

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs702-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	PINOUT I/O	DESCRIPTIONS
------------	-------------------	--------------

Pin Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description
AN0-AN21	I	Analog	No	Analog input channels.
AN0ALT-AN1ALT	Ι	Analog	No	Alternate analog input channels.
C1RXR	Ι	ST	Yes	CAN1 receive.
C2RXR	I	ST	Yes	CAN2 receive.
C1TX	0	ST	Yes	CAN1 transmit.
C2TX	0	ST	Yes	CAN2 transmit.
CLKI	I	ST/	No	External clock source input. Always associated with OSC1 pin
		CMOS		function.
CLKO	0	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal
				Oscillator mode. Optionally functions as CLKO in RC and EC modes.
0001		o T /		
USCI			NO	oscillator crystal input. ST buffer when configured in RC mode; CMOS
0902	1/0		No	Oscillator crystal output. Connects to crystal or resonator in Crystal
0002	"0	_	NU	Oscillator mode. Ontionally functions as CLKO in RC and FC modes
	0	DIG	Vos	
	0		Ves	
CLC3OUT	0	DIG	No(4)	CLC3 output
CLC4OUT	ŏ	DIG	No ⁽⁴⁾	CLC4 output.
REFCLKO	0	_	Yes	Reference clock output.
IC1-IC4	I	ST	Yes	Capture Inputs 1 through 4.
OCFA	I	ST	Yes	Compare Fault A input (for compare channels).
OC1-OC4	0	_	Yes	Compare Outputs 1 through 4.
INT0	I	ST	No	External Interrupt 0.
INT1	I	ST	Yes	External Interrupt 1.
INT2	Ι	ST	Yes	External Interrupt 2.
INT4	Ι	ST	Yes	External Interrupt 4.
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RD0-RD15	I/O	ST	No	PORTD is a bidirectional I/O port.
RE0-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.
T1CK	Ι	ST	Yes	Timer1 external clock input.
T2CK	Ι	ST	Yes	Timer2 external clock input.
T3CK		ST	Yes	Timer3 external clock input.
T4CK		ST	No	Timer4 external clock input.
15CK		SI	NO	limer5 external clock input.
U1CTS	I	ST	Yes	UART1 Clear-to-Send.
U1RTS	0		Yes	UART1 Ready-to-Send.
U1RX		ST	Yes	UARI1 receive.
			Yes	UARTI transmit.
BULKI	0	51	res	
Legend: CMOS = C	VIUS C	ompatible	e input (or output Analog = Analog input $P = Power$
ST = SCHIII PPS = Perir	n ngg nheral	Pin Seler	wiur UN ct	TTI = TTI input buffer

1: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

2: PWM4H/L through PWM8H/L are fixed on dsPIC33EPXXXGS708/808 devices. PWM4H/L through PWM6H/L are fixed on dsPIC33EPXXXGS706/806 devices.

3: The SCK3 pin is fixed on dsPIC33EPXXXGS706/806 and dsPIC33EPXXXGS708/808 devices.

4: PPS is available on dsPIC33EPXXXGS702 devices only.

4.5 Special Function Register Maps

TABLE 4-2: SFR BLOCK 000h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Core			WREG14	01C	000000000000000000000000000000000000000	DOSTARTL	03A	xxxxxxxxxxxxxx0
WREG0	000	000000000000000000000000000000000000000	WREG15	01E	0000100000000000	DOSTARTH	03C	0000000000xxxxxx
WREG1	002	000000000000000000000000000000000000000	SPLIM	020	xxxxxxxxxxxxx0	DOENDL	03E	xxxxxxxxxxxxxx0
WREG2	004	000000000000000000000000000000000000000	ACCAL	022	*****	DOENDH	040	0000000000xxxxxx
WREG3	006	000000000000000000000000000000000000000	ACCAH	024	*****	SR	042	000000000000000000
WREG4	008	000000000000000000000000000000000000000	ACCAU	026	00000000xxxxxxxx	CORCON	044	000000000100000
WREG5	00A	000000000000000000000000000000000000000	ACCBL	028	*****	MODCON	046	000000000000000000000000000000000000000
WREG6	00C	000000000000000000000000000000000000000	ACCBH	02A	*****	XMODSRT	048	xxxxxxxxxxxxxx0
WREG7	00E	000000000000000000000000000000000000000	ACCBU	02C	00000000xxxxxxxx	XMODEND	04A	xxxxxxxxxxxxxx1
WREG8	010	000000000000000000000000000000000000000	PCL	02E	000000000000000000000000000000000000000	YMODSRT	04C	xxxxxxxxxxxxxx0
WREG9	012	000000000000000000000000000000000000000	PCH	030	000000000000000000000000000000000000000	YMODEND	04E	xxxxxxxxxxxxxx1
WREG10	014	000000000000000000000000000000000000000	DSRPAG	032	000000000000000000000000000000000000000	XBREV	050	*****
WREG11	016	000000000000000000000000000000000000000	DSWPAG	034	000000000000000000000000000000000000000	DISICNT	052	00xxxxxxxxxxxx
WREG12	018	000000000000000000000000000000000000000	RCOUNT	036	*****	TBLPAG	054	00000000xxxxxxxx
WREG13	01A	000000000000000000000000000000000000000	DCOUNT	038	*****	CTXTSTAT	05A	000000000000000000000000000000000000000

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

TABLE 4-3: SFR BLOCK 100h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
Timers			TMR5HLD	116	*****	IC2CON2	14A	0000000000001101
TMR1	100	*****	TMR5 118		*****	IC2BUF	14C	*****
PR1	102	111111111111111111	PR4	11A	111111111111111111	IC2TMR	14E	000000000000000000000000000000000000000
T1CON	104	000000000000000000000000000000000000000	PR5	11C	111111111111111111	IC3CON1	150	000000000000000000000000000000000000000
TMR2	106	*****	T4CON	11E	000000000000000000000000000000000000000	IC3CON2	152	0000000000001101
TMR3HLD	108	*****	T5CON	120	000000000000000000000000000000000000000	IC3BUF	154	*****
TMR3	10A	*****	Input Captur	e		IC3TMR	156	000000000000000000000000000000000000000
PR2	10C	111111111111111111	IC1CON1	140	000000000000000000000000000000000000000	IC4CON1	158	000000000000000000000000000000000000000
PR3	10E	111111111111111111	IC1CON2	142	000000000001101	IC4CON2	15A	000000000001101
T2CON	110	000000000000000000000000000000000000000	IC1BUF	144	*****	IC4BUF	15C	*****
T3CON	112	000000000000000000000000000000000000000	IC1TMR	146	000000000000000000000000000000000000000	IC4TMR	15E	000000000000000000000000000000000000000
TMR4	114	*****	IC2CON1	148	000000000000000000000000000000000000000			

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

4.9 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGS70X/80X family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXXGS70X/80X family devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-19: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address									
Access Type	Space	<22:16>	<15>	<14:1>	<0>						
Instruction Access	User	0		PC<22:1>	0						
(Code Execution)			0xxx xxxx >	xxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>						
(Byte/Word Read/Write)		02	xxx xxxx	XXXX XXXX XXXX XXXX							
	Configuration	TB	LPAG<7:0>	Data EA<15:0>							
		12	xxx xxxx	xxxx	xxxx xxxx xx	xx					

FIGURE 4-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

Note 1: The Least Significant bit (LSb) of Program Space addresses is always fixed as '0' to maintain word alignment of data in the Program and Data Spaces.

2: Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0							
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE							
bit 15							bit 8							
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0							
SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL								
bit 7							bit 0							
Logondy														
R = Readable	hit	W = Writable	hit	II = I Inimplem	ented bit read	as '0'								
-n = Value at F	POR	'1' = Bit is set		0' = Bit is clear	ired	x = Bit is unk	nown							
			•	0 2000 0.00										
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit											
	1 = Interrupt	nesting is disa	abled											
	0 = Interrupt	nesting is ena	bled											
bit 14	OVAERR: A	ccumulator A (Overflow Trap F	-lag bit										
	1 = Trap was caused by overflow of Accumulator A 0 = Trap was not caused by overflow of Accumulator A													
bit 13	OVBERR: A	0 = Trap was not caused by overflow of Accumulator A												
	1 = Trap was caused by overflow of Accumulator B													
	0 = Trap was not caused by overflow of Accumulator B													
bit 12	COVAERR:	Accumulator A	Catastrophic (Overflow Trap F	lag bit									
	1 = Trap was 0 = Trap was	s caused by ca	itastrophic over	flow of Accumu	lator A									
bit 11	COVBERR:	Accumulator F	Catastrophic (Overflow Trap F	lag bit									
bit II	1 = Trap was	s caused by ca	tastrophic over	flow of Accumu	lator B									
	0 = Trap was	s not caused b	y catastrophic o	overflow of Accu	umulator B									
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit										
	1 = Trap ove 0 = Trap is d	rflow of Accun isabled	nulator A											
bit 9	OVBTE: Acc	cumulator B Ov	erflow Trap En	able bit										
	1 = Trap ove	erflow of Accun	nulator B											
hit 8	COVTE: Cat	astrophic Ove	rflow Tran Enal	ole hit										
bit o	1 = Trap on (catastrophic ov	verflow of Accu	mulator A or B i	s enabled									
	0 = Trap is d	isabled												
bit 7	SFTACERR:	: Shift Accumu	lator Error State	us bit										
	1 = Math erro	or trap was ca or trap was no	used by an inva t caused by an	alid accumulator invalid accumul	r shift lator shift									
bit 6	DIVOERR: D	ivide-by-Zero	Error Status bit											
	1 = Math err	or trap was ca	used by a divid	e-by-zero										
hit 5		or trap was no ntod: Read as		iivide-by-zero										
bit 4		Math Error Sta	utus bit											
bit i	1 = Math erro	or trap has occ	curred											
	0 = Math erro	or trap has not	occurred											
bit 3	ADDRERR:	Address Error	Trap Status bit											
	1 = Address 0 = Address	error trap has error trap has	occurred not occurred											

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 8-3: DMAxSTAH: DMA CHANNEL x START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA<	23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, read	d as '0'	

 κ = κ eadable bitV = VVritable bit<math>U = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: DMA Primary Start Address bits (source or destination)

REGISTER 8-4: DMAxSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STA	<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STA	<7:0>					
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									

bit 15-0 STA<15:0>: DMA Primary Start Address bits (source or destination)

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0							
				CMP4MD	CMP3MD	CMP2MD	CMP1MD							
bit 15				·			bit 8							
U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0							
	—	—	DMAMD	PTGMD	—	PGA1MD	—							
bit 7							bit 0							
Legend:														
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'								
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown							
bit 15 10	Unimplomon	tod. Bood on '	o'											
bit 11		CMP4MD: CMP4 Module Disable bit												
	1 = CMP4 mc	T = CMP4 module is disabled												
	0 = CMP4 mc	1 = CMP4 module is disabled 0 = CMP4 module is enabled												
bit 10	CMP3MD: CMP3 Module Disable bit													
	1 = CMP3 mc	odule is disable	d											
	0 = CMP3 mc	odule is enable	d											
bit 9	CMP2MD: CM	MP2 Module Di	sable bit											
	1 = CMP2 mc	odule is disable	d											
hit 8			u sabla hit											
bit 0	1 = CMP1 mc	dule is disable	d											
	0 = CMP1 mc	dule is enable	d											
bit 7-5	Unimplemen	ted: Read as '	0'											
bit 4	DMAMD: DM	A Module Disa	ble bit											
	1 = DMA mod	lule is disabled												
	0 = DMA mod	ule is enabled												
bit 3	PTGMD: PTG	6 Module Disat	ole bit											
	$1 = PTG \mod 0$	ule is disabled												
hit 0														
bit 1			u Dahla hit											
	1 = PGA1 mo	dule is disable	d											
	0 = PGA1 mc	dule is enabled	d d											
bit 0	Unimplemen	ted: Read as '	0'											

TABLE 11-8: PORTC REGISTER MAP⁽¹⁾

r		1	1	1	1			1		1	1													
File Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0								
TRISC	TRISC<15:12> —						TRISC<10:0>									TRISC<15:12> — TRISC<10:0>								
PORTC	PORTC RC<15:12>						RC<10:0>																	
LATC	C LATC<15:12>						LATC<10:0>																	
ODCC		ODCC	C<15:12>		_		ODCC<10:0>																	
CNENC		CNIEC	C<15:12>		_					CI	NIEC<10:0	>												
CNPUC	CNPUC<15:12>				_					CN	NPUC<10:0)>												
CNPDC	CNPDC<15:12>			_		CNPDC<10:0>																		
ANSELC	_	—	—	ANSC12	_	ANSC<10:9> — — ANSC<6:4> — ANSC<2:1> —								_										
1		La sea a se fa al																						

Legend: — = unimplemented, read as '0'.

Note 1: Refer to Table 11-3 for bit availability on each pin count variant.

TABLE 11-9: PORTD REGISTER MAP⁽¹⁾

	-	-													
File Name	e Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2										Bit 1	Bit 0			
TRISD	TRISD<15:0>														
PORTD	RD<15:0>														
LATD								LATD	<15:0>						
ODCD								ODCE	0<15:0>						
CNEND								CNIED	D<15:0>						
CNPUD								CNPU	D<15:0>						
CNPDD								CNPD	D<15:0>						
ANSELD	_		ANSD13		_		_	ANSE)<8:7>		ANSD5	 _	ANSD2	_	

Legend: — = unimplemented, read as '0'.

Note 1: Refer to Table 11-4 for bit availability on each pin count variant.

11.9 Peripheral Pin Select Registers

REGISTER 11-9: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7				•			bit 0
Logond:							

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8INT1R<7:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0Unimplemented: Read as '0'

REGISTER 11-10: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| INT2R7 | INT2R6 | INT2R5 | INT2R4 | INT2R3 | INT2R2 | INT2R1 | INT2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **INT2R<7:0>:** Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP62R6	RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP61R6	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0	
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x		x = Bit is unkr	nown					

REGISTER 11-49: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16

bit 15	Unimplemented: Read as '0'
bit 14-8	RP62R<6:0>: Peripheral Output Function is Assigned to RP62 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP61R<6:0>: Peripheral Output Function is Assigned to RP61 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-50: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP64R6	RP64R5	RP64R4	RP64R3	RP64R2	RP64R1	RP64R0	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP63R6	RP63R5	RP63R4	RP63R3	RP63R2	RP63R1	RP63R0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	Unimplemen	ted: Read as '	0'					
bit 14-8	RP64R<6:0>: Peripheral Output Function is Assigned to RP64 Output Pin bits (see Table 11-13 for peripheral function numbers)							

- bit 7 Unimplemented: Read as '0'
- bit 6-0 **RP63R<6:0>:** Peripheral Output Function is Assigned to RP63 Output Pin bits (see Table 11-13 for peripheral function numbers)

|--|

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	RP177R6	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	RP176R6	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15	Unimplemented: Read as '0'
bit 14-8	RP177R<6:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP176R<6:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-58: RPOR25: PERIPHERAL PIN SELECT OUTPUT REGISTER 25

U-0	R/W-0						
—	RP179R6	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0
bit 15							bit 8
U-0	R/W-0						
—	RP178R6	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 7		•		•		•	bit 0
L							
Lawarah							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8	RP179R<6:0>: Peripheral Output Function is Assigned to RP179 Output Pin bits
	(see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'

bit 6-0 **RP178R<6:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 11-13 for peripheral function numbers)

15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare with Dedicated Timer" (DS70005159) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The output compare module can select one of six available clock sources for its time base. The module compares the value of the timer with the value of one or two Compare registers, depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

15.1 Output Compare Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

15.1.1 KEY RESOURCES

- "Output Compare with Dedicated Timer" (DS70005159) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

FIGURE 15-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGS70X/80X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGS70X/80X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps in 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps in 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 20-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UARTX SIMPLIFIED BLOCK DIAGRAM

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
Note 1: F	Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the

"dsPIC33/PIC24 Family Reference Manual" for information on enabling the UARTx module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

O00CLCINA001System Clock010Timer1 Match011PWM5H100REFO1 Clock Output101High-Speed PWM Clock110Timer2 Match111PWM3L000CLCINB001CLC4 Out010CMP1 Out011PWM5L
O01 System Clock 010 Timer1 Match 011 PWM5H 100 REFO1 Clock Output 101 High-Speed PWM Clock 110 Timer2 Match 111 PWM3L 000 CLCINB 001 CLC4 Out 010 CMP1 Out 011 PWM5L
Old Timer1 Match 011 PWM5H 100 REF01 Clock Output 101 High-Speed PWM Clock 110 Timer2 Match 111 PWM3L 000 CLCINB 001 CLC4 Out 010 CMP1 Out 011 PWM5L
011 PWM5H 100 REFO1 Clock Output 101 High-Speed PWM Clock 110 Timer2 Match 111 PWM3L 000 CLCINB 001 CLC4 Out 010 CMP1 Out 011 PWM5L
Ko 100 REFO1 Clock Output 101 High-Speed PWM Clock 110 Timer2 Match 111 PWM3L 000 CLCINB 001 CLC4 Out 010 CMP1 Out 011 PWM5L
Image: Description of the system High-Speed PWM Clock 110 Timer2 Match 111 PWM3L 000 CLCINB 001 CLC4 Out 010 CMP1 Out 011 PWM5L
110 Timer2 Match 111 PWM3L 000 CLCINB 001 CLC4 Out 010 CMP1 Out 011 PWM5L
111 PWM3L 000 CLCINB 001 CLC4 Out 010 CMP1 Out 011 PWM5L
000 CLCINB 001 CLC4 Out 010 CMP1 Out 011 PWM5L
001 CLC4 Out 010 CMP1 Out 011 PWM5L
O10 CMP1 Out 011 PWM5L
011 PWM5L
V V
ADC End-of-Conversion
۵ 101 PWM3H
110 ICAP1
111 ICAP2
000 CLCINA
001 CLC3 Out
▲ 010 CMP2 Out
011 PWM6H
100 UART1 RX
DMA Channel 1 Interrupt
110 OCMP1
111 PWM4L
000 CLCINB
001 CLC4 Out
▲ 010 CMP3 Out
011 PWM6L
75 100 PTG
۵ 101 PWM4H
110 PC_PWM
111 OCMP3

TABLE 21-3: CLC3 MULTIPLEXER INPUT SOURCES

REGISTER 21-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = Data Source 2 non-inverted signal is enabled for Gate 3
	0 = Data Source 2 non-inverted signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	 1 = Data Source 2 inverted signal is enabled for Gate 3 0 = Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	 1 = Data Source 1 non-inverted signal is enabled for Gate 3 0 = Data Source 1 non-inverted signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = Data Source 1 inverted signal is enabled for Gate 3
	0 = Data Source 1 inverted signal is disabled for Gate 3

REGISTER 22-27: ADTRIGXH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH (x = 0 to 5) (CONTINUED)

bit 4-0	TRGSRC(4x+2)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits
	11111 = ADTRG31
	11110 = PTG Trigger Output 30
	11101 = PWM Generator 6 current-limit trigger
	11100 = PWM Generator 5 current-limit trigger
	11011 = PWM Generator 4 current-limit trigger
	11010 = PWM Generator 3 current-limit trigger
	11001 = PWM Generator 2 current-limit trigger
	11000 = PWM Generator 1 current-limit trigger
	10111 = Output Compare 2 trigger
	10110 = Output Compare 1 trigger
	10101 = CLC2 output
	10100 = PWM Generator 6 secondary trigger
	10011 = PWM Generator 5 secondary trigger
	10010 = PWM Generator 4 secondary trigger
	10001 = PWM Generator 3 secondary trigger
	10000 = PWM Generator 2 secondary trigger
	01111 = PWM Generator 1 secondary trigger
	01110 = PWM secondary Special Event Trigger
	01101 = Timer2 period match
	01100 = Timer1 period match
	01011 = CLC1 output
	01010 = PWM Generator 6 primary trigger
	01001 = PWM Generator 5 primary trigger
	01000 = PWM Generator 4 primary trigger
	00111 = PWM Generator 3 primary trigger
	00110 = PWM Generator 2 primary trigger
	00101 = PWM Generator 1 primary trigger
	00100 = PWM Special Event Trigger
	00011 = Reserved
	00010 = Level software trigger

00001 = Common software trigger

00000 = No trigger is enabled

REGISTER 23-2: CxCTRL2: CANx CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—		—	—	—	
bit 15					•		bit 8	
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	
	—	—			DNCNT<4:0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared			x = Bit is unknown		
bit 15-5	Unimplemen	ted: Read as '	כ'					
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	ber bits				
	10010-11111	1 = Invalid sele	ction					
	10001 = Com	npare up to Dat	a Byte 3, bit 6	ծ with EID<17>	•			
	•							
	•							
	-00001 = Com	nare un to Dat	a Byte 1 bit 7	with EID<0>				
	00000 = Do r	not compare da	ta bytes					

REGISTER 23-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit			'0' = Bit is cle	ared	x = Bit is unki	nown	

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 23-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	oits					
	1111 = Filter	hits received in	n RX FIFO bu	lffer					
	1110 = Filter	hits received in	n RX Buffer 1	4					
	•								
	•								
	•								
		hits received in							
	0000 = Filter	nits received in	I RX Buller 0						
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 b	oits (same value	es as bits 15-12	2)			
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 b	oits (same value	es as bits 15-12	2)			
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 b	oits (same value	es as bits 15-12	2)			

FIGURE 30-2: EXTERNAL CLOCK TIMING

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industri} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Exten} \end{array}$				r Industrial for Extended
Param No.	Sym	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC
		Oscillator Crystal Frequency	3.5 10	_	10 40	MHz MHz	XT HS
OS20	Tosc	Tosc = 1/Fosc	8.33		DC	ns	+125°C
		Tosc = 1/Fosc	7.14		DC	ns	+85°C
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67		DC	ns	+125°C
		Instruction Cycle Time ⁽²⁾	14.28		DC	ns	+85°C
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	-	—	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2	—	ns	
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2	—	ns	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C
			_	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C

TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized but not tested in manufacturing.

TABLE 30-36:SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCKx Input Frequency	_	—	11	MHz	(Note 3)
SP72	TscF	SCKx Input Fall Time				ns	See Parameter DO32 (Note 4)
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx \downarrow Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.