

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	FR81S
Core Size	32-Bit Single-Core
Speed	128MHz
Connectivity	CANbus, CSIO, EBI/EMI, LINbus, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	156
Program Memory Size	2.0625MB (2.0625M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	2.008M x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 32x8/10b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	320-BBGA
Supplier Device Package	320-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb91f59bcpb-gsk5e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Description

3.1 Pin Description of LQFP-208/TEQFP-208

Pin No.	Pin Name	Polarity	I/O Circuit Types ¹	Function ^{*2}
84	X0	-	L	Main clock oscillation input pin
83	X1	-	L	Main clock oscillation output pin
171 (dual clock product)	ХОА	-	Ν	Sub clock oscillation input pin
172 (dual clock product)	X1A	-	N	Sub clock oscillation output pin
171 (single clock product)	P137	-	А	General-purpose I/O port
172 (single clock product)		-	A	General-purpose I/O port
97	NMIX	Ν	F1	Non-masking interrupt input pin
87	RSTX	Ν	F1	External reset input pin
86	MD0	-	Р	Mode pin 0
85	MD1	-	Р	Mode pin 1
169	MD2	-	F2	Mode pin 2
	P000	-		General-purpose I/O port (3V pin)
	D0	-	0	External bus · Data bit0 I/O pin
27	SIN2_1	-		LIN-UART ch.2 serial data input pin (1)
	TIN0_2	-		Reload timer ch.0 event input pin (2)
	PPG0	-		PPG ch.0 output pin
	P001	-		General-purpose I/O port (3V pin)
	D1	-		External bus · Data bit1 I/O pin
28	SOT2_1	-	0	LIN-UART ch.2 serial data output pin (1)
	TIN1_2	-		Reload timer ch.1 event input pin (2)
	PPG1	-		PPG ch.1 output pin
	P002	-		General-purpose I/O port (3V pin)
	D2	-		External bus · Data bit2 I/O pin
29	SCK2_1	-	0	LIN-UART ch.2 clock I/O pin (1)
	TIN2_2	-		Reload timer ch.2 event input pin (2)
	PPG2	-		PPG ch.2 output pin
	P003	-		General-purpose I/O port (3V pin)
	D3	-	ļ	External bus · Data bit3 I/O pin
30	SIN3_1	-	0	LIN-UART ch.3 serial data input pin (1)
	TIN3_2	-	ļ	Reload timer ch.3 event input pin (2)
	PPG3	-		PPG ch.3 output pin
	P004	-	ļ	General-purpose I/O port (3V pin)
	D4	-	ļ	External bus · Data bit4 I/O pin
31	SOT3_1			LIN-UART ch.3 serial data output pin (1)
	TOT0_2	-		Reload timer ch.0 output pin (2)
	PPG4	-		PPG ch.4 output pin

55 56	P030		Types ^{~1}	
		-	0	General-purpose I/O port (3V pin)
56	A02	-	0	External bus · Address bit2 output pin
50	P031	-	0	General-purpose I/O port (3V pin)
	A03	-	0	External bus · Address bit3 output pin
57	P032	-	0	General-purpose I/O port (3V pin)
57	A04	-	0	External bus · Address bit4 output pin
58	P033	-	0	General-purpose I/O port (3V pin)
56	A05	-	0	External bus · Address bit5 output pin
59	P034	-	0	General-purpose I/O port (3V pin)
59	A06	_	0	External bus · Address bit6 output pin
60	P035	_	0	General-purpose I/O port (3V pin)
00	A07	-	0	External bus · Address bit7 output pin
61	P036	-	0	General-purpose I/O port (3V pin)
61	A08	-	0	External bus · Address bit8 output pin
	P037	-		General-purpose I/O port (3V pin)
62	A09	_	0	External bus · Address bit9 output pin
	QSPI_SIO0	_		HS_SPI SDATA0 I/O pin(MB91F59A/B only)
	P040	_		General-purpose I/O port (3V pin)
63	A10	-	0	External bus · Address bit10 output pin
	QSPI_SIO1	_		HS_SPI SDATA1 I/O pin(MB91F59A/B only)
	P041	—		General-purpose I/O port (3V pin)
64	A11	—	0	External bus · Address bit11 output pin
	QSPI_SIO2	-		HS_SPI SDATA2 I/O pin(MB91F59A/B only)
	P042	-		General-purpose I/O port (3V pin)
65	A12	-	0	External bus · Address bit12 output pin
	QSPI_SIO3	-		HS_SPI SDATA3 I/O pin(MB91F59A/B only)
	P043	-		General-purpose I/O port (3V pin)
66	A13	-	0	External bus · Address bit13 output pin
	QSPI_CS0	-		HS_SPI SSEL0 Output pin(MB91F59A/B only)
	P044	—		General-purpose I/O port (3V pin)
67	A14	_	0	External bus · Address bit14 output pin
	QSPI_CS1	-		HS_SPI SSEL1 Output pin(MB91F59A/B only)
	P045	_		General-purpose I/O port (3V pin)
68	A15	-	0	External bus · Address bit15 output pin
	QSPI_CS2	_		HS_SPI SSEL2 Output pin(MB91F59A/B only)
	P046	-		General-purpose I/O port (3V pin)
69	A16	_	0	External bus · Address bit16 output pin
	QSPI_CS3	_		HS_SPI SSEL3 Output pin(MB91F59A/B only)
	P047	_		General-purpose I/O port (3V pin)
70	A17	_	0	External bus · Address bit17 output pin
	QSPI_CLK	_		HS_SPI SCLK Output pin(MB91F59A/B only)
	P050	_		General-purpose I/O port (3V pin)
74	A18	_	0	External bus · Address bit18 output pin
	P051	_		General-purpose I/O port(3V pin)
75	A19	_	0	External bus · Address bit19 output pin
	P052	_		General-purpose I/O port(3V pin)
76	A20	_	0	External bus · Address bit20 output pin

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

5.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

■Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

■ Storage of Semiconductor Devices

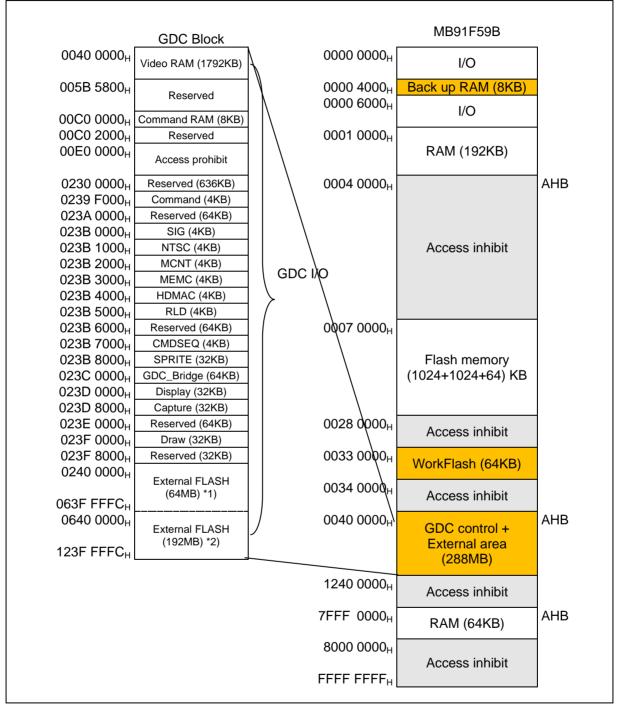
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

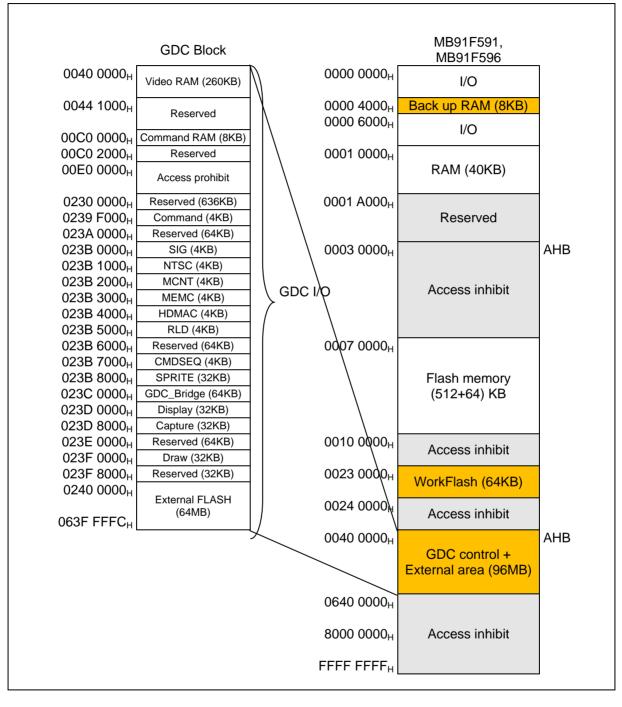
- 3. When necessary, Cypress. packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking


Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

■GDC memory map


Note: The GDC area is executed mapping with the little endian.

*1) Parallel interface supports 64MB of memory space from 0240_0000_H to 063F_FFFC_H for External FLASH.

*2) HS-SPI supports additional 192MB of memory space from 0640_0000_H to 123F_FFFF_H. (HS-SPI totally supports 256MB of memory space from 0240_0000H to 123F_FFFFH for External FLASH)

■GDC memory map

Note: The GDC area is executed mapping with the little endian.

Address		Address Offset Val	ue / Register Nam	e	Block	
Address	+0	+1	+2	+3	DIOCK	
000090н	BT1TMR [R] H	20	BT1TMCR [R/W] H			
	0000000 000000		-000000 000000	0	-	
000094 _H		BT1STC [R/W] B				
00003 4 H		0000-000			Base timer 1	
	BT1PCSR/BT1PR		BT1PDUT/BT1PR	H/BT1DTBE		
000098 _H	[R/W] H		[R/W] H			
	000000 000000	00	000000 000000	00		
	BTSEL01		BTSSSR			
00009C _H	[R/W] B	—	[W] B,H		Base timer 0,1	
	0000		11			
0000A0 _Н	ADERH [R/W] B, H		ADERL [R/W] B, H			
	00000000 000000		00000000 000000			
0000A4 _H	ADCS1 [R/W] B, H,W	ADCS0 [R/W] B, H,W	ADCR1 [R] B, H,W	ADCR0 [R] B, H,W		
0000A4H	0000000-	00000000	XX	XXXXXXXXX	A/D converter	
	ADCT1 [R/W]	ADCT0 [R/W]	ADSCH [R/W]	ADECH [R/W] B,		
0000A8 _H	B, H,W	B, H,W	B, H,W	H,W		
	00010000	00101100	00000	00000		
0000AC _H	—	—	—	—	Reserved	
	SCR0/(IBCR0)	SMR0	SSR0	ESCR0/(IBSR0)		
0000B0 _Н	[R/W] B,H,W	[R/W] B,H,W	[R/W] B,H,W	[R/W] B,H,W -0000000	Multi-function serial 0	
	000000	000-0000	0-000011	-0000000	*4 D (
0000B4 _H	RDR0/(TDR0)[R/W] B,H,W ⁻¹ BGR0 [R/W] H,W 0000000 00000000		00	*1: Byte access is possible only for access		
	— / (ISMK0) [R/W]	— / (ISBA0) [R/W]			to lower 8 bits	
0000B8 _H	B,H,W	B,H,W	_	_		
	*2	*2			*2: Reserved because	
	FCR10 [R/W]	FCR00 [R/W]	FBYTE20 [R/W]	FBYTE10 [R/W]	I ² C mode is not set	
0000BC _H	B,H,W	B,H,W	B,H,W	B,H,W	immediately after reset.	
	00100	-0000000	0000000	0000000		
0000C0 _Н	SCR1/(IBCR1)	SMR1 [R/W] B,H,W	SSR1 [R/W]	ESCR1/(IBSR1) [R/W] B,H,W		
0000C0H	[R/W] B,H,W 000000	000-0000	B,H,W 0-000011	-0000000	Multi-function serial 1	
	RDR1/(TDR1)[R/W		BGR1 [R/W] H,W		*1: Byte access is	
0000C4 _H	0 00000000	.] 2,,	00000000 0000000	00	possible only for access	
	— / (ISMK1) [R/W]	— /(ISBA1) [R/W]			to lower 8 bits	
0000C8 _Н	B,H,W	B,H,W	—	—		
					*2: Reserved because I ² C mode is not set	
000000	FCR11 [R/W]	FCR01[R/W]	FBYTE21 [R/W]	FBYTE11[R/W]	immediately after reset.	
0000CC _H	B, H, W 00100	B, H, W -0000000	B,H,W 00000000	B,H,W 00000000		
	SCR2 [R/W]	SMR2 [R/W]	SSR2 [R/W]	RDR2 /TDR2		
0000D0 _Н	B, H, W	B, H, W	B, H, W	[R/W] B, H, W		
	0000000	0000000	00001000	0000000		
	ESCR2 [R/W]	ECCR2 [R/W]	BGR2 [R/W] B, H,		LIN-UART2	
0000D4 _H	B, H, W	B, H, W	-0000000 0000000			
	00000X00	-0000-XX		1		
0000D8 _H	SCR3 [R/W] B, H, W	SMR3 [R/W] B, H, W	SSR3 [R/W] B, H, W	RDR3 /TDR3 [R/W] B, H, W		
SOCODOH	00000000	00000000	00001000	00000000		
	ESCR3 [R/W]	ECCR3 [R/W]		1	LIN-UART3	
0000DCн	B, H, W	B, H, W	BGR3 [R/W] B, H, -0000000 0000000			
	00000X00	-0000-XX				

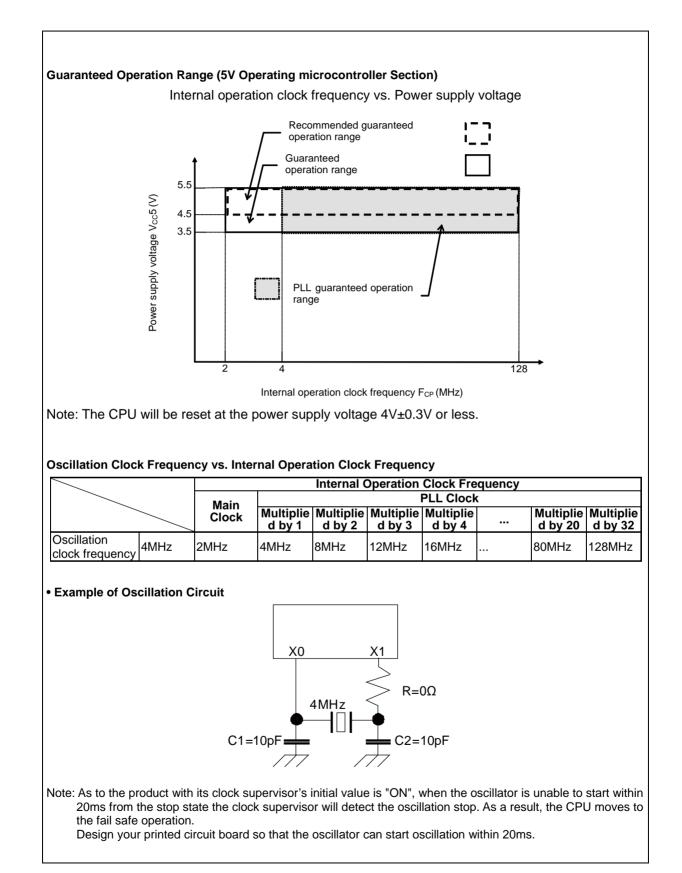
Address		Address Offset Va	alue / Register Nam	e	Dlask		
Address	+0	+1	+2	+3	Block		
0001C0 _Н	TMRLRA8 [R/W] H XXXXXXXX XXXX		TMR8 [R] H XXXXXXXX XXXX	XXXXX	Reload timer 8		
0001C4 _Н	TMRLRB8 [R/W] H XXXXXXXX XXXX		TMCSR8 [R/W] B, 00000000 0-00000		MB91F59A/B only		
0001C8 _Н	TMRLRA9 [R/W] H XXXXXXXX XXXX		TMR9 [R] H XXXXXXXX XXXX	XXXX	Reload timer 9		
0001CC _н	TMRLRB9 [R/W] H XXXXXXXX XXXX		TMCSR9 [R/W] B, 00000000 0-00000		MB91F59A/B only		
0001D0 _н	TMRLRA10 [R/W] XXXXXXXX XXXX		TMR10 [R] H XXXXXXXX XXXX	XXXX	Reload timer 10		
0001D4 _H	TMRLRB10 [R/W] XXXXXXXX XXXX		TMCSR10 [R/W] E		MB91F59A/B only		
0001D8 _H to 0001DC _H	_	_	_	_	Reserved		
0001E0 _H	SCR10 [R/W] B,H,W 000000	SMR10 [R/W] B,H,W 000-0000	SSR10 [R/W] B,H,W 0-000011	ESCR10 [R/W] B,H,W -0000000	Multi-function serial 10		
0001E4 _H	RDR10/(TDR10)[F	2/W] B,H,W ^{*1}	BGR10 [R/W] H,W 00000000 000000		*1: Byte access is		
0001E8 _H	—	_	—	—	possible only for access to lower 8 bits.		
0001EC _н	FCR110 [R/W] B,H,W 00100	FCR010 [R/W] B,H,W -0000000	FBYTE210 [R/W] B,H,W 00000000	FBYTE110 [R/W] B,H,W 00000000	MB91F59A/B only		
0001F0 _Н	SCR11 [R/W] B,H,W 000000	SMR11 [R/W] B,H,W 000-0000	SSR11 [R/W] B,H,W 0-000011	ESCR11 [R/W] B,H,W -0000000	Multi-function serial 11		
0001F4 _Н	RDR11/(TDR11)[R/W] B,H,W ¹ BGR11 [R/W] H,W 0 00000000 00000000 00000000		*1: Byte access is				
0001F8 _Н	—	_	_	—	possible only for access to lower 8 bits.		
0001FC _н	FCR111 [R/W] B,H,W 00100	FCR011 [R/W] B,H,W -0000000	FBYTE211 [R/W] B,H,W 00000000	FBYTE111 [R/W] B,H,W 00000000	MB91F59A/B only		

Address		Address Offset Va	alue / Register Na	me	Block
Audress	+0	+1	+2	+3	BIOCK
000EA0 _H	PPCR00[R/W] B,H,W 11111111	PPCR01[R/W] B,H,W 11111111	PPCR02[R/W] B,H,W 11111111	PPCR03[R/W] B,H,W 11111111	
000EA4 _H	PPCR04[R/W] B,H,W 11111111	PPCR05[R/W] B,H,W 11111111	PPCR06[R/W] B,H,W 11111111	PPCR07[R/W] B,H,W 11111111	
000EA8 _H	PPCR08[R/W] B,H,W 11111111	PPCR09[R/W] B,H,W 11111111	PPCR10[R/W] B,H,W 11111111	PPCR11[R/W] B,H,W 11111111	Port pull-up/down control
000EAC _H	PPCR12[R/W] B,H,W 11111111	PPCR13[R/W] B,H,W 11-11111	_	_	register
000ЕВ0 _Н	PPCRA[R/W] B,H,W 111111	PPCRB[R/W] B,H,W 111111	PPCRC[R/W] B,H,W 111111	PPCRD[R/W] B,H,W 111111	
000EB4 _H	PPCRE[R/W] B,H,W 111111	PPCRF[R/W] B,H,W 111111	PPCRG[R/W] B,H,W 11111111	PPCRH[R/W] B,H,W 1	
000EB8 _H to 000EBC _H	_	_	_	_	Reserved
000EC0 _Н	PPER00[R/W] B,H,W 00000000	PPER01[R/W] B,H,W 00000000	PPER02[R/W] B,H,W 00000000	PPER03[R/W] B,H,W 00000000	
000EC4 _H	PPER04[R/W] B,H,W 00000000	PPER05[R/W] B,H,W 00000000	PPER06[R/W] B,H,W 00000000	PPER07[R/W] B,H,W 00000000	
000EC8н	PPER08[R/W] B,H,W 00000000	PPER09[R/W] B,H,W 00000000	PPER10[R/W] B,H,W 00000000	PPER11[R/W] B,H,W 00000000	Port pull-up/down enable
000ECC _H	PPER12[R/W] B,H,W 00000000	PPER13[R/W] B,H,W 00-00000	_	_	register
000ED0 _H	PPERA[R/W] B,H,W 000000	PPERB[R/W] B,H,W 000000	PPERC[R/W] B,H,W 000000	PPERD[R/W] B,H,W 000000	
000ED4 _H	PPERE[R/W] B,H,W 000000	PPERF[R/W] B,H,W 000000	PPERG[R/W] B,H,W 00000000	PPERH[R/W] B,H,W 0	
000ED8 _H to 000EDC _H	_	_	_	_	Reserved

Address		Address Offset Va	lue / Register Nar	me	Block
Audress	+0	+1	+2	+3	DIOCK
000FAC _H	CPCLR3 [R/W] W 11111111 1111111	, 1 1111111 11111111			
000FB0 _Н	TCDT3 [R/W] W 00000000 000000	0000 0000000 0000	0000		Free-run timer 3
000FB4 _H	TCCSH3 [R/W] B, H, W 000	TCCSL3 [R/W] B, H, W -1-00000	_		
000FB8 _H	CPCLR4 [R/W] W				
000FBC _H	TCDT4 [R/W] W	000 0000000 0000	0000		Free-run timer 4 MB91F59A/B only
000FC0 _Н	TCCSH4 [R/W] B, H, W 000	TCCSL4 [R/W] B, H, W -1-00000	_		
000FC4 _H	CPCLR5 [R/W] W 11111111 1111111	, 1 11111111 11111111			
000FC8 _H		0000 0000000 0000	0000		Free-run timer 5 MB91F59A/B only
000FCC _H	TCCSH5 [R/W] B, H, W 000	TCCSL5 [R/W] B, H, W -1-00000	_		
000FD0 _H	IPCP6 [R] W XXXXXXXX XXX	xxxxx xxxxxxx	xxxxxxx		
000FD4 _H	IPCP7 [R] W XXXXXXXX XXX	xxxxx xxxxxxxx	xxxxxxx		Input capture 6,7 1:MB91F591/2/4/6/7/9
000FD8 _H	ICFS67 [R/W] B, H, W 00	_	LSYNS1 [R/W] B,H,W 00 ^{*1} 000000 ^{*2}	ICS67 [R/W] B, H, W 00000000	*2:MB91F59A/B
000FDC _H	IPCP8 [R] W XXXXXXXX XXX	xxxxx xxxxxxx	xxxxxxx		
000FE0 _Н	IPCP9 [R] W XXXXXXXX XXX	xxxxx xxxxxxxx	xxxxxxx		Input Capture 8,9 MB91F59A/B only
000FE4 _H	ICFS89 [R/W] B, H, W 00	_	_	ICS89 [R/W] B, H, W 00000000	
000FE8 _H	IPCP10 [R] W XXXXXXXX XXX	xxxxx xxxxxxxx	xxxxxxx		
000FEC _H		xxxxx xxxxxxxx	xxxxxxx		Input Capture 10,11 MB91F59A/B only
000FF0 _H	ICFS1011 [R/W] B, H, W 00	_	_	ICS1011 [R/W] B, H, W 00000000	
000FF4 _H	RCRH2[W] H,W XXXXXXXX	RCRL2[W] B,H,W XXXXXXXX	UDCRH2[R] H,W 00000000	UDCRL2[R] B,H,W 00000000	Up/down counter 2
000FF8 _H	CCR2[R/W] B,H 00000000 -00010	00	_	CSR2[R/W] B 00000000	MB91F59A/B only
000FFC _н	—	—	—	—	Reserved
001000 _н	SACR [R/W] B,H,W 0	PICD [R/W] B,H,W 0011	_	_	Synchronous/asynchronous switching control
001004 _н to 00103C _н		_			Reserved

- ^{*1}: Does not support a DMA transfer request caused by an interrupt generated from a peripheral to which no RN (Resource Number) is assigned.
- *2: The status of the multi-function serial interface does not support a DMA transfer caused by I²C reception.
- ^{*3}: The clock calibration unit does not support a DMA transfer caused by an interrupt.
- ^{*4}: RAM ECC bit error does not support a DMA transfer caused by an interrupt.
- *5: REALOS is a trademark of Cypress
- ^{*6}: An interrupt of Up/down counter ch.2 does not support a DMA transfer.
- ^{*7}: An interrupt related GDC does not support a DMA transfer.
- **: Only supported by MB91F59A/B

UDCn: Up/down counter ch.n ICUn: Input capture unit.n OCUn: Output compare unit.n



	(T _A : Recommended operating conditions, V _{CC} 5=5.0V \pm 10%, V _{CC} 3=3.3V \pm 10%, V _{SS} =D								
Parameter	Symbol	Pin Name	Conditions	Min	Value Typ	Max	Unit	Remarks	
	V _{OH1}	P060 to P067, P070 to P077, P080 to P087, P090 to P097,	V _{CC} 5 = 4.5V I _{OH} = -1.0mA	V _{cc} 5- 0.5	-	V _{CC} 5	v		
	V _{OH2}	P100 to P107, P110 to P117, P120 to P127, P130 to P137	V _{CC} 5 = 4.5V I _{OH} = -2.0mA	V _{CC} 5- 0.5	_	V _{CC} 5	v		
	V _{OH3}	P060 to P067, P070 to P077, P080 to P087	DV _{CC} = 4.5V I _{OH} = -30.0mA	DV _{CC} - 0.5	_	DV _{cc}	v	SMC shared pin	
"H" level output voltage	V _{OH4}	P000 to P007, P010 to P017, P020 to P027, P030 to P037, P040 to P047, P050 to P057, PA2 to PA7, PB2 to PB7, PC2 to PC7, PD2 to PD7, PE2 to PE7,	V _{CC} 3 = 3.0V I _{OH} = -2.0mA	V _{cc} 3- 0.5		V _{cc} 3	v	0.0)/ de disete de in	
	V _{OH5}		V _{CC} 3 = 3.0V I _{OH} = -5.0mA						
	V _{OH6}		V _{CC} 3 = 3.0V I _{OH} = -10.0mA		_			3.3V dedicated pin	
	Vouz DLIO	V _{CC} 3 = 3.0V I _{OH} = -20.0mA							
	V _{OH8}	TDO	V _{CC} 5 = 4.5V I _{OH} = -5.0mA	V _{CC} 5- 0.5	_	V _{CC} 5	V	BGA product only	

(T _A : Recommend	ed operating cond	itions, $V_{CC}5=5.0V$	± 10%, V _{CC}	3=3.3V ± 10%,	, V _{SS} =DV _{SS} =,	AV _{SS} =0.0V)

11.4.1.3 Power-on Conditions

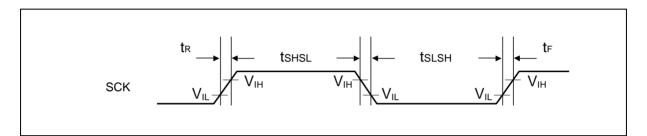
(T_A: Recommended operating conditions, V_{SS}=0.0V)

Parameter	Symbol	Pin	Conditions		Value			Remarks	
Farameter	Symbol	Name	Conditions	Min	Тур	Max	Unit	Remarks	
Level detection voltage	_	V _{CC} 5	_	2.1	2.3	2.5	V	When turning on power for microcontroller	
Level detection hysteresis width	-	$V_{CC}5$	-	-	-	125	mV	During voltage drop	
Level detection time	-	-	-	-	-	30	us	*1	
Specification for voltage slope detection	_	V _{CC} 5	V _{CC} 5 = at level detection release level time	_	_	4	mV/µs	*2	
Power off time	t _{OFF}	V _{cc} 5	-	50	-	-	ms	*3	

^{*1}: If the fluctuation of the power supply is faster than the low voltage detection time, there is the possibility to generate or release after the power supply voltage has exceeded the detection voltage range.

^{*2}: When setting the power supply fluctuation to this specification or less, it is possible to suppress the voltage slope detection. This is the specification when the power supply fluctuation is stable.

^{*3}: This time is to start the voltage slope detection at next power on after power down and internal charge loss.



External Clock (EXT = 1): Asynchronous Only

(T_A: Recommended operating conditions, $V_{CC}5=5.0V\pm10\%$, $V_{SS}=AV_{SS}=0.0V$)

Parameter	Symbol	Pin Name	Conditions	Va	Unit	
Farameter	Symbol	Fin Name	Conditions	Min	Max	Onit
Serial clock "H" pulse width	t _{SHSL}		C _L =50pF (When drive capability is	t _{CPP} +10	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx	2mA or more.) C _L =20pF	t _{CPP} +10	-	ns
SCK fall time	t _F		(When drive capability is	-	5	ns
SCK rise time	t _R		1mA)	-	5	ns

Note: "x" means channel number of 0, 1, 8, 9, 10, and 11 for SCKx, SINx and SOTx.

I²C Timing

Parameter	Symbol	Pin Name	Conditions	Standard Mode		High-Speed Mode		Unit	Remarks
				Min	Max	Min	Max		
SCL clock frequency	f _{SCL}	SCK0, SCK1		0	100	0	400	kHz	
Repeat "start" condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{hdsta}	SOT0, SOT1, (SDA) SCK0, SCK1, (SCL)		4.0	_	0.6	_	μs	
Period of "L" for SCL clock	t _{LOW}	SCK0, SCK1, (SCL)		4.7	-	1.3	_	μs	
Period of "H" for SCL clock	t _{ніGH}	SCK0, SCK1, (SCL)		4.0	_	0.6	-	μs	
Repeat "start" condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{susta}	(SCL)	drive capability is 1mA)	4.7	-	0.6	_	μs	
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t _{hddat}	SOT0, SOT1, (SDA) SCK0, SCK1, (SCL)		0	3.45 ^{*2}	0	0.9	μs	
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	t _{sudat}	SOT0, SOT1, (SDA) SCK0, SCK1, (SCL)	$R = (V_P/I_{OL})^{*1}$	250 ^{*3}	_	100	_	ns	
"Stop" condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t _{susto}	SOT0, SOT1, (SDA) SCK0, SCK1, (SCL)		4.0	_	0.6	_	μs	
Bus-free time between "stop" condition and "start" condition	t _{BUF}	_		4.7	-	1.3	_	μs	
Noise filter	t _{SP}	_	_	2t _{CPP} ^{^4}	_	2t _{CPP} ^{^4}	_	ns	

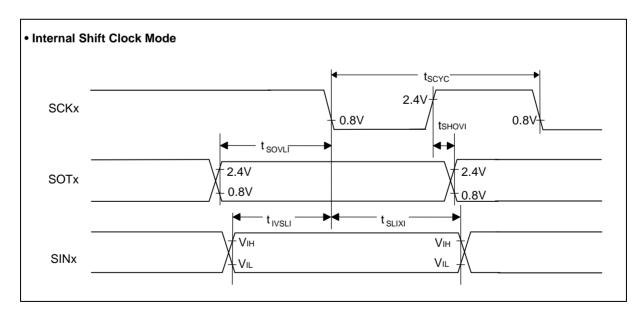
(T_A: Recommended operating conditions, $V_{CC}5=5.0V \pm 10\%$, $V_{SS}=AV_{SS}=0.0V$)

^{*1}: R and C_L represent the pull-up resistance and load capacitance of the SCL and SDA output lines, respectively. Vp shows that the power-supply voltage of the pull-up resistor and I_{OL} shows the V_{OL} guarantee current.

^{*2}: The maximum t_{HDDAT} only has to be met if the device does not extend the "L" width (t_{LOW}) of the SCL signal.

*3: A high-speed mode I²C bus device can be used on a standard mode I²C bus system as long as the device satisfies the requirement of "t_{SUDAT} ≥ 250 ns".

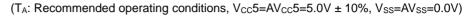
^{*4}: t_{CPP} is the peripheral clock cycle time. Adjust the peripheral clock frequency to 8MHz or more when use I²C.

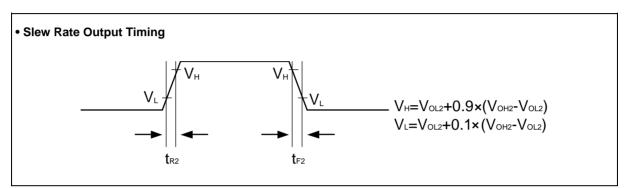

■Bit setting: ESCR: SCES=0, ECCR: SCDE=1

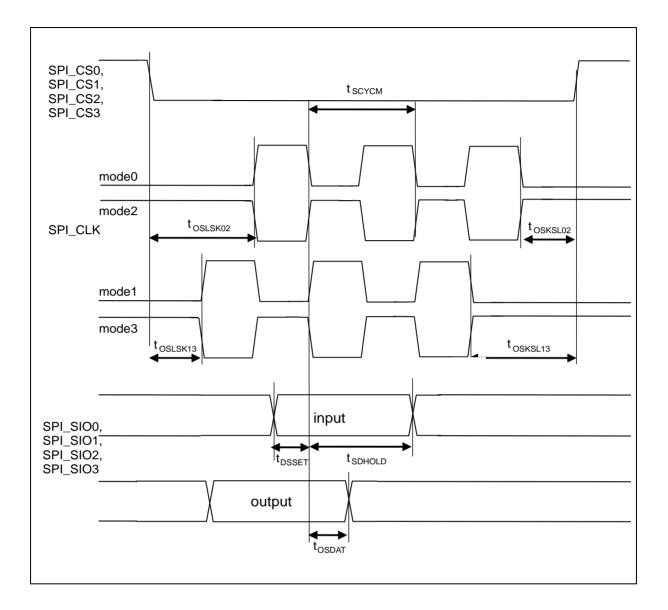
Parameter	Symbol	Pin Name C	Conditions	Value		Unit	Remarks
Farameter			Conditions	Min	Max	Unit	Remarks
Serial clock cycle time	t _{scyc}	SCK2,SCK3, SCK4,SCK5, SCK6,SCK7		5t _{CPP}	-	ns	
SCK ↑ → SOT delay time	t _{SHOVI}	SCK2,SCK3, SCK4,SCK5, SCK6,SCK7, SOT2,SOT3, SOT4,SOT5, SOT6,SOT7		-50	+50	ns	
Valid SIN \rightarrow SCK \downarrow setup time	t _{IVSLI}	SCK2,SCK3, SCK4,SCK5,	_	t _{CPP} +80	-	ns	Internal shift clock Mode:
SCK ↓ → Valid SIN hold time	t _{SLIXI}	SCK6,SCK7, SIN2,SIN3, SIN4,SIN5, SIN6,SIN7		0	-	ns	C _L =80pF + 1 • TTL
SOT → SCK ↓ delay time	t _{SOVLI}	SCK2,SCK3, SCK4,SCK5, SCK6,SCK7, SOT2,SOT3, SOT4,SOT5, SOT6,SOT7		3t _{CPP} -70	-	ns	

(T_A: Recommended operating conditions, $V_{CC}5=5.0V \pm 10\%$, $V_{SS}=AV_{SS}=0.0V$)

Notes:


- C_L is the load capacitance applied to pins during testing.
- The maximum baud rate is limited by internal operation clock used and other parameters.
- See Hardware Manual for details.




11.4.1.11 High current output slew rate

ſ	Parameter	Symbol	Pin Name	Conditions	Value			Unit	Remarks	
	Farameter	Symbol	Fill Name	Conditions	Min	Тур	Max	Unit	Remarks	
	Output rise /fall time	t _{R2} , t _{F2}	P060 to P067, P070 to P077, P080 to P087	-	15	_	100	ns	load capacitance 85pF	

■AC Timing Specifications

Parameter	Symbol	min.
Display clock cycle time	t _{dcyc}	18.5 ns

External Load Condition 50 pF

Parameter	Symbol	DCLKO Reference Edge	IO Drive capa	Remark	
Farameter	Symbol	DCLKO Kelefence Luge	10 mA	2 mA	Nemark
Setup time	t _{dosu}	neg, pos ^{*1}	t _{dcyc} f - 8.5ns	t _{dcyc} _f - 10.2ns	
Hold time	t _{dohd}	-	t _{dcyc} _I - 1.7ns	t _{dcyc} _I - 3.3ns	*2
		-	t _{dcyc} _I - 3.2ns	t _{dcyc} _I – 5.1ns	*3

*1: DCLKO reference edge: This is the reference clock edge for setup time and hold time.

Pos = The external display device receives the signal at the rising edge of DCLKO.

Neg = The external display device receives the signal at the falling edge of DCLKO.

*2: Should be applied to RGB666.

*3: Should be applied to RGB888.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums| Projects | Videos | Blogs | Training| Components

Technical Support

cypress.com/support

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or o affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.