

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs702-i-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGS70X/80X Digital Signal Controller (DSC) devices.

dsPIC33EPXXXGS70X/80X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGS70X/80X FAMILY BLOCK DIAGRAM

4.2 Unique Device Identifier (UDID)

All dsPIC33EPXXXGS70X/80X family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- Tracking the device
- Unique serial number
- · Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 800F00h and 800F08h in the device configuration space. Table 4-1 lists the addresses of the identifier words and shows their contents.

TABLE 4-1: UDID ADDRESSES

Name	Address	Bits 23:16	Bits 15:8	Bits 7:0	
UDID1	800F00	U	DID Word 1		
UDID2	800F02	UDID Word 2			
UDID3	800F04	UDID Word 3			
UDID4	800F06	UDID Word 4			
UDID5	800F08	UDID Word 5			

	Ā	GOTO Instruction	0x000000	
		Reset Address	0x000002	
d	υ	Interrupt Vector Table	0x0001FE	
Space Space	ui y shac	User Program Flash Memory (22,016 instructions)	0x000200 0x00AF7E	
er Mem		Device Configuration	0x00AF80 0x00AFFE	
<u>-</u>	5	Unimplemented (Read '0's)	0x00B000	
	Ť	Reserved	0x800000 0x800E46	
		Calibration Data	0x800E48 0x800E78	0x800E48 0x800E78 0x800E7A 0x800EFE
		Reserved	0x800E7A 0x800EFE	
۵	5	UDID	0x800F00 0x800E08	
Shac		Reserved	0x800F0A 0x800F7E	
		User OTP Memory	0x800F80 0x800FFC	
tion Me		Reserved	0x801000 0xF9FFFE	
oficiura	R R R R R	Write Latches	0xFA0000 0xFA0002	
c	3	Reserved	0xFA0004	
		DEVID	0xFEFFFE 0xFF0000	
		Reserved	0xFF0002 0xFF0004	
	<u> </u>	1,0501,004	0xFFFFFE	

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP64GS70X/80X DEVICES

4.2.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-5).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.2.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGS70X/80X family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-5: PROGRAM MEMORY ORGANIZATION

When a PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses the PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSRPAG register is incremented and the EA<15> bit is set to keep the base address within the PSV window. When an underflow is detected, the DSRPAG register is decremented and the EA<15> bit is set to keep the base

address within the PSV window. This creates a linear PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0 and PSV spaces. Table 4-16 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSRPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

TABLE 4-16: OVE PS\	ERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND / SPACE BOUNDARIES ^(2,3,4)
------------------------	--

0/U, R/W	Operation		Before		After		
		DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read	01 [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1
U, Read	[111]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x7FFF).

2: An EDS access, with DSRPAG = 0x000, will generate an address error trap.

3: Only reads from PS are supported using DSRPAG.

4: Pseudolinear Addressing is not supported for large offsets.

NOTES:

R/W-0) R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPI	r iopuwr	—	—	VREGSF	—	CM	VREGS
bit 15							bit 8
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
·							
Legend:							
R = Read	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TRAPR: Irap	Reset Flag bit					
	1 = A Trap Co 0 = A Trap Co	onflict Reset ha	s occurred	h			
hit 14		al Oncode or	Ininitialized	w Register Ac	cess Reset Flac	ı hit	
Sit 11	1 = An illega	l opcode detec	tion, an ille	al address mo	ode or Uninitial	ized W registe	er used as an
	Address	Pointer caused	a Reset			0	
	0 = An illegal	l opcode or Uni	nitialized W r	egister Reset h	as not occurred	t	
bit 13-12	Unimplemen	ted: Read as '0)'				
bit 11	VREGSF: Fla	sh Voltage Reg	ulator Stand	by During Slee	p bit		
	1 = Flash vol	ltage regulator i	s active durir	ng Sleep ndby mode dur	ing Sleen		
bit 10		ted: Read as '(, ,	hode du	ing Sleep		
bit 9	CM: Configur	ation Mismatch	, Flag bit				
bit 0	1 = A Configu	ration Mismatc	h Reset has	occurred.			
	0 = A Configu	ration Mismatc	h Reset has	not occurred			
bit 8	VREGS: Volta	age Regulator S	Standby Durii	ng Sleep bit			
	1 = Voltage r	egulator is activ	e during Sle	ер			
	0 = Voltage r	egulator goes in	nto Standby i	mode during SI	еер		
bit 7	EXTR: Extern	al Reset (MCL	R) Pin bit				
	$\perp = A Master$ 0 = A Master	Clear (pin) Res	et has occur et has not or	rea courred			
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit			
	1 = A RESET	instruction has	been execut	ed			
	0 = A RESET	instruction has	not been exe	ecuted			
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e	nabled					
	0 = WDT is di						
bit 4		hdog limer lim	ie-out Flag bi	It			
	$\perp = WDT time 0 = WDT time$	e-out has occur	curred				
			· ···· • •				
Note 1:	All of the Reset sta	atus bits can be	set or cleare	d in software. S	setting one of th	ese bits in softv	vare does not
2:	If the WDTFN<1.0	> Configuration	bits are '11'	(unprogramme	ed). the WDT is	always enabled	d, regardless
	of the SWDTEN bi	t setting.		(p. e.g. a	,,		.,

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

© 2016-2017 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	<u> </u>		—				<u> </u>
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
			—	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3	PWCOL3: Ch	nannel 3 Periph	neral Write Co	ollision Flag bit			
	1 = Write col	lision is detecte	ed				
	0 = No write	collision is dete	ected				
bit 2	PWCOL2: Ch	nannel 2 Periph	eral Write Co	ollision Flag bit			
	1 = Write col	lision is detecte	ed				
hit 1			ecteu	Illiaion Flog hit			
DILI		lision is detecto		Difference of the second se			
	0 = No write	collision is dete	ected				
bit 0	PWCOL0: Ch	nannel 0 Periph	eral Write Co	ollision Flag bit			
	1 = Write col	lision is detecte	ed				
	0 = No write	collision is dete	ected				

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

10.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

10.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 11-33:	RPOR0: PERIPHERAL	. PIN SELECT OUTPUT	FREGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	RP17R6	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP16R6	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8 RP17R<6:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-13 for peripheral function numbers)							

bit 7 Unimplemented: Read as '0'

bit 6-0	RP16R<6:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits
	(see Table 11-13 for peripheral function numbers)

REGISTER 11-34: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP19R6	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP18R6	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown	
bit 15	Unimplemen	ted: Read as '	כי					
bit 14-8	bit 14-8 RP19R<6:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 11-13 for peripheral function numbers)							

bit 7 Unimplemented: Read as '0'

bit 6-0 **RP18R<6:0>:** Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-37: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP36R6	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	
bit 15		-					bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	RP35R6	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	Unimplemen	ted: Read as '	0'					
bit 14-8	RP36R<6:0> (see Table 11	: Peripheral Ou -13 for periphe	itput Function ral function nu	is Assigned to umbers)	RP36 Output P	'in bits		
bit 7	Unimplemented: Read as '0'							

bit 6-0 **RP35R<6:0>:** Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-38: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	RP38R6	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	RP37R6	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8	bit 14-8 RP38R<6:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits						

- (see Table 11-13 for peripheral function numbers)
- bit 7 Unimplemented: Read as '0'
- bit 6-0 **RP37R<6:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-53: RPOR20: PERIPHERAL PIN SELECT OUTPUT REGISTER 20

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP70R6	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP69R6	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
bit 7				·			bit 0
Legend:							
R = Readable bit W = Writable		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' =		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimplemen	ted: Read as 'o	o'				

bit 14-8	RP70R<6:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP69R<6:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-54: RPOR21: PERIPHERAL PIN SELECT OUTPUT REGISTER 21

-	rt/ vv-U	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RP72R6	RP72R5	RP72R4	RP72R3	RP72R2	RP72R1	RP72R0
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RP71R6	RP71R5	RP71R4	RP71R3	RP71R2	RP71R1	RP71R0
						bit 0
	RP72R6 R/W-0 RP71R6	RP72R6 RP72R5 R/W-0 R/W-0 RP71R6 RP71R5	RP72R6 RP72R5 RP72R4 R/W-0 R/W-0 R/W-0 RP71R6 RP71R5 RP71R4	RP72R6 RP72R5 RP72R4 RP72R3 R/W-0 R/W-0 R/W-0 R/W-0 RP71R6 RP71R5 RP71R4 RP71R3	RP72R6 RP72R5 RP72R4 RP72R3 RP72R2 R/W-0 R/W-0 R/W-0 R/W-0 RP71R6 RP71R5 RP71R4 RP71R3 RP71R2	RP72R6 RP72R5 RP72R4 RP72R3 RP72R2 RP72R1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RP71R6 RP71R5 RP71R4 RP71R3 RP71R2 RP71R1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8	RP72R<6:0>: Peripheral Output Function is Assigned to RP72 Output Pin bits					
	(see Table 11-13 for peripheral function numbers)					

- bit 7Unimplemented: Read as '0'bit 6-0RP71R<6:0>: Peripheral Output Function is Assign
- bit 6-0 **RP71R<6:0>:** Peripheral Output Function is Assigned to RP71 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-57:	RPOR24: PERIPHERAL PIN SELECT OUTPUT REGISTER 24
-----------------	---

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP177R6	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0
bit 15							bit 8
_							
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP176R6	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = B		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimplemen	ted: Read as '	o'				

bit 14-8	RP177R<6:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP176R<6:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-58: RPOR25: PERIPHERAL PIN SELECT OUTPUT REGISTER 25

U-0	R/W-0						
	RP179R6	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0
bit 15							bit 8
U-0	R/W-0						
—	RP178R6	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0
bit 7		•				•	bit 0
Lawrende							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8	RP179R<6:0>: Peripheral Output Function is Assigned to RP179 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'

bit 6-0 **RP178R<6:0>:** Peripheral Output Function is Assigned to RP178 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 16-6: STCON2: PWMx SECONDARY CLOCK DIVIDER SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	_	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	F	PCLKDIV<2:0>(1)		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-3 Unimplemented: Read as '0'

bit 2-0

- PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-7: STPER: PWMx SECONDARY MASTER TIME BASE PERIOD REGISTER^(1,2)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
STPER<15:8>										
bit 15							bit 8			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
			STPE	ER<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			

bit 15-0 STPER<15:0>: Secondary Master Time Base (SMTMR) Period Value bits

Note 1: The PWMx time base has a minimum value of 0x0010 and a maximum value of 0xFFF8.

2: Any period value that is less than 0x0028 must have the Least Significant 3 bits set to '0', thus yielding a period resolution at 8.32 ns (at fastest auxiliary clock rate).

R-0, HS	C R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLTSTAT	(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾	
bit 15		•					bit 8	
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTC1	DTC0	—	_	MTBS	CAM ^(2,3,4)	XPRES ⁽⁵⁾	IUE	
bit 7		· ·					bit 0	
Legend:		HSC = Hardwa	are Settable/C	learable bit				
R = Read	able bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own	
bit 15	FLTSTAT: Fa	ult Interrupt Stat	us bit ⁽¹⁾					
	1 = Fault inter	rrupt is pending						
	0 = No Fault i	interrupt is pend	ing					
	I his bit is clea	ared by setting F	-LIIEN = 0.	N N				
bit 14	CLSTAT: Cur	rent-Limit Interru	ipt Status bit)				
	1 = Current-III	mit interrupt is p	ending s pending					
	This bit is clea	ared by setting (CLIEN = 0.					
bit 13	TRGSTAT: Tr	igger Interrupt S	status bit					
	1 = Trigger in	terrupt is pendin	g					
	0 = No trigger	r interrupt is pen	ding					
	This bit is clea	ared by setting T	RGIEN = 0.					
bit 12	FLTIEN: Faul	t Interrupt Enab	e bit					
	1 = Fault inter	rrupt is enabled	and the ELTS	TAT hit is cleare	bd			
bit 11	CLIEN: Curre	nt_l imit Interrur	it Enable hit		Su -			
	1 = Current-li	mit interrupt is e	nabled					
	0 = Current-li	mit interrupt is d	isabled and the	e CLSTAT bit is	cleared			
bit 10	TRGIEN: Trig	iger Interrupt En	able bit					
	1 = A trigger e	event generates	an interrupt re	equest				
	0 = Trigger ev	vent interrupts a	re disabled and	d the TRGSTAT	bit is cleared			
bit 9	ITB: Independ	dent Time Base	Mode bit ⁽³⁾					
	1 = PHASEx/ 0 = PTPER re	SPHASEx regis egister provides	ters provide th timing for this	e time base per PWMx generate	riod for this PW or	Mx generator		
bit 8	MDCS: Maste	er Duty Cycle Re	egister Select I	bit ⁽³⁾				
	1 = MDC regi	ster provides du	ty cycle inform	nation for this P	WMx generator	v generator		
			s provide duty	cycle mornatic		x generator		
Note 1:	Software must cl	ear the interrupt	status here a	nd in the corres	ponding IFSx b	it in the interrup	t controller.	
2:	The Independent CAM bit is ignore	t Time Base mo ed.	de (ITB = 1) m	ust be enabled	to use Center-A	Aligned mode. If	f ITB = 0, the	
3:	These bits should	d not be change	d after the PW	/Mx is enabled I	by setting PTEN	I (PTCON<15>)=1.	
4:	Center-Aligned n	node ignores the	e Least Signific	cant 3 bits of the	e Duty Cycle, P	hase and Dead	-Time	
	registers. The hig the fastest clock.	ghest Center-Ali	gned mode re	solution availab	le is 8.32 ns wit	h the clock pres	scaler set to	
5:	Configure CLMO	D (FCLCONx<8>	•) = 0 and ITB (PWMCONx<9>) = 1 to operate i	in External Perio	d Reset mode.	

REGISTER 16-12: PWMCONX: PWMx CONTROL REGISTER (x = 1 to 8)

REGISTER 16-13: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER (x = 1 to 8)^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	Cx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		(U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PDCx<15:0>: PWMx Generator Duty Cycle Value bits

Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL.

2: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

3: As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

REGISTER 16-14: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER (x = 1 to 8)^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC	Cx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 SDCx<15:0>: PWMx Secondary Duty Cycle for PWMxL Output Pin bits

Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.

2: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

3: As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
F7MSK1	F7MSK0	F6MSK1	F6MSK0	F5MSK1	F5MSK0	F4MSK1	F4MSK0				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
F3MSK1	F3MSK0	F2MSK1	F2MSK0	F1MSK1	F1MSK0	F0MSK1	F0MSK0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable bit		U = Unimplei	mented bit, read	d as 'O'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-14	F7MSK<1:0>	: Mask Source	for Filter 7 bi	ts							
	11 = Reserve	ed									
	10 = Accepta	ince Mask 2 reg	gisters contair	n mask							
	01 = Accepta 00 = Accepta	ince Mask 1 reg ince Mask 0 reg	gisters contair gisters contair	n mask n mask							
bit 13-12	F6MSK<1:0>	. Mask Source	for Filter 6 bi	ts (same value	s as bits 15-14)						
bit 11-10	F5MSK<1:0>	. Mask Source	for Filter 5 bi	ts (same value	s as bits 15-14)						
bit 9-8	F4MSK<1:0>: Mask Source for Filter 4 bits (same values as bits 15-14)										
bit 7-6	F3MSK<1:0>: Mask Source for Filter 3 bits (same values as bits 15-14)										
bit 5-4	F2MSK<1:0>	F2MSK<1:0>: Mask Source for Filter 2 bits (same values as bits 15-14)									
bit 3-2	F1MSK<1:0>	. Mask Source	for Filter 1 bi	ts (same value	s as bits 15-14)						

REGISTER 23-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1

bit 1-0	FOMSK<1:0>: Mask Source for Filter 0 bits (same values as bits 15-14)

NOTES:

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
48	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
49	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
50	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None
51	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
52	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
53	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
54	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-39: SPI3 MAXIMUM DATA/CLOCK F	RATE SUMMARY ⁽¹⁾
--	-----------------------------

AC CHARA	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
25 MHz	Table 30-40	—	—	0,1	0,1	0,1	
25 MHz	—	Table 30-41	—	1	0,1	1	
25 MHz	—	Table 30-42	—	0	0,1	1	
25 MHz	_	—	Table 30-43	1	0	0	
25 MHz	—	—	Table 30-44	1	1	0	
25 MHz	_	_	Table 30-45	0	1	0	
25 MHz	_	_	Table 30-46	0	0	0	

Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.

FIGURE 30-19: SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS^(1,2)

2: Refer to Figure 30-1 for load conditions.