

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs702t-i-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Interrupt Source	Vector	IRQ	IVT Address	Interrupt Bit Location			
interrupt Source	#	#	IVI Address	Flag	Enable	Priority	
PSES – PWM Secondary Special Event Match	81	73	0x0000A6	IFS4<9> PSESIF	IEC4<9> PSESIE	IPC18<6:4> PSESIP<2:0>	
Reserved	82-97	74-89	0x0000A8-0x0000C6	_	_	—	
SPI3TX – SPI3 Transfer Done	98	90	0x0000C8	IFS5<10> SPI3TXIF	IEC5<10> SPI3TXIE	IPC22<10:8> SPI3TXIP<2:0>	
SPI3RX – SPI3 Receive Done	99	91	0x0000CA	IFS5<10> SPI3RXIF	IEC5<11> SPI3RXIE	IPC22<14:12> SPI3RXIP<2:0>	
Reserved	100-101	92-93	0x0000CC-0x0000CE		_	_	
PWM1 – PWM1 Interrupt	102	94	0x0000D0	IFS5<14> PWM1IF	IEC5<14> PWM1IE	IPC23<10:8> PWM1IP<2:0>	
PWM2 – PWM2 Interrupt	103	95	0x0000D2	IFS5<15> PWM2IF	IEC5<15> PWM2IE	IPC23<14:12> PWM2IP<2:0>	
PWM3 – PWM3 Interrupt	104	96	0x0000D4	IFS6<0> PWM3IF	IEC6<0> PWM3IE	IPC24<2:0> PWM3IP<2:0>	
PWM4 – PWM4 Interrupt	105	97	0x0000D6	IFS6<1> PWM4IF	IEC6<1> PWM4IE	IPC24<6:4> PWM4IP<2:0>	
PWM5 – PWM5 Interrupt	106	98	0x0000D8	IFS6<2> PWM5IF	IEC6<2> PWM5IE	IPC24<10:8> PWM5IP<2:0>	
PWM6 – PWM6 Interrupt	107	99	0x0000DA	IFS6<3> PWM6IF	IEC6<3> PWM6IE	IPC24<14:12> PWM6IP<2:0>	
PWM7 – PWM7 Interrupt	108	100	0x0000DC	IFS6<4> PWM7IF	IEC6<4> PWM7IE	IPC25<2:0> PWM7IP<2:0>	
PWM8 – PWM8 Interrupt	109	101	0x0000DE	IFS6<5> PWM8IF	IEC6<5> PWM8IE	IPC25<6:4> PWM8IP<2:0>	
Reserved	110	102	0x0000E0	_	_	_	
AC2 – Analog Comparator 2 Interrupt	111	103	0x0000E2	IFS6<7> AC2IF	IEC6<7> AC2IE	IPC25<14:12> AC2IP<2:0>	
AC3 – Analog Comparator 3 Interrupt	112	104	0x0000E4	IFS6<8> AC3IF	IEC6<8> AC3IE	IPC26<2:0> AC3IP<2:0>	
AC4 – Analog Comparator 4 Interrupt	113	105	0x0000E6	IFS6<9> AC4IF	IEC6<9> AC4IE	IPC26<6:4> AC4IP<2:0>	
Reserved	114-117	106-109	0x0000E8-0x0000EE	_	—		
AN0 Conversion Done	118	110	0x0000F0	IFS6<14> AN0IF	IEC6<14> AN0IE	IPC27<10:8> AN0IP<2:0>	
AN1 Conversion Done	119	111	0x0000F2	IFS6<15> AN1IF	IEC6<15> AN1IE	IPC27<14:12> AN1IP<2:0>	
AN2 Conversion Done	120	112	0x0000F4	IFS7<0> AN2IF	IEC7<0> AN2IE	IPC28<2:0> AN2IP<2:0>	
AN3 Conversion Done	121	113	0x0000F6	IFS7<1> AN3IF	IEC7<1> AN3IE	IPC28<6:4> AN3IP<2:0>	
AN4 Conversion Done	122	114	0x0000F8	IFS7<2> AN4IF	IEC7<2> AN4IE	IPC28<10:8> AN4IP<2:0>	
AN5 Conversion Done	123	115	0x0000FA	IFS7<3> AN5IF	IEC7<3> AN5IE	IPC28<14:12> AN5IP<2:0>	
AN6 Conversion Done	124	116	0x0000FC	IFS7<4> AN6IF	IEC7<4> AN6IE	IPC29<2:0> AN6IP<2:0>	
AN7 Conversion Done	125	117	0x0000FE	IFS7<5> AN7IF	IEC7<5> AN7IE	IPC29<6:4> AN7IP<2:0>	
Reserved	126-131	118-123	0x000100-0x00010A				

NOTES:

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **"Oscillator Module"** (DS70005131) in the *"dsPIC33/PIC24 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGS70X/80X family oscillator system provides:

- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- On-the-Fly Clock Switching between Various Clock Sources
- Doze mode for System Power Savings
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- Configuration Bits for Clock Source Selection
- Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 9-1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—			—			SPI3MD
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	PWM8MD: P	WM8 Module D	isable bit				
	-	odule is disable odule is enable					
bit 14		WM7 Module D	-				
DIL 14		odule is disable					
		odule is enable					
bit 13	PWM6MD: P	WM6 Module D	isable bit				
		odule is disable odule is enable					
bit 12	PWM5MD: P	WM5 Module D	isable bit				
	-	odule is disable					
L:1 44		odule is enable					
bit 11		WM4 Module D odule is disable					
		odule is disable					
bit 10	PWM3MD: P	WM3 Module D	isable bit				
		odule is disable					
		odule is enable					
bit 9		WM2 Module D					
		odule is disable odule is enable					
bit 8		WM1 Module D					
		odule is disable					
	0 = PWM1 m	odule is enable	d				
bit 7-1	Unimplemen	ted: Read as 'o)'				
bit 0		3 Module Disat	ole bit				
		lule is disabled					
	0 = SP13 mod	lule is enabled					

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

TABLE 11-10: PORTE REGISTER MAP⁽¹⁾

IADLE I	1-10. F		LOISILI													
File Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TRISE								TRISE<	:15:0>							
PORTE								RE<1	5:0>							
LATE								LATE<	15:0>							
ODCE								ODCE<	:15:0>							
CNENE								CNIEE<	<15:0>							
CNPUE								CNPUE	<15:0>							
CNPDE								CNPDE	<15:0>							
ANSELE		—	—	—	—	_	_	—	—		_	_	_	_	_	

Legend: — = unimplemented, read as '0'.

Note 1: Refer to Table 11-5 for bit availability on each pin count variant.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP17R6	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP16R6	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15 bit 14-8	RP17R<6:0>	ited: Read as ' : Peripheral Ou -13 for periphe	tput Function	•	RP17 Output F	Pin bits	

bit 7 Unimplemented: Read as '0'

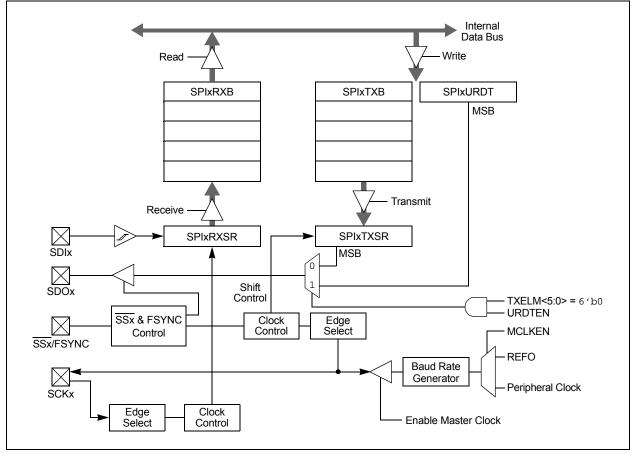
bit 6-0	RP16R<6:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits
	(see Table 11-13 for peripheral function numbers)

REGISTER 11-34: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	RP19R6	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP18R6	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	Unimplemen	ted: Read as '	0'					
bit 14-8 RP19R<6:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 11-13 for peripheral function numbers)								

bit 7 Unimplemented: Read as '0'

bit 6-0 **RP18R<6:0>:** Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 11-13 for peripheral function numbers)


To set up the SPIx module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with MSTEN (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 5. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Select Enhanced Buffer mode by setting the ENHBUF bit (SPIxCON1L<0>).
- 8. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

REGISTER 18-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

Legend: R = Readable		W = Writable			ented bit read	(0)	
bit 7							bit 0
SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
SPIEN	_	SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15 SPIEN: SPIx On bit

- 1 = Enables module
- 0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications

bit 14 Unimplemented: Read as '0'

- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
 - 1 = Halts in CPU Idle mode
 - 0 = Continues to operate in CPU Idle mode

bit 12 DISSDO: Disable SDOx Output Port bit

1 = SDOx pin is not used by the module; pin is controlled by port function

0 = SDOx pin is controlled by the module

bit 11-10 MODE32 and MODE16: Serial Word Length Select bits^(1,4)

MODE32	MODE16	AUDEN	Communication					
1	x		32-Bit					
0	1	0	16-Bit					
0	0		8-Bit					
1	1		24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame					
1	0	1	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame					
0	1	T	16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame					
0	0		16-Bit FIFO, 16-Bit Channel/32-Bit Frame					

Note 1: When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.

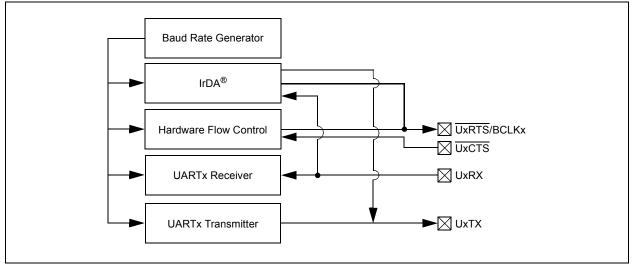
- 2: When FRMEN = 1, SSEN is not used.
- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGS70X/80X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGS70X/80X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.


The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps in 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps in 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 20-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UARTX SIMPLIFIED BLOCK DIAGRAM

22.2 Analog-to-Digital Converter Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

22.2.1 KEY RESOURCES

- "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 22-1: ADCON1L: ADC CONTROL REGISTER 1 LOW

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ADON ⁽¹⁾	—	ADSIDL	—	—	—	—	—
bit 15							bit 8
U-0	r-0	r-0	r-0	r-0	U-0	U-0	U-0
—	_	—	—				—
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 15 **ADON:** ADC Enable bit⁽¹⁾ 1 = ADC module is enabled
 - 0 = ADC module is off
- bit 14 Unimplemented: Read as '0'
- bit 13 ADSIDL: ADC Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12-7 Unimplemented: Read as '0'
- bit 6-3 Reserved: Maintain as '0'
- bit 2-0 Unimplemented: Read as '0'
- **Note 1:** Set the ADON bit only after the ADC module has been configured. Changing ADC Configuration bits when ADON = 1 will result in unpredictable behavior.

26.3 Current Source Control Register

REGISTER 26-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER

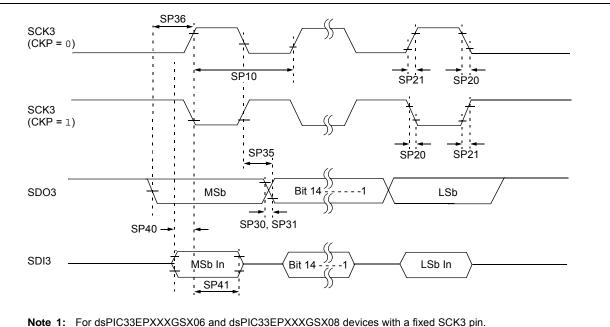
R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ISRCEN		—	—	_	OUTSEL2	OUTSEL1	OUTSEL0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-11 bit 10-8	-	ted: Read as ' >: Output Con		Select bits			
	011 = Input p 010 = Input p 001 = Input p	ed	5) 6)				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	ISRCCAL<5:	0>: Constant-C	Current Source	e Calibration bi	ts		
	module is ena		the calibration			8, into these b 7-3) in Section :	

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers \in {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 30-36:SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCKx Input Frequency			11	MHz	(Note 3)
SP72	TscF	SCKx Input Fall Time				ns	See Parameter DO32 (Note 4)
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.

2: Refer to Figure 30-1 for load conditions.

TABLE 30-41:SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS⁽⁵⁾

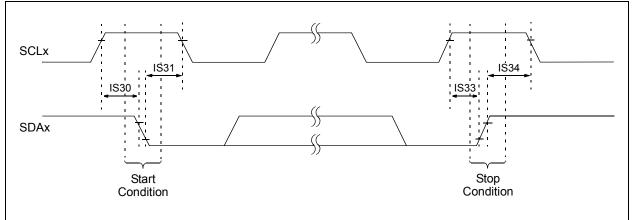
AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK3 Frequency	_	_	25	MHz	(Note 3)
SP20	TscF	SCK3 Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK3 Output Rise Time	_		_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO3 Data Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO3 Data Output Rise Time	—		_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO3 Data Output Valid after SCK3 Edge	_	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO3 Data Output Setup to First SCK3 Edge	20	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI3 Data Input to SCK3 Edge	20	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI3 Data Input to SCK3 Edge	15	—		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

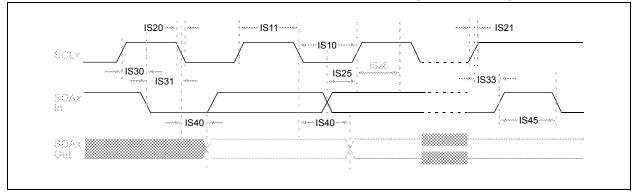
- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCK3 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI3 pins.
- 5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characte	eristic ⁽⁴⁾	Min. ⁽¹⁾	Max.	Units	Conditions	
IM10	M10 TLO:SCL Clock Low Time		100 kHz mode	TCY/2 (BRG + 2)		μS		
			400 kHz mode	Tcy/2 (BRG + 2)	—	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	—	μS		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	—	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	300	ns	-	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns		
		Setup Time	400 kHz mode	100		ns	-	
			1 MHz mode ⁽²⁾	40		ns	-	
IM26	THD:DAT	Data Input	100 kHz mode	0		μS		
		Hold Time	400 kHz mode	0	0.9	μ S	-	
			1 MHz mode ⁽²⁾	0.2		μs	-	
IM30	TSU:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)		μS	Only relevant for	
		Setup Time	400 kHz mode	TCY/2 (BRG + 2)		μ S	Repeated Start	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)		μS	After this period, the	
		Hold Time	400 kHz mode	Tcy/2 (BRG +2)		μ S	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)		μS		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)		μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)		μS		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μS	-	
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns		
		from Clock	400 kHz mode	—	1000	ns		
			1 MHz mode ⁽²⁾	—	400	ns		
IM45	TBF:SDA	A Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be	
			400 kHz mode	1.3		μS	free before a new	
			1 MHz mode ⁽²⁾	0.5		, μs	transmission can start	
IM50	Св	Bus Capacitive L		_	400	pF		
IM51	TPGD	Pulse Gobbler De	•	65	390	ns	(Note 3)	

TABLE 30-47: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

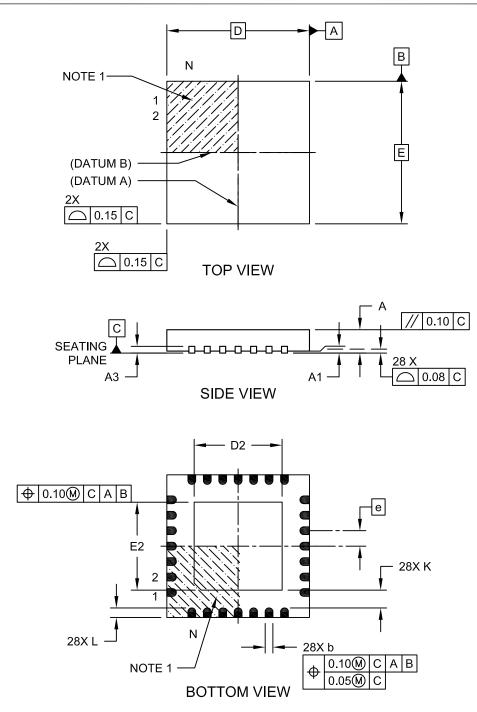

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

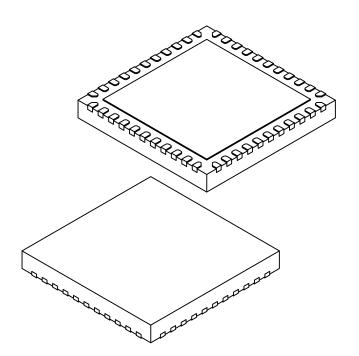

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized but not tested in manufacturing.

FIGURE 30-29: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)



28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

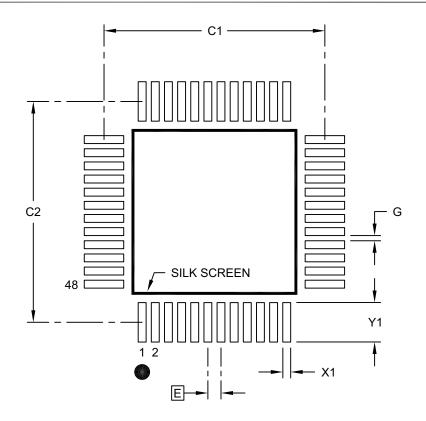
Microchip Technology Drawing C04-124C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S		
Dimension	Dimension Limits					
Number of Pins	Ν		44	-		
Pitch	е		0.65 BSC			
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25 6.45 6.6				
Overall Length	D		8.00 BSC			
Exposed Pad Length	D2	6.25 6.45 6.60				
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	К	0.20	-	-		

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

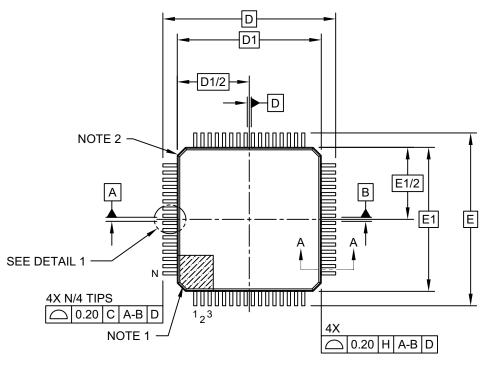
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

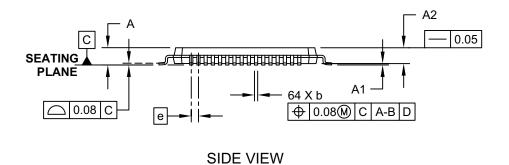
	Units			S
Dimensio	Dimension Limits		NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1	8.40		
Contact Pad Spacing			8.40	
Contact Pad Width (X48) X1				0.30
Contact Pad Length (X48)				1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing C04-2300-PT Rev A

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2