

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	20
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs702t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGS70X/80X family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) (DS51765)
- "Development Tools Design Advisory" (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" (DS51616)
- "Using MPLAB[®] REAL ICE[™] In-Circuit Emulator" (poster) (DS51749)

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

4.2 Unique Device Identifier (UDID)

All dsPIC33EPXXXGS70X/80X family devices are individually encoded during final manufacturing with a Unique Device Identifier or UDID. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

- Tracking the device
- Unique serial number
- · Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 800F00h and 800F08h in the device configuration space. Table 4-1 lists the addresses of the identifier words and shows their contents.

TABLE 4-1: UDID ADDRESSES

Name	Address	Bits 23:16	Bits 15:8	Bits 7:0		
UDID1	800F00	UDID Word 1				
UDID2	800F02	UDID Word 2				
UDID3	800F04	UDID Word 3				
UDID4	800F06	UDID Word 4				
UDID5	800F08	UDID Word 5				

	Ā	GOTO Instruction	0x000000	
		Reset Address	0x000002	
d	υ	Interrupt Vector Table	0x0001FE	
Space Space	ui y shac	User Program Flash Memory (22,016 instructions)	0x000200 0x00AF7E	
er Mem		Device Configuration	0x00AF80 0x00AFFE	
<u>-</u>	5	Unimplemented (Read '0's)	0x00B000	
	Ť	Reserved	0x800000 0x800E46	
		Calibration Data	0x800E48 0x800E78	
		Reserved	0x800E7A 0x800EFE	0x800E7A 0x800EFE
۵	5	UDID	0x800F00 0x800E08	
Shac		Reserved	0x800F0A 0x800F7E	
		User OTP Memory	0x800F80 0x800FFC	
tion Me		Reserved	0x801000 0xF9FFFE	
oficiura	R R R R R	Write Latches	0xFA0000 0xFA0002	
c	3	Reserved	0xFA0004	
		DEVID	0xFEFFFE 0xFF0000	
		Reserved	0xFF0002 0xFF0004	
	<u> </u>	1,0501,004	0xFFFFFE	

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP64GS70X/80X DEVICES

TABLE 4-12: SFR BLOCK A00h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PTG			PTGADJ	AD2	000000000000000000	PTGQUE7	AE6	*****
PTGCST	AC0	000000000000000000	PTGL0	AD4	000000000000000000	PTGQUE8	AE8	*****
PTGCON	AC2	000000000000000000	PTGQPTR	AD6	000000000000000000	PTGQUE9	AEA	*****
PTGBTE	AC4	000000000000000000	PTGQUE0	AD8	*****	PTGQUE10	AEC	*****
PTGHOLD	AC6	000000000000000000	PTGQUE1	ADA	*****	PTGQUE11	AEE	*****
PTGT0LIM	AC8	000000000000000000	PTGQUE2	ADC	*****	PTGQUE12	AF0	*****
PTGT1LIM	ACA	000000000000000000	PTGQUE3	ADE	*****	PTGQUE13	AF2	*****
PTGSDLIM	ACC	000000000000000000	PTGQUE4	AE0	*****	PTGQUE14	AF4	*****
PTGC0LIM	ACE	000000000000000000	PTGQUE5	AE2	*****	PTGQUE15	AF6	*****
PTGC1LIM	AD0	000000000000000000000000000000000000000	PTGQUE6	AE4	*****			

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

TABLE 4-13: SFR BLOCK B00h

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
DMA			DMA1STBL	B18	000000000000000000	DMA3REQ	B32	000000000000000000
DMA0CON	B00	000000000000000000	DMA1STBH	B1A	000000000000000000	DMA3STAL	B34	000000000000000000
DMA0REQ	B02	000000000000000000	DMA1PAD	B1C	000000000000000000	DMA3STAH	B36	000000000000000000
DMA0STAL	B04	000000000000000000	DMA1CNT	B1E	000000000000000000	DMA3STBL	B38	000000000000000000
DMA0STAH	B06	000000000000000000	DMA2CON	B20	000000000000000000	DMA3STBH	B3A	000000000000000000
DMA0STBL	B08	000000000000000000	DMA2REQ	B22	000000000000000000	DMA3PAD	B3C	000000000000000000
DMA0STBH	B0A	000000000000000000	DMA2STAL	B24	000000000000000000	DMA3CNT	B3E	000000000000000000
DMA0PAD	B0C	000000000000000000	DMA2STAH	B26	000000000000000000	DMAPWC	BF0	000000000000000000
DMA0CNT	B0E	000000000000000000	DMA2STBL	B28	000000000000000000	DMARQC	BF2	000000000000000000
DMA1CON	B10	000000000000000000	DMA2STBH	B2A	000000000000000000	DMAPPS	BF4	000000000000000000
DMA1REQ	B12	000000000000000000	DMA2PAD	B2C	000000000000000000	DMALCA	BF6	0000000000001111
DMA1STAL	B14	000000000000000000	DMA2CNT	B2E	000000000000000000	DSADRL	BF8	000000000000000000
DMA1STAH	B16	000000000000000000	DMA3CON	B30	000000000000000000	DSADRH	BFA	000000000000000000

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKI	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bi	t	U = Unimpler	mented bit, read	l as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRC	CADR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSR	CADR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 NVMSRCADR<15:0>: NVM Source Data Address bits

The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the BOR and POR bits (RCON<1:0>) that are set. The user application can set or clear any bit, at any time, during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSCx bits is loaded into the NOSC<2:0> (OSCCON<10:8>) bits on Reset, which in turn, initializes the system clock.

REGISTER 7-2:	CORCON: CORE CONTROL REGISTE	ER ⁽¹⁾
---------------	------------------------------	-------------------

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0

R/W-U	R/VV-U	FX/ V V- I	R/VV-U	R/C-0	R-0	R/W-U	K/VV-U
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable exception processing is enabled

0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA Channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU Interrupt after Half or Full Block Transfer Complete
- Byte or Word Transfers
- · Fixed Priority Channel Arbitration
- Manual (software) or Automatic (peripheral DMA requests) Transfer Initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM Start addresses after each block transfer complete)
- DMA Request for each Channel can be Selected from any Supported Interrupt Source
- Debug Support Features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	—	—
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	—	—
TMR3 – Timer3	00001000	—	—
TMR4 – Timer4	00011011	—	—
TMR5 – Timer5	00011100	—	—
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	_
UART2TX – UART2 Transmitter	00011111	_	0x0234 (U2TXREG)
CAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	—
CAN1 – TX Data Request	01000110		0x0442 (C1TXD)
CAN2 – RX Data Ready	00110111	0X0540(C2RXD)	
CAN2 – TX Data Request	01000111	_	0X0542(C2TXD)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

11.6 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features, while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.6.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions.

11.6.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. One example includes I^2C modules. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/Os and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.6.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

|--|

Function	RPnR<6:0>	> Output Name			
Default PORT	0000000	RPn tied to Default Pin			
U1TX	0000001	RPn tied to UART1 Transmit			
U1RTS	0000010	RPn tied to UART1 Request-to-Send			
U2TX	0000011	RPn tied to UART2 Transmit			
U2RTS	0000100	RPn tied to UART2 Request-to-Send			
SDO1	0000101	RPn tied to SPI1 Data Output			
SCK1	0000110	RPn tied to SPI1 Clock Output			
SS1	0000111	RPn tied to SPI1 Slave Select			
SDO2	0001000	RPn tied to SPI2 Data Output			
SCK2	0001001	RPn tied to SPI2 Clock Output			
SS2	0001010	RPn tied to SPI2 Slave Select			
C1TX	0001110	RPn tied to CAN1 Transmit			
C2TX	0001111	RPn tied to CAN2 Transmit			
OC1	0010000	RPn tied to Output Compare 1 Output			
OC2	0010001	RPn tied to Output Compare 2 Output			
OC3	0010010	RPn tied to Output Compare 3 Output			
OC4	0010011	RPn tied to Output Compare 4 Output			
ACMP1	0011000	RPn tied to Analog Comparator 1 Output			
ACMP2	0011001	RPn tied to Analog Comparator 2 Output			
ACMP3	0011010	RPn tied to Analog Comparator 3 Output			
SDO3	0011111	RPn tied to SPI3 Data Output			
SCK3	0100000	RPn tied to SPI3 Clock Output			
SS3	0100001	RPn tied to SPI3 Slave Select			
SYNCO1	0101101	RPn tied to PWM Primary Master Time Base Sync Output			
SYNCO2	0101110	RPn tied to PWM Secondary Master Time Base Sync Output			
REFCLKO	0110001	RPn tied to Reference Clock Output			
ACMP4	0110010	RPn tied to Analog Comparator 4 Output			
PWM4H	0110011	RPn tied to PWM Output Pins Associated with PWM Generator 4			
PWM4L	0110100	RPn tied to PWM Output Pins Associated with PWM Generator 4			
PWM5H	0110101	RPn tied to PWM Output Pins Associated with PWM Generator 5			
PWM5L	0110110	RPn tied to PWM Output Pins Associated with PWM Generator 5			
PWM6H	0111001	RPn tied to PWM Output Pins Associated with PWM Generator 6			
PWM6L	0111010	RPn tied to PWM Output Pins Associated with PWM Generator 6			
PWM7H	0111011	RPn tied to PWM Output Pins Associated with PWM Generator 7			
PWM7L	0111100	RPn tied to PWM Output Pins Associated with PWM Generator 7			
PWM8H	0111101	RPn tied to PWM Output Pins Associated with PWM Generator 8			
PWM8L	0111110	RPn tied to PWM Output Pins Associated with PWM Generator 8			
CLC1OUT	0111111	RPn tied to CLC1 Output			
CLC2OUT	100000	RPn tied to CLC2 Output			
CLC3OUT ⁽¹⁾	1000001	RPn tied to CLC3 Output			
CLC4OUT ⁽¹⁾	1000010	RPn tied to CLC4 Output			

Note 1: PPS outputs are only available on dsPIC33EPXXXGS702 (28-pin) devices.

REGISTER 17-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- bit 1-0 **PTGITM<1:0>:** PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with Step delay is not executed on exit of command (regardless of PTGCTRL command)
 - 10 = Single level detect with Step delay is executed on exit of command
 - 01 = Continuous edge detect with Step delay is not executed on exit of command (regardless of PTGCTRL command)
 - 00 = Continuous edge detect with Step delay is executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.
 - **2:** This bit is only used with the PTGCTRL Step command software trigger option.

REGISTER 22-34: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER (x = 0 or 1) (CONTINUED)

00000 **= AN0**

FIGURE 23-1: CANX MODULE BLOCK DIAGRAM

23.2 Modes of Operation

The CANx module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

24.2 Module Description

FIGURE 24-1:

Figure 24-1 shows a functional block diagram of one analog comparator from the high-speed analog comparator module. The analog comparator provides high-speed operation with a typical delay of 15 ns. The negative input of the comparator is always connected to the DACx circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin. The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

HIGH-SPEED ANALOG COMPARATOR x MODULE BLOCK DIAGRAM

26.0 CONSTANT-CURRENT SOURCE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the *"dsPIC33/PIC24 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The constant-current source module is a precision current generator and is used in conjunction with the ADC module to measure the resistance of external resistors connected to device pins.

26.1 Features Overview

The constant-current source module offers the following major features:

- Constant-Current Generator (10 µA nominal)
- Internal Selectable Connection to One of Four Pins
- Enable/Disable bit

26.2 Module Description

Figure 26-1 shows a functional block diagram of the constant-current source module. It consists of a precision current generator with a nominal value of 10 μ A. The module can be enabled and disabled using the ISRCEN bit in the ISRCCON register. The output of the current generator is internally connected to a device pin. The dsPIC33EPXXXGS70X/80X family can have up to 4 selectable current source pins. The OUTSEL<2:0> bits in the ISRCCON register allow selection of the target pin.

The current source is calibrated during testing.

FIGURE 26-1: CONSTANT-CURRENT SOURCE MODULE BLOCK DIAGRAM

	-	-		· /			
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
55	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
56	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
57	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
58	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
59	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
60	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
61	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
62	RESET	RESET		Software device Reset	1	1	None
63	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
64	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
65	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
66	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
67	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
68	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
<u> </u>		RRC	Ws,Wd	VVd = Rotate Right through Carry VVs	1	1	C,N,Z
69	RRNC	RRNC	t Curren	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	I, WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
70	0.2.0	RRINC	WS, WG	Store Accumulator	1	1	Nopo
70	SAC	SAC	Acc, #Slit4, Wdo	Store Accumulator	1	1	None
71	C.F.	SAC.R	NG Wod	Wnd = sign_extended Ws	1	1	
72	CETM	CETM	f		1	1	None
12	JEIM	SE IM SETM	L WDFC	WREG = 0xEEEE	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
73	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB,
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

	TABLE 30-4:	DC TEMPERATURE AND VOLTAGE	SPECIFICATIONS
--	-------------	----------------------------	----------------

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No. Symbol Characteristic				Тур.	Max.	Units	Conditions		
Operating Voltage									
DC10	Vdd	Supply Voltage	3.0	-	3.6	V			
DC12	Vdr	RAM Retention Voltage ⁽²⁾	—	—	1.95	V	+25°C, +85°C, +125°C		
			_	_	2.0	V	-40°C		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	—	_	Vss	V			
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	1.0		_	V/ms	0V-3V in 3 ms		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: This is the limit to which VDD may be lowered and the RAM contents will always be retained.

TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments	
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	_	10	μF	Capacitor must have a low series resistance (<1 Ohm)	

Note 1: Typical VCAP Voltage = 1.8 volts when VDD \ge VDDMIN.

AC CHARACTERISTICS				Standard Ope (unless other Operating tem	erating C wise sta perature	Conditions: 3.0 ited) $-40^{\circ}C \le TA \le$ $-40^{\circ}C \le TA \le$	W to 3.6 +85°C f +125°C	V or Industrial for Extended	
Param No.	Symbol	Charao	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)	
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256)	
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	—	ns	N = Prescale Value (1, 8, 64, 256)	
TB20	TCKEXTMRL	Delay from Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns		

TABLE 30-25: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-26: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min. Typ. Max. Units Condition				
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous	Tcy + 20	—	—	ns	Must also meet Parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous with Prescaler	2 Tcy + 40	—	—	ns	N = Prescale Value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

				Standard Operating Conditions: 3.0V to 3.6V					
AC CHA	RACTER	ISTICS		Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
				-40°C \leq TA \leq +125°C for Extended					
Param No.	Symbol	Characteristic ⁽⁴⁾		Min. ⁽¹⁾	Max.	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	TCY/2 (BRG + 2)	_	μS			
			400 kHz mode	Tcy/2 (BRG + 2)		μS			
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)	—	μS			
		-	400 kHz mode	TCY/2 (BRG + 2)	—	μS			
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS			
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns			
		Setup Time	400 kHz mode	100	_	ns			
			1 MHz mode ⁽²⁾	40		ns			
IM26	THD:DAT	Data Input	100 kHz mode	0		μS			
		Hold Time	400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽²⁾	0.2	_	μS			
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	—	μS	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)		μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	—	μS	condition		
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 2)	—	μS	After this period, the		
			400 kHz mode	Tcy/2 (BRG +2)	_	μS	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	—	μS	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	—	μS			
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)		μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS			
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS			
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns			
		from Clock	400 kHz mode		1000	ns			
			1 MHz mode ⁽²⁾	_	400	ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be		
			400 kHz mode	1.3	—	μs	free before a new		
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start		
IM50	Св	Bus Capacitive L	oading	—	400	pF			
IM51	Tpgd	Pulse Gobbler De	elay	65	390	ns	(Note 3)		
							•		

TABLE 30-47: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

4: These parameters are characterized but not tested in manufacturing.

NOTES: