

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs702t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	
9.0	Oscillator Configuration	103
10.0	Power-Saving Features	115
11.0	I/O Ports	125
12.0	Timer1	
13.0	Timer2/3 and Timer4/5	173
14.0	Input Capture	177
15.0	Output Compare	181
16.0	High-Speed PWM	
17.0		
18.0		
19.0		
20.0		
21.0		
22.0	J - [J J J J	
23.0		
24.0	High-Speed Analog Comparator	
25.0		
26.0	Constant-Current Source	
27.0	Special Features	
28.0	Instruction Set Summary	
29.0		
30.0		
	DC and AC Device Characteristics Graphs	
	Packaging Information	
Appe	endix A: Revision History	
Index	Χ	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Prod	uct Identification System	

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

R/W-0		R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0
bit 15							bit 8
R/W-0		U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOS	T1 PLLPOST0		PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	hit	II = I Inimplem	nented bit, read	1 as 'N'	
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
					arca		IOWIT
bit 15	ROI: Recover	r on Interrupt bi	t				
bit 10		•		he processor clo	ock and the ne	ripheral clock ra	ntio is set to 1.1
		s have no effect			boll, and the po		
bit 14-12	DOZE<2:0>:	Processor Cloc	k Reduction S	elect bits ⁽¹⁾			
	111 = Fcy div						
	110 = Fcy div						
	101 = Fcy div						
	100 = FCY div						
		vided by 8 (defa	ault)				
	010 = FCY div 001 = FCY div	•					
	000 = FCY div						
bit 11		e Mode Enable	bit ^(2,3)				
				ween the peripl atio is forced to		d the processo	r clocks
bit 10-8	FRCDIV<2:0>	>: Internal Fast	RC Oscillator	Postscaler bits			
	111 = FRC di						
	110 = FRC di						
	101 = FRC d i						
	100 = FRC d i						
	011 = FRC di						
	010 = FRC di						
	001 = FRC di	ivided by 2 ivided by 1 (def	ault)				
bit 7-6			,	Select bits (also	o denoted as 'I	N2' PLL postso	aler)
	11 = Output d					12, 1 LL posise	
	10 = Reserve	•					
		livided by 4 (de	fault)				
	00 = Output d	livided by 2					
bit 5	Unimplemen	ted: Read as 'o)'				
Note 1:	The DOZE<2:0> DOZE<2:0> are iş	•	e written to whe	en the DOZEN	bit is clear. If D	OZEN = 1, any	v writes to
2:	This bit is cleared	-	bit is set and a	an interrupt occ	urs.		
3:	The DOZEN bit ca			•		y attempt by us	er software to

3: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER	9-0. KEFU	CON. REFER	LENCE USC	ILLATOR CO		ISTER	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15		•		•	•	•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
 bit 7	_	_		_	_	_	bit (
Legend:							
R = Readabl	le bit	W = Writable I	pit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15 bit 14	1 = Reference 0 = Reference	ence Oscillator e oscillator outp e oscillator outp ted: Read as '0	ut is enabled o ut is disabled		2)		
bit 13	-	ference Oscilla		an hit			
bit 15	1 = Reference	e oscillator outp oscillator outp	ut continues to	run in Sleep			
bit 12	1 = Oscillator	rence Oscillato crystal is used ock is used as	as the referen	ce clock			
bit 11-8	1111 = Refer 1110 = Refer 1101 = Refer 100 = Refer 1011 = Refer 1010 = Refer 1001 = Refer 000 = Refer 0111 = Refer 0110 = Refer 0101 = Refer 0101 = Refer 0101 = Refer 0101 = Refer 0100 = Refer 0100 = Refer	Reference Ose ence clock dividence clock	ded by 32,768 ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4	bits ⁽¹⁾			
bit 7-0	Unimplement	ted: Read as 'o)'				

REGISTER 9-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.6 "Peripheral Pin Select (PPS)" for more information.

11.6 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.6.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

11.6.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I^2C modules. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.6.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

REGISTER 11-15: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFAR7 | OCFAR6 | OCFAR5 | OCFAR4 | OCFAR3 | OCFAR2 | OCFAR1 | OCFAR0 |
| bit 7 | | | | • | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **OCFAR<7:0>:** Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-16: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLT2R7 | FLT2R6 | FLT2R5 | FLT2R4 | FLT2R3 | FLT2R2 | FLT2R1 | FLT2R0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |

bit 7							bit 0
FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0
R/W-U	R/VV-U						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8**FLT2R<7:0>:** Assign PWM Fault 2 (FLT2) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0**FLT1R<7:0>:** Assign PWM Fault 1 (FLT1) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.

© 2016-2017 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP53R6	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP52R6	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
bit 7						bit 0	
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as		l as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 11-45: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

bit 15	Unimplemented: Read as '0'
bit 14-8	RP53R<6:0>: Peripheral Output Function is Assigned to RP53 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP52R<6:0>: Peripheral Output Function is Assigned to RP52 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-46: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP55R6	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	RP54R6	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimplemented: Read as '0'						
bit 14-8	-						

- bit 7 **Unimplemented:** Read as '0'
- RP54R<6:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits bit 6-0 (see Table 11-13 for peripheral function numbers)

REGISTER 11-53: RPOR20: PERIPHERAL PIN SELECT OUTPUT REGISTER 20

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
00	-			-		_	-
—	RP70R6	RP70R5	RP70R4	RP70R3	RP70R2	RP70R1	RP70R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	RP69R6	RP69R5	RP69R4	RP69R3	RP69R2	RP69R1	RP69R0
bit 7							bit 0
Legend:							
R = Readable b	pit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 10	
bit 14-8	RP70R<6:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP69R<6:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-54: RPOR21: PERIPHERAL PIN SELECT OUTPUT REGISTER 21

U-0	R/W-0						
—	RP72R6	RP72R5	RP72R4	RP72R3	RP72R2	RP72R1	RP72R0
bit 15							bit 8
U-0	R/W-0						
_	RP71R6	RP71R5	RP71R4	RP71R3	RP71R2	RP71R1	RP71R0
bit 7				•			bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8	RP72R<6:0>: Peripheral Output Function is Assigned to RP72 Output Pin bits						
	(see Table 11-13 for peripheral function numbers)						

- bit 7 Unimplemented: Read as '0'
- bit 6-0 **RP71R<6:0>:** Peripheral Output Function is Assigned to RP71 Output Pin bits (see Table 11-13 for peripheral function numbers)

NOTES:

REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (I ² C Slave mode only)
	 1 = Read – Indicates data transfer is output from the slave 0 = Write – Indicates data transfer is input to the slave Hardware is set or clear after reception of an I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit is in progress, I2CxTRN is full 0 = Transmit is complete, I2CxTRN is empty Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

REGISTER 22-4: ADCON2H: ADC CONTROL REGISTER 2 HIGH

R-0, HSC	R-0, HSC	r-0	r-0	r-0	r-0	R/W-0	R/W-0
REFRDY	REFERR	—	—	—	—	SHRSAMC9	SHRSAMC8
bit 15 bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SHRSAMC7	SHRSAMC6	SHRSAMC5	SHRSAMC4	SHRSAMC3	SHRSAMC2	SHRSAMC1	SHRSAMC0
bit 7 bit							bit 0

Legend: r = Reserved bit		U = Unimplemented bit, read as '0'			
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 15	REFRDY: Band Gap and Reference Voltage Ready Flag bit 1 = Band gap is ready 0 = Band gap is not ready
bit 14	REFERR: Band Gap or Reference Voltage Error Flag bit 1 = Band gap was removed after the ADC module was enabled (ADON = 1) 0 = No band gap error was detected
bit 13-10	Reserved: Maintain as '0'
bit 9-0	<pre>SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC core sample time. 111111111 = 1025 TADCORE</pre>

REGISTER 23-2: CxCTRL2: CANx CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15						•	bit 8		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
	—	—			DNCNT<4:0>				
bit 7 bit						bit 0			
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-5	Unimplemen	ted: Read as '	כ'						
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	ber bits					
	10010-11111	= Invalid sele	ction						
	10001 = Corr	pare up to Dat	a Byte 3, bit 6	with EID<17>	•				
	•								
	•								
	-00001 = Corr	nare un to Dat	a Byte 1 bit 7	with FID<0>					
	00001 = Compare up to Data Byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes								

REGISTER 23-8: CxEC: CANX TRANSMIT/RECEIVE ERROR COUNT REGISTER

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| TERRCNT7 | TERRCNT6 | TERRCNT5 | TERRCNT4 | TERRCNT3 | TERRCNT2 | TERRCNT1 | TERRCNT0 |
| bit 15 | | | | | | | bit 8 |

| R-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| RERRCNT7 | RERRCNT6 | RERRCNT5 | RERRCNT4 | RERRCNT3 | RERRCNT2 | RERRCNT1 | RERRCNT0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 23-9: CxCFG1: CANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0	
	_		_	—	_			
bit 15							bit 8	
R/W-0	/W-0 R/W-0 R/W-0 R/W-0 R/W			R/W-0	R/W-0	R/W-0		
SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	
bit 7							bit (
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
						x = Bit is unknown		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN	
-n = Value at bit 15-8		'1' = Bit is set ted: Read as '		'0' = Bit is clea	ared	x = Bit is unkr	iown	
	Unimplemer		0'		ared	x = Bit is unkr	nown	
bit 15-8	Unimplemer	ted: Read as ' Synchronization	0'		ared	x = Bit is unkr	nown	
bit 15-8	Unimplemer SJW<1:0>: S	t ed: Read as ' Synchronization s 4 x TQ	0'		ared	x = Bit is unkr	iown	
bit 15-8	Unimplemer SJW<1:0>: S 11 = Length	ted: Read as ' Synchronization s 4 x TQ s 3 x TQ	0'		ared	x = Bit is unkr	iown	
bit 15-8	Unimplemer SJW<1:0>: S 11 = Length 10 = Length	ted: Read as ' Synchronization s 4 x TQ s 3 x TQ s 2 x TQ	0'		ared	x = Bit is unkr	iown	
bit 15-8	Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length	ted: Read as ' Synchronization s 4 x TQ s 3 x TQ s 2 x TQ	o' I Jump Width I		ared	x = Bit is unkr	iown	
bit 15-8 bit 7-6	Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E	ted: Read as ' Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 2 x TQ s 1 x TQ	0' I Jump Width I caler bits		ared	x = Bit is unkr	iown	
bit 15-8 bit 7-6	Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E	ted: Read as ' Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ saud Rate Pres	0' I Jump Width I caler bits		ared	x = Bit is unkr	iown	
bit 15-8 bit 7-6	Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E	ted: Read as ' Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ saud Rate Pres	0' I Jump Width I caler bits		ared	x = Bit is unkr	iown	
bit 15-8 bit 7-6	Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E	ted: Read as ' Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ saud Rate Pres	0' I Jump Width I caler bits		ared	x = Bit is unkr	iown	
bit 15-8 bit 7-6	Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E 11 1111 = T •	ted: Read as ' Synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ saud Rate Pres	^{0'} I Jump Width I caler bits FCAN		ared	x = Bit is unkr	iown	
bit 15-8 bit 7-6	Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E 11 1111 = T 00 0010 = T	sted: Read as ' synchronization s 4 x TQ s 3 x TQ s 2 x TQ s 1 x TQ saud Rate Pres Q = 2 x 64 x 1/2	^{0'} I Jump Width I caler bits FCAN		ared	x = Bit is unkr	iown	

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1			
bit 15	·			-			bit 8			
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15-10	EID<5:0>: E>	tended Identifie	er bits							
bit 9	RTR: Remote	e Transmission	Request bit							
	When $IDE = 1$:									
	1 = Message	will request rer	note transmis	ssion						
	0 = Normal m	nessage								
	When IDE =	<u>0:</u>								
	The RTR bit i	s ignored.								
bit 8	RB1: Reserv	ed Bit 1								

BUFFER 21-3: CANx MESSAGE BUFFER WORD 2

bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 21-4: CANx MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	1<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	0<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8	Byte 1<15:8>: CANx Message Byte 1 bits
bit 7-0	Byte 0<7:0>: CANx Message Byte 0 bits

NOTES:

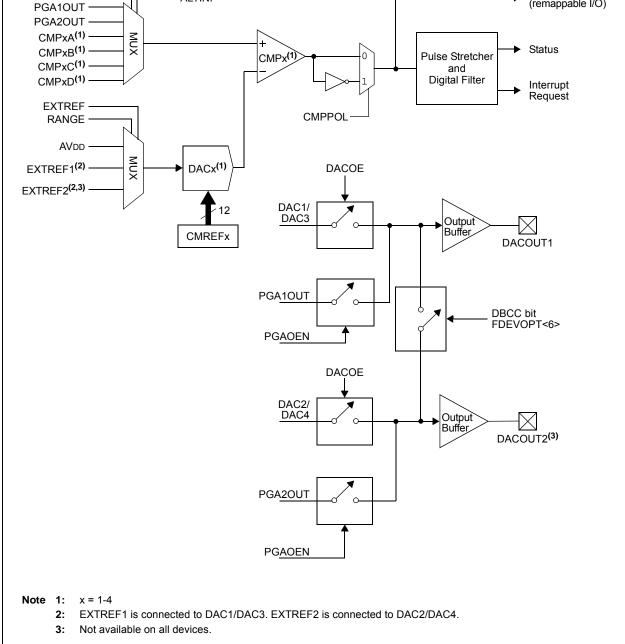

24.2 Module Description

FIGURE 24-1:

Figure 24-1 shows a functional block diagram of one analog comparator from the high-speed analog comparator module. The analog comparator provides high-speed operation with a typical delay of 15 ns. The negative input of the comparator is always connected to the DACx circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin. The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

HIGH-SPEED ANALOG COMPARATOR x MODULE BLOCK DIAGRAM

TABLE 27-1: CONFIGURATION REGISTER MAP⁽³⁾

Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSEC	00AF80	64	_	AIVTDIS	_	_	_	C	SS<2:0>		CWRP	GSS<1	·0>	GWRP	_	BSEN	BSS<1	·0>	BWRP
I OLO	015780	128		AIVIDIO					00 ~2.0		CWIN	0001	.0-	OWIG		DOLIN	0001	.0-	DWIN
FBSLIM	00AF90	64	_	_	_	— — BSLIM<12:0>													
DOLINI	015790	128											DOEN	1					
FSIGN	00AF90	64	_	Reserved ⁽²⁾	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	015794	128																	
FOSCSEL	00AF98	64	_	_	_	_	_	_	_	_	_	IESO	_	_	_	_	FI	NOSC<2:0)>
	015798	128																	
FOSC	00AF9C	64	_	_	_	_	_	_	_	_	PLLKEN	FCKSM<	:1:0>	IOL1WAY	_	_	OSCIOFNC	POSC	CMD<1:0>
	01579C	128													1				
FWDT	00AFA0	64	_	_	_	_	—	_	_	WDTW	/IN<1:0>	WINDIS	WDT	EN<1:0>	WDTPRE		WDTPO	ST<3:0>	
	0157A0	128							-										
FPOR	00AFA4 0157A4	64 128	_	_	—	—	_	—	—	_	—	_	_	—	-	_	_	—	Reserved ⁽¹⁾
	0157A4	64																	
FICD	00/ (17) 00 0157A8	128	—	BTSWP	—	—	—	—	—	—	—	Reserved ⁽¹⁾	—	JTAGEN	—	—	—	ICS	S<1:0>
FDEVOPT	00AFAC	64																	
	0157AC	128	—	-	—	—	—	—	—	—	—	—	DBCC	—	ALTI2C2	ALTI2C1	Reserved ⁽¹⁾	—	PWMLOCK
FALTREG	00AFB0	64	_	_															
	0157B0	128			C.	TXT4<2:0)>	—	C	TXT3<3	:0>	—		CTXT2 <2:	:0>	—	C.	TXT1 <2:0)>
FBTSEQ	00AFFC	64											1			1	I		
	0157FC	128		IBSE	Q<11:0>			BSEQ<11:0>											
FBOOT ⁽⁴⁾	801000	_		_	_	_	_	_	_	_	_		_	_	_		_	BTMC	DDE<1:0>

Note 1: These bits are reserved and must be programmed as '1'.

2: This bit is reserved and must be programmed as '0'.

3: When operating in Dual Partition Flash mode, each partition will have dedicated Configuration registers. On a device Reset, the configuration values of the Active Partition are read at start-up, but during a soft swap condition, the configuration settings of the newly Active Partition are ignored.

4: FBOOT resides in configuration memory space.

dsPIC33EPXXXGS70X/80X FAMILY

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

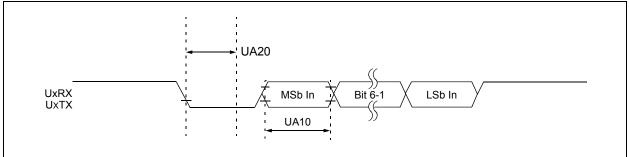
The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

TABLE 30-44:SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

АС СНА		TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCK3 Input Frequency	_		25	MHz	(Note 3)		
SP72	TscF	SCK3 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCK3 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO3 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO3 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO3 Data Output Valid after SCK3 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO3 Data Output Setup to First SCK3 Edge	20	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI3 Data Input to SCK3 Edge	20	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI3 Data Input to SCK3 Edge	15	—	_	ns			
SP50	TssL2scH, TssL2scL	SS3 ↓ to SCK3 ↑ or SCK3 ↓ Input	120	-	—	ns			
SP51	TssH2doZ	SS3 ↑ to SDO3 Output High-Impedance	10	—	50	ns	(Note 4)		
SP52	TscH2ssH, TscL2ssH	SS3 ↑ after SCK3 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)		
SP60	TssL2doV	SDO3 Data Output Valid after SS3 Edge	—		50	ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK3 is 91 ns. Therefore, the SCK3 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI3 pins.

5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.

FIGURE 30-32: UARTX MODULE I/O TIMING CHARACTERISTICS

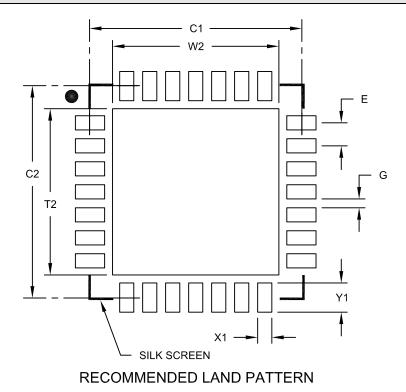
TABLE 30-50: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARA	CTERISTIC	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
UA10	TUABAUD	UARTx Baud Time	66.67		_	ns		
UA11	FBAUD	UARTx Baud Frequency	—	_	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_		ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-51: ANALOG CURRENT SPECIFICATIONS


AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
AVD01	IDD	Analog Modules Current Consumption	_	9	_		Characterized data with the following modules enabled: APLL, 5 ADC Cores, 2 PGAs and 4 Analog Comparators		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A