHz

24.7.3 Data collection

If raw data needs to be read instead of pre-processed data the developer is invited to
contact STMicroelectronics to receive the correct procedure to follow.

Table 112. RNG interrupt requests

Interrupt event Event flag Enable control bit

Data ready flag DRDY IE

Seed error flag SEIS IE

Clock error flag CEIS IE

Advanced encryption standard hardware accelerator (AES) RM0394

666/1472 DocID027295 Rev 3

Note: The key registers from 4 to 7 are used only when 256-bit key length is selected. These
registers have no effect when 128-bit key length is selected (only key registers from 0 to 3
are used).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEYR731:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEYR7[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 KEYR7[31:0]: Data output register (MSB key [255:224])

Same description as AES_KEYR0 for the key[255:224].

DocID027295 Rev 3 915/1472

RM0394 Basic timers (TIM6/TIM7)

927

29 Basic timers (TIM6/TIM7)

Timer TIM7 is available on STM32L43xxx and STM32L44xxx devices only.

29.1 TIM6/TIM7 introduction

The basic timers TIM6 and TIM7 consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used as generic timers for time-base generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.

The timers are completely independent, and do not share any resources.

29.2 TIM6/TIM7 main features

Basic timer (TIM6/TIM7) features include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65535

• Synchronization circuit to trigger the DAC

• Interrupt/DMA generation on the update event: counter overflow

Figure 294. Basic timer block diagram

DocID027295 Rev 3 929/1472

RM0394 Low-power timer (LPTIM)

950

30.4 LPTIM functional description

30.4.1 LPTIM block diagram

Figure 304. Low-power timer block diagram

30.4.2 LPTIM reset and clocks

The LPTIM can be clocked using several clock sources. It can be clocked using an internal
clock signal which can be chosen among APB, LSI, LSE or HSI16 sources through the
Reset and Clock controller (RCC). Also, the LPTIM can be clocked using an external clock
signal injected on its external Input1. When clocked with an external clock source, the
LPTIM may run in one of these two possible configurations:

• The first configuration is when the LPTIM is clocked by an external signal but in the
same time an internal clock signal is provided to the LPTIM either from APB or any
other embedded oscillator including LSE, LSI and HSI16.

• The second configuration is when the LPTIM is solely clocked by an external clock
source through its external Input1. This configuration is the one used to realize Timeout

DocID027295 Rev 3 1023/1472

RM0394 Inter-integrated circuit (I2C) interface

1082

35.4.6 Data transfer

The data transfer is managed through transmit and receive data registers and a shift
register.

Reception

The SDA input fills the shift register. After the 8th SCL pulse (when the complete data byte is
received), the shift register is copied into I2C_RXDR register if it is empty (RXNE=0). If
RXNE=1, meaning that the previous received data byte has not yet been read, the SCL line
is stretched low until I2C_RXDR is read. The stretch is inserted between the 8th and 9th
SCL pulse (before the Acknowledge pulse).

Figure 320. Data reception

Universal synchronous asynchronous receiver transmitter (USART) RM0394

1106/1415 DocID027295 Rev 3

36.5.9 USART parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame
length defined by the M bits, the possible USART frame formats are as listed in Table 169.

Even parity

The parity bit is calculated to obtain an even number of “1s” inside the frame of the 6, 7 or 8
LSB bits (depending on M bits values) and the parity bit.

As an example, if data=00110101, and 4 bits are set, then the parity bit will be 0 if even
parity is selected (PS bit in USART_CR1 = 0).

Odd parity

The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 6, 7
or 8 LSB bits (depending on M bits values) and the parity bit.

As an example, if data=00110101 and 4 bits set, then the parity bit will be 1 if odd parity is
selected (PS bit in USART_CR1 = 1).

Parity checking in reception

If the parity check fails, the PE flag is set in the USART_ISR register and an interrupt is
generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by software
writing 1 to the PECF in the USART_ICR register.

Parity generation in transmission

If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register
is transmitted but is changed by the parity bit (even number of “1s” if even parity is selected
(PS=0) or an odd number of “1s” if odd parity is selected (PS=1)).

Table 169. Frame formats

M bits PCE bit USART frame(1)

1. Legends: SB: start bit, STB: stop bit, PB: parity bit. In the data register, the PB is always taking the MSB
position (9th, 8th or 7th, depending on the M bits value).

00 0 | SB | 8-bit data | STB |

00 1 | SB | 7-bit data | PB | STB |

01 0 | SB | 9-bit data | STB |

01 1 | SB | 8-bit data | PB | STB |

10 0 | SB | 7-bit data | STB |

10 1 | SB | 6-bit data | PB | STB |

Universal synchronous asynchronous receiver transmitter (USART) RM0394

1124/1415 DocID027295 Rev 3

USART is not requesting it. The LSE clock is not OFF but there is a clock gating to
avoid useless consumption.

When the USART clock source is configured to be fLSE or fHSI, it is possible to keep enabled
this clock during STOP mode by setting the UCESM bit in USART_CR3 control register.

The MCU wakeup from Stop mode can be done using the standard RXNE interrupt. In this
case, the RXNEIE bit must be set before entering Stop mode.

Alternatively, a specific interrupt may be selected through the WUS bit fields.

In order to be able to wake up the MCU from Stop mode, the UESM bit in the USART_CR1
control register must be set prior to entering Stop mode.

When the wakeup event is detected, the WUF flag is set by hardware and a wakeup
interrupt is generated if the WUFIE bit is set.

Note: Before entering Stop mode, the user must ensure that the USART is not performing a
transfer. BUSY flag cannot ensure that Stop mode is never entered during a running
reception.

The WUF flag is set when a wakeup event is detected, independently of whether the MCU is
in Stop or in an active mode.

When entering Stop mode just after having initialized and enabled the receiver, the REACK
bit must be checked to ensure the USART is actually enabled.

When DMA is used for reception, it must be disabled before entering Stop mode and re-
enabled upon exit from Stop mode.

The wakeup from Stop mode feature is not available for all modes. For example it doesn’t
work in SPI mode because the SPI operates in master mode only.

Using Mute mode with Stop mode

If the USART is put into Mute mode before entering Stop mode:

• Wakeup from Mute mode on idle detection must not be used, because idle detection
cannot work in Stop mode.

• If the wakeup from Mute mode on address match is used, then the source of wake-up
from Stop mode must also be the address match. If the RXNE flag is set when entering
the Stop mode, the interface will remain in mute mode upon address match and wake
up from Stop.

• If the USART is configured to wake up the MCU from Stop mode on START bit
detection, the WUF flag is set, but the RXNE flag is not set.

Determining the maximum USART baud rate allowing to wakeup correctly
from Stop mode when the USART clock source is the HSI clock

The maximum baud rate allowing to wakeup correctly from stop mode depends on:

• the parameter tWUUSART provided in the device datasheet

• the USART receiver tolerance provided in the Section 36.5.5: Tolerance of the USART
receiver to clock deviation.

Let us take this example: OVER8 = 0, M bits = 10, ONEBIT = 1, BRR [3:0] = 0000.

In these conditions, according to Table 167: Tolerance of the USART receiver when BRR
[3:0] = 0000, the USART receiver tolerance is 4.86 %.

DTRA + DQUANT + DREC + DTCL + DWU < USART receiver's tolerance

Universal synchronous asynchronous receiver transmitter (USART) RM0394

1144/1415 DocID027295 Rev 3

Bit 11 RTOF: Receiver timeout

This bit is set by hardware when the timeout value, programmed in the RTOR register has
lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in
the USART_ICR register.
An interrupt is generated if RTOIE=1 in the USART_CR1 register.
In Smartcard mode, the timeout corresponds to the CWT or BWT timings.
0: Timeout value not reached
1: Timeout value reached without any data reception

Note: If a time equal to the value programmed in RTOR register separates 2 characters,
RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8,
depending on the oversampling method), RTOF flag is set.

The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has
already elapsed when RE is set, then RTOF will be set.

If the USART does not support the Receiver timeout feature, this bit is reserved and
forced by hardware to ‘0’.

Bit 10 CTS: CTS flag

This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin.
0: CTS line set
1: CTS line reset

Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’.

Bit 9 CTSIF: CTS interrupt flag

This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by
software, by writing 1 to the CTSCF bit in the USART_ICR register.
An interrupt is generated if CTSIE=1 in the USART_CR3 register.
0: No change occurred on the CTS status line
1: A change occurred on the CTS status line

Note: If the hardware flow control feature is not supported, this bit is reserved and forced by
hardware to ‘0’.

Bit 8 LBDF: LIN break detection flag

This bit is set by hardware when the LIN break is detected. It is cleared by software, by
writing 1 to the LBDCF in the USART_ICR.
An interrupt is generated if LBDIE = 1 in the USART_CR2 register.
0: LIN Break not detected
1: LIN break detected

Note: If the USART does not support LIN mode, this bit is reserved and forced by hardware
to ‘0’. Please refer to Section 36.4: USART implementation on page 1085.

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the USART_TDR register has been
transferred into the shift register. It is cleared by a write to the USART_TDR register.
The TXE flag can also be cleared by writing 1 to the TXFRQ in the USART_RQR register, in
order to discard the data (only in Smartcard T=0 mode, in case of transmission failure).
An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register.
0: data is not transferred to the shift register
1: data is transferred to the shift register)

Note: This bit is used during single buffer transmission.

Single Wire Protocol Master Interface (SWPMI) RM0394

1272/1472 DocID027295 Rev 3

Deactivate mode

In order to switch the SWP to the DEACTIVATED mode immediately, ignoring any possible
incoming RESUME by slave, the user must clear SWPACT bit in the SWPMI_CR register.

Note: In order to further reduce current consumption once SWPACT bit is cleared, configure the
SWPMI_IO port as output push pull low in GPIO controller (refer to Section 8: General-
purpose I/Os (GPIO)).

Figure 418. SWP bus states

40.3.4 SWPMI_IO (internal transceiver) bypass

A SWPMI_IO (transceiver), compliant with ETSI TS 102 613 technical specification, is
embedded in the microcontroller. Nevertheless, this is possible to bypass it by setting
SWP_TBYP bit in SWPMI_OR register. In this case, the SWPMI_IO is disabled and the
SWPMI_RX, SWPMI_TX and SWPMI_SUSPEND signals are available as alternate
functions on three GPIOs (refer to “Pinouts and pin description” in product datasheet). This
configuration is selected to connect an external transceiver.

40.3.5 SWPMI Bit rate

The bit rate must be set in the SWPMI_BRR register, according to the following formula:

FSWP = FSWPCLK / ((BR[5:0]+1)x4)

Note: The maximum bitrate is 2 Mbit/s.

SD/SDIO/MMC card host interface (SDMMC) RM0394

1338/1472 DocID027295 Rev 3

Note: 1 While the SD/SDIO card or MultiMediaCard is in identification mode, the SDMMC_CK
frequency must be less than 400 kHz.

2 The clock frequency can be changed to the maximum card bus frequency when relative
card addresses are assigned to all cards.

3 After a data write, data cannot be written to this register for three SDMMCCLK clock periods
plus two PCLK2 clock periods. SDMMC_CK can also be stopped during the read wait
interval for SD I/O cards: in this case the SDMMC_CLKCR register does not control
SDMMC_CK.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
HWFC
_EN

NEGE
DGE

WID
BUS

BYPAS
S

PWRS
AV

CLKEN CLKDIV

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value.

Bit 14 HWFC_EN: HW Flow Control enable

0b: HW Flow Control is disabled
1b: HW Flow Control is enabled
When HW Flow Control is enabled, the meaning of the TXFIFOE and RXFIFOF interrupt
signals, see SDMMC Status register definition in Section 41.8.11.

Bit 13 NEGEDGE: SDMMC_CK dephasing selection bit

0b: Command and Data changed on the SDMMCCLK falling edge succeeding the rising
edge of SDMMC_CK. (SDMMC_CK rising edge occurs on SDMMCCLK rising edge).
1b: Command and Data changed on the SDMMC_CK falling edge.
When BYPASS is active, the data and the command change on SDMMCCLK falling edge
whatever NEGEDGE value.

Bits 12:11 WIDBUS: Wide bus mode enable bit

00: Default bus mode: SDMMC_D0 used
01: 4-wide bus mode: SDMMC_D[3:0] used
10: 8-wide bus mode: SDMMC_D[7:0] used

Bit 10 BYPASS: Clock divider bypass enable bit

0: Disable bypass: SDMMCCLK is divided according to the CLKDIV value before driving the
SDMMC_CK output signal.
1: Enable bypass: SDMMCCLK directly drives the SDMMC_CK output signal.

Bit 9 PWRSAV: Power saving configuration bit

For power saving, the SDMMC_CK clock output can be disabled when the bus is idle by
setting PWRSAV:
0: SDMMC_CK clock is always enabled
1: SDMMC_CK is only enabled when the bus is active

Bit 8 CLKEN: Clock enable bit

0: SDMMC_CK is disabled
1: SDMMC_CK is enabled

Bits 7:0 CLKDIV: Clock divide factor

This field defines the divide factor between the input clock (SDMMCCLK) and the output
clock (SDMMC_CK): SDMMC_CK frequency = SDMMCCLK / [CLKDIV + 2].

DocID027295 Rev 3 1403/1472

RM0394 Universal serial bus full-speed device interface (USB)

1429

Each packet buffer is used either during reception or transmission starting from the bottom.
The USB peripheral will never change the contents of memory locations adjacent to the
allocated memory buffers; if a packet bigger than the allocated buffer length is received
(buffer overrun condition) the data will be copied to the memory only up to the last available
location.

Endpoint initialization

The first step to initialize an endpoint is to write appropriate values to the
ADDRn_TX/ADDRn_RX registers so that the USB peripheral finds the data to be
transmitted already available and the data to be received can be buffered. The EP_TYPE
bits in the USB_EPnR register must be set according to the endpoint type, eventually using
the EP_KIND bit to enable any special required feature. On the transmit side, the endpoint
must be enabled using the STAT_TX bits in the USB_EPnR register and COUNTn_TX must
be initialized. For reception, STAT_RX bits must be set to enable reception and
COUNTn_RX must be written with the allocated buffer size using the BL_SIZE and
NUM_BLOCK fields. Unidirectional endpoints, except Isochronous and double-buffered bulk
endpoints, need to initialize only bits and registers related to the supported direction. Once
the transmission and/or reception are enabled, register USB_EPnR and locations
ADDRn_TX/ADDRn_RX, COUNTn_TX/COUNTn_RX (respectively), should not be modified
by the application software, as the hardware can change their value on the fly. When the
data transfer operation is completed, notified by a CTR interrupt event, they can be
accessed again to re-enable a new operation.

IN packets (data transmission)

When receiving an IN token packet, if the received address matches a configured and valid
endpoint, the USB peripheral accesses the contents of ADDRn_TX and COUNTn_TX
locations inside the buffer descriptor table entry related to the addressed endpoint. The
content of these locations is stored in its internal 16 bit registers ADDR and COUNT (not
accessible by software). The packet memory is accessed again to read the first byte to be
transmitted (Refer to Structure and usage of packet buffers on page 1401) and starts
sending a DATA0 or DATA1 PID according to USB_EPnR bit DTOG_TX. When the PID is
completed, the first byte, read from buffer memory, is loaded into the output shift register to
be transmitted on the USB bus. After the last data byte is transmitted, the computed CRC is
sent. If the addressed endpoint is not valid, a NAK or STALL handshake packet is sent
instead of the data packet, according to STAT_TX bits in the USB_EPnR register.

The ADDR internal register is used as a pointer to the current buffer memory location while
COUNT is used to count the number of remaining bytes to be transmitted. Each half-word
read from the packet buffer memory is transmitted over the USB bus starting from the least
significant byte. Transmission buffer memory is read starting from the address pointed by
ADDRn_TX for COUNTn_TX/2 half-words. If a transmitted packet is composed of an odd
number of bytes, only the lower half of the last half-word accessed will be used.

On receiving the ACK receipt by the host, the USB_EPnR register is updated in the
following way: DTOG_TX bit is toggled, the endpoint is made invalid by setting
STAT_TX=10 (NAK) and bit CTR_TX is set. The application software must first identify the
endpoint, which is requesting microcontroller attention by examining the EP_ID and DIR bits
in the USB_ISTR register. Servicing of the CTR_TX event starts clearing the interrupt bit;
the application software then prepares another buffer full of data to be sent, updates the
COUNTn_TX table location with the number of byte to be transmitted during the next
transfer, and finally sets STAT_TX to ‘11 (VALID) to re-enable transmissions. While the
STAT_TX bits are equal to ‘10 (NAK), any IN request addressed to that endpoint is NAKed,

Universal serial bus full-speed device interface (USB) RM0394

1422/1472 DocID027295 Rev 3

Bits 13:12 STAT_RX [1:0]: Status bits, for reception transfers

These bits contain information about the endpoint status, which are listed in Table 238:
Reception status encoding on page 1423.These bits can be toggled by software to initialize
their value. When the application software writes ‘0, the value remains unchanged, while
writing ‘1 makes the bit value toggle. Hardware sets the STAT_RX bits to NAK when a
correct transfer has occurred (CTR_RX=1) corresponding to a OUT or SETUP (control only)
transaction addressed to this endpoint, so the software has the time to elaborate the
received data before it acknowledge a new transaction
Double-buffered bulk endpoints implement a special transaction flow control, which control
the status based upon buffer availability condition (Refer to Section 43.5.3: Double-buffered
endpoints).
If the endpoint is defined as Isochronous, its status can be only “VALID” or “DISABLED”, so
that the hardware cannot change the status of the endpoint after a successful transaction. If
the software sets the STAT_RX bits to ‘STALL’ or ‘NAK’ for an Isochronous endpoint, the
USB peripheral behavior is not defined. These bits are read/write but they can be only
toggled by writing ‘1.

Bit 11 SETUP: Setup transaction completed

This bit is read-only and it is set by the hardware when the last completed transaction is a
SETUP. This bit changes its value only for control endpoints. It must be examined, in the
case of a successful receive transaction (CTR_RX event), to determine the type of
transaction occurred. To protect the interrupt service routine from the changes in SETUP
bits due to next incoming tokens, this bit is kept frozen while CTR_RX bit is at 1; its state
changes when CTR_RX is at 0. This bit is read-only.

Bits 10:9 EP_TYPE[1:0]: Endpoint type

These bits configure the behavior of this endpoint as described in Table 239: Endpoint type
encoding on page 1424. Endpoint 0 must always be a control endpoint and each USB
function must have at least one control endpoint which has address 0, but there may be
other control endpoints if required. Only control endpoints handle SETUP transactions,
which are ignored by endpoints of other kinds. SETUP transactions cannot be answered
with NAK or STALL. If a control endpoint is defined as NAK, the USB peripheral will not
answer, simulating a receive error, in the receive direction when a SETUP transaction is
received. If the control endpoint is defined as STALL in the receive direction, then the
SETUP packet will be accepted anyway, transferring data and issuing the CTR interrupt.
The reception of OUT transactions is handled in the normal way, even if the endpoint is a
control one.
Bulk and interrupt endpoints have very similar behavior and they differ only in the special
feature available using the EP_KIND configuration bit.
The usage of Isochronous endpoints is explained in Section 43.5.4: Isochronous transfers

Bit 8 EP_KIND: Endpoint kind

The meaning of this bit depends on the endpoint type configured by the EP_TYPE bits.
Table 240 summarizes the different meanings.
DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk
endpoint. The usage of double-buffered bulk endpoints is explained in Section 43.5.3:
Double-buffered endpoints.
STATUS_OUT: This bit is set by the software to indicate that a status out transaction is
expected: in this case all OUT transactions containing more than zero data bytes are
answered ‘STALL’ instead of ‘ACK’. This bit may be used to improve the robustness of the
application to protocol errors during control transfers and its usage is intended for control
endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of
bytes, as required.

