

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs702-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
	- - -		B 444 -	-	B 444 -	B 444 -	
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unki	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
		nesting is disa					
		nesting is ena					
bit 14			Overflow Trap F	-			
			erflow of Accur y overflow of Accur				
bit 13			Overflow Trap F				
			erflow of Accur	-			
			y overflow of A				
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit						
		•	•	flow of Accumul			
bit 11	-			overflow of Accu Overflow Trap F			
			-	flow of Accumul	-		
				overflow of Accu			
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit			
	1 = Trap ove 0 = Trap is d	rflow of Accun isabled	nulator A				
bit 9	OVBTE: Acc	cumulator B O	erflow Trap En	able bit			
	1 = Trap ove 0 = Trap is d	rflow of Accun isabled	nulator B				
bit 8	COVTE: Cat	astrophic Over	flow Trap Enat	ole bit			
	1 = Trap on 6 0 = Trap is d	-	verflow of Accu	mulator A or B is	s enabled		
bit 7	SFTACERR:	Shift Accumu	lator Error Statu	us bit			
		•	•	alid accumulator invalid accumul			
bit 6	DIVOERR: D	ivide-by-Zero	Error Status bit				
			used by a divide t caused by a d	-			
bit 5		nted: Read as	-				
bit 4	MATHERR:	Math Error Sta	tus bit				
		or trap has occ					
		or trap has not	occurred				
bit 3		Address Error error trap has	Trap Status bit				

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

TABLE 11-10: PORTE REGISTER MAP⁽¹⁾

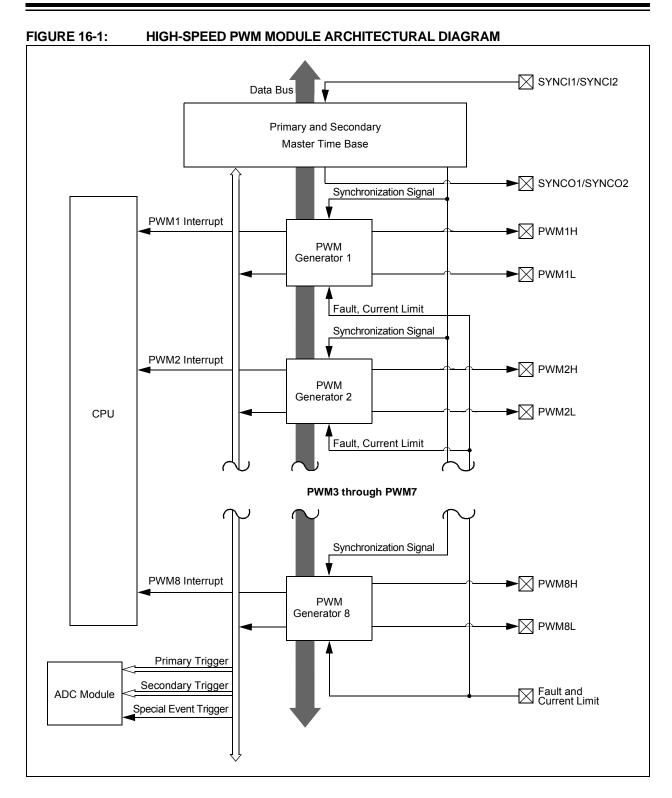
IADLE I	1-10. F		LOISILI													
File Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TRISE		TRISE<15:0>														
PORTE		RE<15:0>														
LATE	LATE<15:0>															
ODCE								ODCE<	:15:0>							
CNENE								CNIEE<	<15:0>							
CNPUE		CNPUE<15:0>														
CNPDE	CNPDE<15:0>															
ANSELE		—	—	—	—	_	_	—	—		_	_	_	_	_	

Legend: — = unimplemented, read as '0'.

Note 1: Refer to Table 11-5 for bit availability on each pin count variant.

U-0	R/W-0						
—	RP181R6	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0
bit 15							bit 8
11-0	R/W-0	R/W-0	R/\/_0	R/W-0	R/\\/_0	R/W-0	R/\\/_0

bit 7							bit 0
—	RP180R6	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0
U-0	R/W-0						


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 **RP181R<6:0>:** Peripheral Output Function is Assigned to RP181 Output Pin bits (see Table 11-13 for peripheral function numbers)

bit 7 Unimplemented: Read as '0'

bit 6-0 **RP180R<6:0>:** Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 16-17: DTRx: PWMx DEAD-TIME REGISTER (x = 1 to 8)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			DTRx	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTF	Rx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared		ared	x = Bit is unkr	nown			

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-18: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER (x = 1 to 8)

						• •	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			ALTDTF	Rx<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTDTI	Rx<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Alternate Dead-Time Value for PWMx Dead-Time Unit bits

	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1 ⁽²⁾	FLTDAT0 ⁽²⁾	CLDAT1 ⁽²⁾	CLDAT0 ⁽²⁾	SWAP	OSYNC
bit 7							bit
Legend:							
R = Readable		W = Writable		•	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15		xH Output Pin	Ownorship hit				
511 15		•	he PWMxH pin				
		dule controls th					
bit 14		L Output Pin C	-				
		•	he PWMxL pin				
		dule controls th					
bit 13	POLH: PWM	xH Output Pin I	Polarity bit				
	1 = PWMxH p	oin is active-low	/				
		oin is active-hig					
bit 12	POLL: PWMx	L Output Pin F	olarity bit				
		in is active-low in is active-hig					
bit 11-10	PMOD<1:0>:	PWMx I/O Pin	Mode bits ⁽¹⁾				
	11 = PWMx I/	O pin pair is in	the True Indep	endent Output	mode		
			the Push-Pull (•			
			the Redundant				
		• •	the Compleme		node		
bit 9			for PWMxH Pin				
			i for output on the F		1		
bit 8	-	-	or PWMxL Pin	-			
JILO			for output on t				
			es data for the F				
bit 7-6	•	•	/MxH, PWMxL		e is Enabled bi	its	
			provides data fo				
			provides data fo				
bit 5-4		-	MxH and PWM	-		Enabled bits(2)	
			= 0: Normal Fa				
			AT1 provides the		PWMxH pin.		
	If Fault is activ	ve, then FLTDA	AT0 provides the	e state for the	PWMxL pin.		
	IFLTMOD (FC						
	If current limit	is active, then	FLTDAT1 provi AT0 provides the	ides the state f	for the PWMxH	l pin.	

REGISTER 16-20: IOCONX: PWMx I/O CONTROL REGISTER (x = 1 to 8)

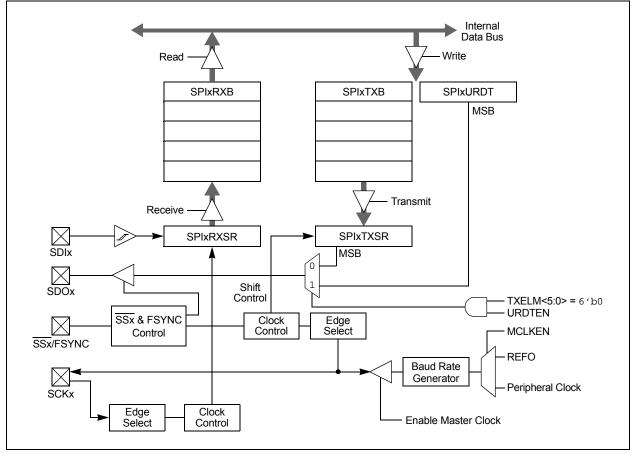
2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.

bit 3-0	Step Command	OPTION<3:0>	Option Description
	PTGWHI(1) or	0000	PWM Special Event Trigger
	PTGWLO(1)	0001	PWM master time base synchronization output
		0010	PWM1 interrupt
		0011	PWM2 interrupt
		0100	PWM3 interrupt
		0101	PWM4 interrupt
		0110	PWM5 interrupt
		0111	OC1 trigger event
		1000	OC2 trigger event
		1001	IC1 trigger event
		1010	CMP1 trigger event
		1011	CMP2 trigger event
		1100	CMP3 trigger event
		1101	CMP4 trigger event
		1110	ADC conversion done interrupt
		1111	INT2 external interrupt
	PTGIRQ(1)	0000	Generate PTG Interrupt 0
		0001	Generate PTG Interrupt 1
		0010	Generate PTG Interrupt 2
		0011	Generate PTG Interrupt 3
		0100	Reserved
		•	•
		•	•
		1111	Reserved
	PTGTRIG ⁽²⁾	00000	PTGO0
	1 1 0 1 1 2 0	00001	PTGO1
		•	•
		•	•
		•	•
		11110	PTGO30
		11111	PTGO31

TABLE 17-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 17-2 for the trigger output descriptions.


To set up the SPIx module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with MSTEN (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 8. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

REGISTER 21-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N				
bit 15	•						bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N				
bit 7	GIDHN	GIBOI	GIDSN	01021	GIDZIN	01011	bit 0				
Legend:											
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
		2.1.0 001		0 2000 0.00							
bit 15	G2D4T: Gate	2 Data Source	4 True Enable	e bit							
	1 = Data Source 4 non-inverted signal is enabled for Gate 2										
	0 = Data Sour	rce 4 non-inver	ed signal is di	sabled for Gate	e 2						
bit 14		2 Data Source	•								
		rce 4 inverted s rce 4 inverted s									
bit 13		2 Data Source	•								
	1 = Data Sour	rce 3 non-inver	ed signal is er	nabled for Gate							
bit 12		2 Data Source	•								
511 12	1 = Data Sour	rce 3 inverted s	ignal is enable	ed for Gate 2							
bit 11	 0 = Data Source 3 inverted signal is disabled for Gate 2 G2D2T: Gate 2 Data Source 2 True Enable bit 										
		rce 2 non-inver rce 2 non-inver									
bit 10		2 Data Source	•								
		rce 2 inverted s rce 2 inverted s									
bit 9		2 Data Source	•								
		rce 1 non-inver rce 1 non-inver	•								
bit 8		2 Data Source	-								
		rce 1 inverted s rce 1 inverted s									
bit 7		1 Data Source	-								
		rce 4 non-inver rce 4 non-inver									
bit 6		1 Data Source	-								
	1 = Data Sour	rce 4 inverted s rce 4 inverted s	ignal is enable	ed for Gate 1							
bit 5		1 Data Source	-								
	1 = Data Sour	rce 3 non-inver rce 3 non-inver	ed signal is er	nabled for Gate							
bit 4		1 Data Source	-								
	1 = Data Sour	rce 3 inverted s rce 3 inverted s	ignal is enable	ed for Gate 1							

REGISTER 22-17: ADEISTATL: ADC EARLY INTERRUPT STATUS REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EISTA	T<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			EISTA	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 EISTAT<15:0>: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

REGISTER 22-18: ADEISTATH: ADC EARLY INTERRUPT STATUS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			EISTAT	<21:16>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 EISTAT<21:16>: Early Interrupt Status for Corresponding Analog Inputs bits

1 = Early interrupt was generated

0 = Early interrupt was not generated since the last ADCBUFx read

REGISTER 22-32: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0 or 1)

bit 15	R/W/0	R/W-0						
bit 15								
	bit 15							bit
CMPEN<15:8>	_	R/W-0						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CMPEN<15:0>:** Comparator Enable for Corresponding Input Channels bits

0 = Conversion result for corresponding channel is not used by the comparator

REGISTER 22-33: ADCMPxENH: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER HIGH (x = 0 or 1)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		CMPEN<21:16>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0

CMPEN<21:16>: Comparator Enable for Corresponding Input Channels bits

1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

^{1 =} Conversion result for corresponding channel is used by the comparator

REGISTER 23-10: CxCFG2: CANx BAUD RATE CONFIGURATION REGISTER 2

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
_	WAKFIL	_	_	_	SEG2PH2	SEG2PH1	SEG2PH0				
bit 15							bit 8				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0				
bit 7							bit C				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	Unimplemer	ted: Read as ')'								
bit 14											
	1 = Uses CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up										
				e-up							
bit 13-11	-	nted: Read as '									
oit 10-8	SEG2PH<2:0>: Phase Segment 2 bits 111 = Length is 8 x TQ										
	•										
	•	· 4 T-									
L:1 7	000 = Length			-4 1- :4							
bit 7		Phase Segmer	it 2 Time Sele								
	 Freely programmable Maximum of SEG1PHx bits or Information Processing Time (IPT), whichever is greater 										
bit 6		e of the CAN Bu				C					
	1 = Bus line i	s sampled three	e times at the	sample point							
		s sampled once		e point							
bit 5-3		D>: Phase Segn	nent 1 bits								
	111 = Length	n is 8 x Tq									
	•										
	•										
	000 = Length										
bit 2-0		>: Propagation	Time Segmen	t bits							
	111 = Length	1 IS 8 X FQ									
	•										
	•										
	000 = Length										

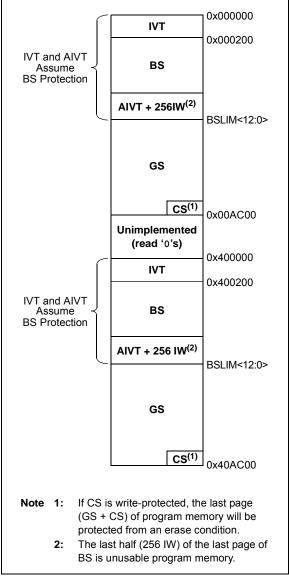
25.2 PGA Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

25.2.1 KEY RESOURCES

- "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 25-1: PGAxCON: PGAx CONTROL REGISTER


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0				
bit 15						<u>.</u>	bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	_	_	_	_	GAIN2	GAIN1	GAIN0				
bit 7		•					bit C				
Legend:											
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'							
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown							
bit 15	PGAEN: PGAx Enable bit										
	1 = PGAx module is enabled										
	0 = PGAx mo	odule is disable	d (reduces po	wer consumpt	ion)						
bit 14	PGAOEN: PO	GAx Output En	able bit								
	1 = PGAx out	tput is connect	ed to the DAC	OUTx pin							
	0 = PGAx out	tput is not conr	nected to the I	DACOUTx pin							
bit 13-11	SELPI<2:0>:	PGAx Positive	e Input Selecti	on bits							
	111 = Reserv	ved									
	110 = Reserv	ved									
	101 = Reserved										
	100 = Reserv	100 = Reserved									
	011 = PGAxF	-									
	010 = PGAxF	010 = PGAxP3									
		22									

001 = PGAxP2 000 = PGAxP1

bit 10-8 **SELNI<2:0>:** PGAx Negative Input Selection bits

- 111 = Reserved 110 = Reserved
 - 101 = Reserved
 - 100 = Reserved
 - 011 = Ground (Single-Ended mode)
 - 010 = PGAxN3
 - 001 = PGAxN2
 - 000 = Ground (Single-Ended mode)
- bit 7-3 Unimplemented: Read as '0'

FIGURE 27-5: SECURITY SEGMENTS EXAMPLE FOR dsPIC33EP128GS70X/80X DEVICES (DUAL PARTITION MODES)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions		
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (TCY + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)		
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)		
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	_	ns	N = Prescale Value (1, 8, 64, 256)		
TB20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40	_	1.75 Tcy + 40	ns			

TABLE 30-25: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-26: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

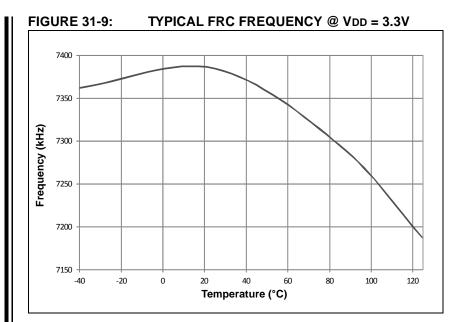
AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Charact	teristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
TC10	TtxH	TxCK High Synchronous Time		Tcy + 20			ns	Must also meet Parameter TC15		
TC11	TtxL	TxCK Low Synchronous Time		Tcy + 20	_	—	ns	Must also meet Parameter TC15		
TC15	TtxP	TxCK InputSynchronousPeriodwith Prescaler		2 Tcy + 40	_	—	ns	N = Prescale Value (1, 8, 64, 256)		
TC20	TCKEXTMRL	Delay from Ex Clock Edge to Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns			

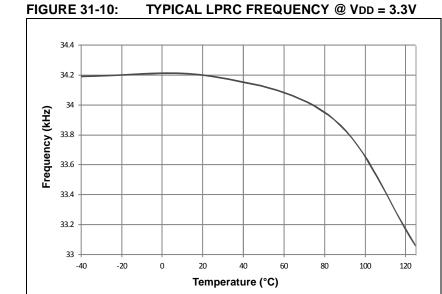
Note 1: These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(2)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$							
Param No.	Symbol Characteristics		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions			
Clock Parameters										
AD50 TAD ADC Clock Period		14.28	_	_	ns					
	Throughput Rate									
AD51	Ftp	SH0-SH3	_	_	3.25		70 MHz ADC clock, 12 bits, no pending			
		SH4	_	—	3.25	Msps	conversion at time of trigger			

TABLE 30-53: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

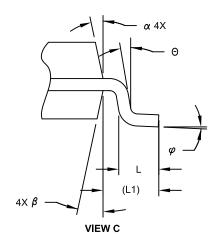
Note 1: These parameters are characterized but not tested in manufacturing.

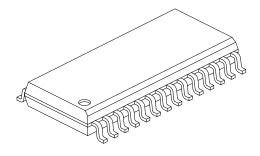

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.


TABLE 30-54: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS

AC/DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(2)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol Characteristic		Min.	Тур.	Max.	Units	Comments		
CM10	VIOFF	Input Offset Voltage	-35	±5	35	mV			
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	—	AVDD	V			
CM13	CMRR	Common-Mode Rejection Ratio	60	—	—	dB			
CM14	TRESP	Large Signal Response	_	15	_	ns	V+ input step of 100 mV while V- input is held at AVDD/2. Delay measured from analog input pin to PWMx output pin.		
CM15	VHYST	Input Hysteresis	5	10	20	mV	Depends on HYSSEL<1:0>		
CM16	TON	Comparator Enabled to Valid Output	_	—	1	μs			

Note 1: These parameters are for design guidance only and are not tested in manufacturing.


2: The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.



28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е	1.27 BSC					
Overall Height	A	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E	10.30 BSC					
Molded Package Width	E1	7.50 BSC					
Overall Length	D	17.90 BSC					
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.40 REF					
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2