

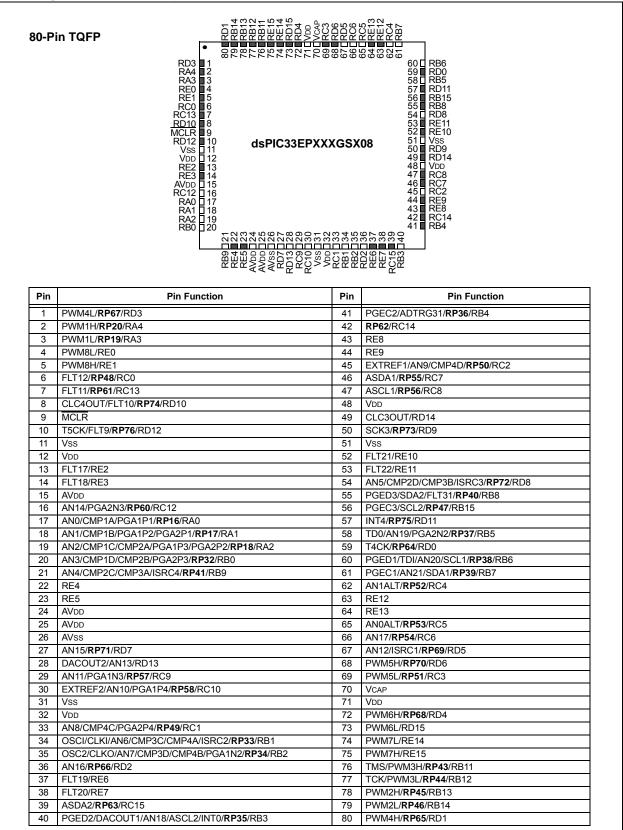
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

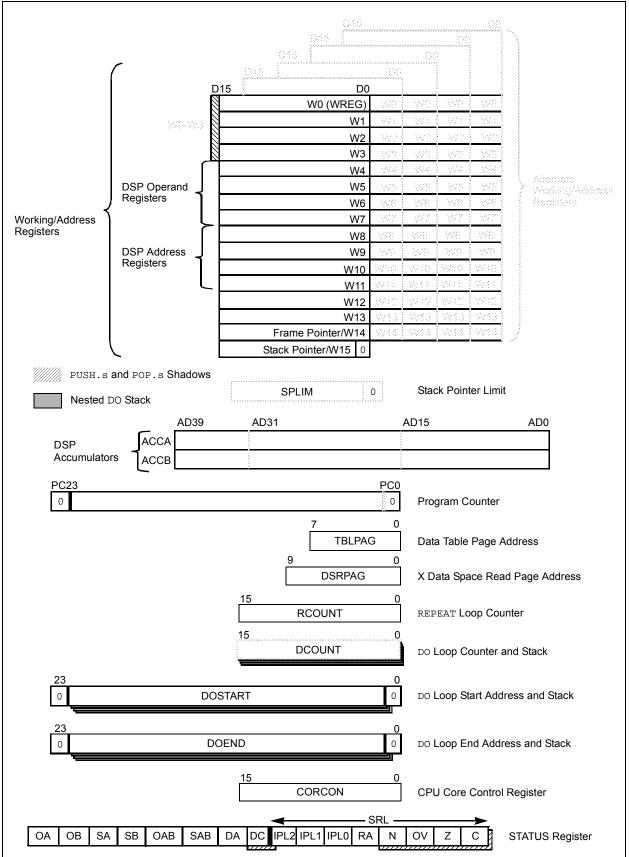
Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs704-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.

4.6.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions, and the DSP accumulator class of instructions, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

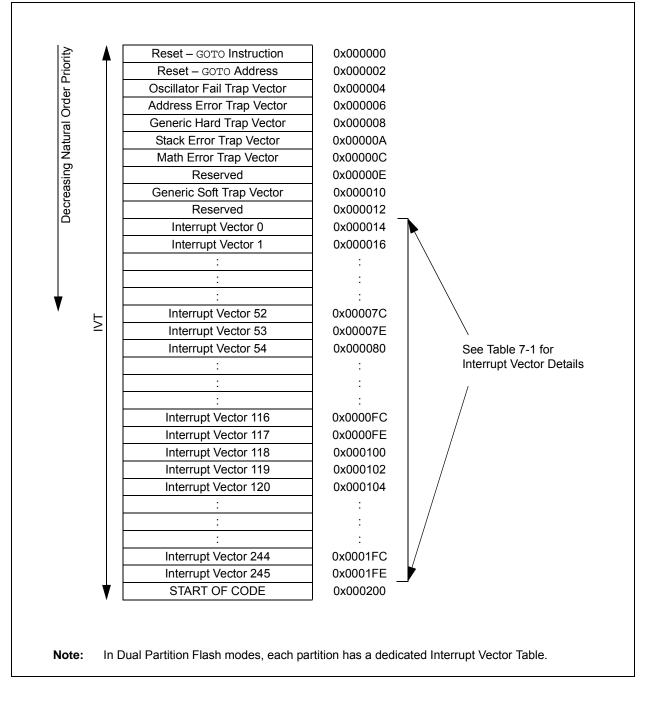
- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal
 - **Note:** Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.6.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).


In summary, the following addressing modes are supported by the MAC class of instructions:

- Register Indirect
- · Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

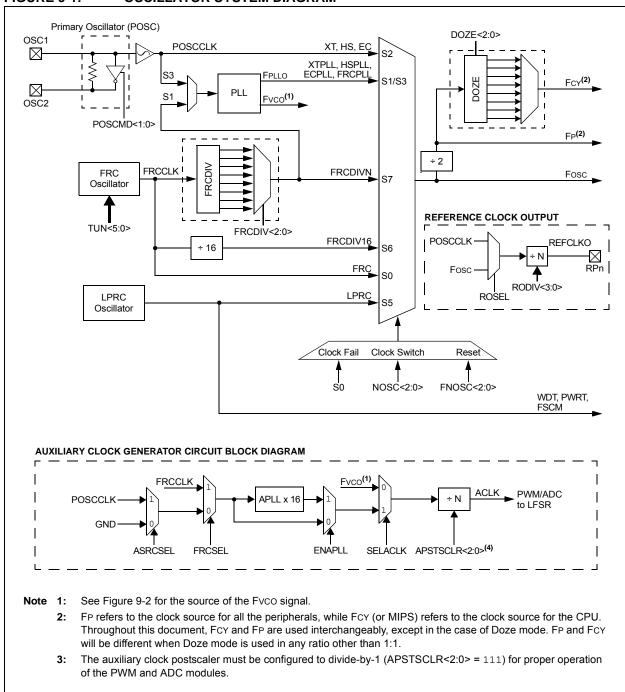
4.6.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

FIGURE 7-1: dsPIC33EPXXXGS70X/80X FAMILY INTERRUPT VECTOR TABLE

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:


- Four DMA Channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU Interrupt after Half or Full Block Transfer Complete
- Byte or Word Transfers
- · Fixed Priority Channel Arbitration
- Manual (software) or Automatic (peripheral DMA requests) Transfer Initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM Start addresses after each block transfer complete)
- DMA Request for each Channel can be Selected from any Supported Interrupt Source
- Debug Support Features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	—	_
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	—	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	—	—
TMR3 – Timer3	00001000	—	—
TMR4 – Timer4	00011011	—	—
TMR5 – Timer5	00011100	—	—
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	
UART2TX – UART2 Transmitter	00011111	_	0x0234 (U2TXREG)
CAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	
CAN1 – TX Data Request	01000110	—	0x0442 (C1TXD)
CAN2 – RX Data Ready	00110111	0X0540(C2RXD)	_
CAN2 – TX Data Request	01000111	_	0X0542(C2TXD)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

REGISTER 11-37: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

bit 15 bit 15 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — RP35R6 RP35R5 RP35R4 RP35R3 RP35R2 RP35R1 RP35R0											
bit 15 Image: constraint of the second constraint	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U-0 R/W-0 R		RP36R6	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0			
— RP35R6 RP35R5 RP35R4 RP35R3 RP35R2 RP35R1 RP35R0 bit 7	bit 15		·					bit 8			
— RP35R6 RP35R5 RP35R4 RP35R3 RP35R2 RP35R1 RP35R0 bit 7											
bit 7 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)		RP35R6	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	bit 7	-						bit 0			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)											
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' x = Bit is unknown bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	Legend:										
bit 15 Unimplemented: Read as '0' bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	R = Readable	bit	W = Writable	bit	U = Unimpler	Unimplemented bit, read as '0'					
bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)	-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unki	nown			
bit 14-8 RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers)											
(see Table 11-13 for peripheral function numbers)	bit 15	Unimplemen	ted: Read as '	0'							
bit 7 Unimplemented: Read as '0'	bit 14-8										
	bit 7	Unimplemen	Unimplemented: Read as '0'								

bit 6-0 **RP35R<6:0>:** Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-38: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	RP38R6	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	RP37R6	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown			
bit 15	Unimplemented: Read as '0'									
bit 14-8 RP38R<6:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits										

- (see Table 11-13 for peripheral function numbers)
- bit 7 Unimplemented: Read as '0'
- bit 6-0 **RP37R<6:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-13 for peripheral function numbers)

U-0	R/W-0						
—	RP181R6	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0
bit 15							bit 8
11-0	R/W-0	R/W-0	R/\/_0	R/W-0	R/\\/_0	R/W-0	R/\\/_0

bit 7							bit 0
—	RP180R6	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0
U-0	R/W-0						

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 Unimplemented: Read as '0'

bit 14-8 **RP181R<6:0>:** Peripheral Output Function is Assigned to RP181 Output Pin bits (see Table 11-13 for peripheral function numbers)

bit 7 Unimplemented: Read as '0'

bit 6-0 **RP180R<6:0>:** Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 11-13 for peripheral function numbers)

16.0 HIGH-SPEED PWM

Note: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM Module" (DS70000323) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The high-speed PWM on dsPIC33EPXXXGS70X/80X devices supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction
- Uninterruptible Power Supply (UPS)
- Inverters
- Battery Chargers
- · Digital Lighting

16.1 Features Overview

The high-speed PWM module incorporates the following features:

- Eight PWMx Generators with Two Outputs per Generator
- · Two Master Time Base modules
- Individual Time Base and Duty Cycle for each
 PWM Output
- Duty Cycle, Dead Time, Phase Shift and a Frequency Resolution of 1.04 ns
- Independent Fault and Current-Limit Inputs
- · Redundant Output
- True Independent Output
- Center-Aligned PWM mode
- · Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Dual Trigger from PWMx to Analog-to-Digital Converter (ADC)
- PWMxL and PWMxH Output Pin Swapping
- Independent PWMx Frequency, Duty Cycle and Phase-Shift Changes
- Enhanced Leading-Edge Blanking (LEB) Functionality
- PWM Capture Functionality

Note: Duty cycle, dead time, phase shift and frequency resolution is 8.32 ns in Center-Aligned PWM mode.

Figure 16-1 conceptualizes the PWM module in a simplified block diagram. Figure 16-2 illustrates how the module hardware is partitioned for each PWMx output pair for the Complementary PWM mode.

The PWM module contains eight PWM generators. The module has up to 16 PWMx output pins: PWM1H/ PWM1L through PWM8H/PWM8L. For complementary outputs, these 16 I/O pins are grouped into high/low pairs. PWM1 through PWM6 can be used to trigger an ADC conversion.

16.2 Feature Description

The PWM module is designed for applications that require:

- High resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode and Push-Pull mode outputs
- The ability to create multiphase PWM outputs

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

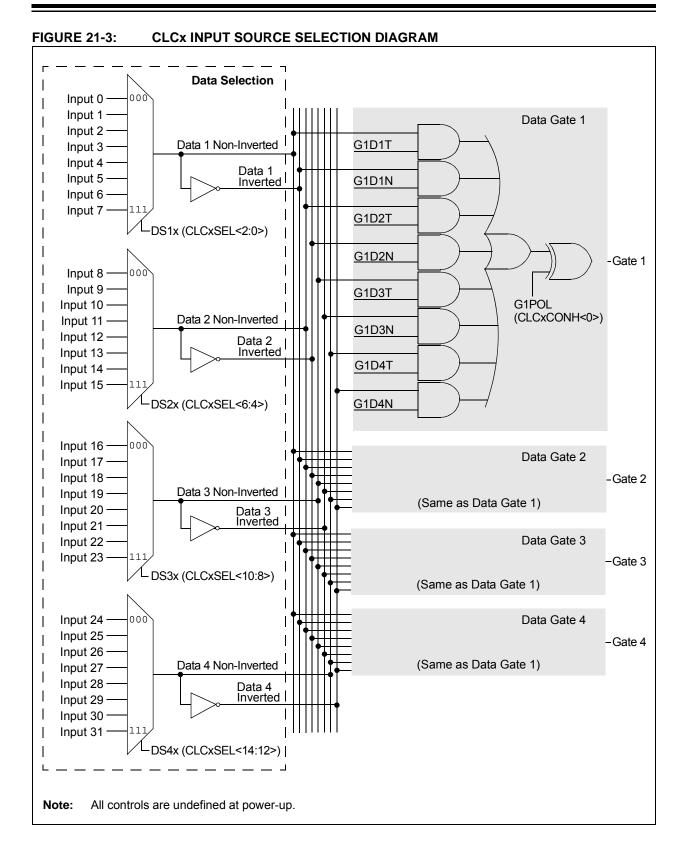
Phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable.

Multiphase PWM is often used to improve DC/DC Converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC Converters are often operated in parallel, but phase shifted in time. A single PWM output, operating at 250 kHz, has a period of 4 μ s but an array of four PWM channels, staggered by 1 μ s each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

Variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50% and the power flow is controlled by varying the relative phase shift between the two PWM generators.

REGISTER 17-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
Note 1:	This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and


2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

PTGSTRT = 1).

REGISTER 19-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

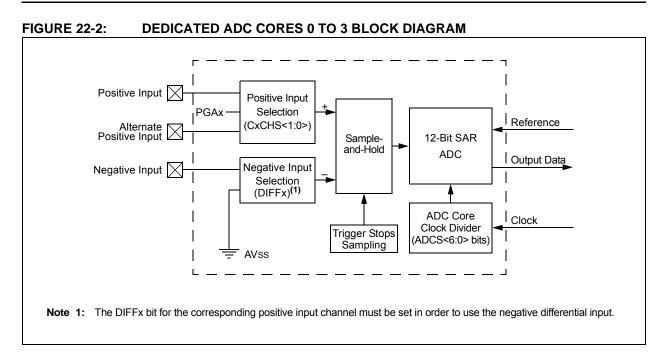
bit 6	 STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C; hardware is clear at the end of the eighth bit of the master receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as l^2C master)
	 1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at the end of the master Stop sequence
	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence

0 = Start condition is not in progress

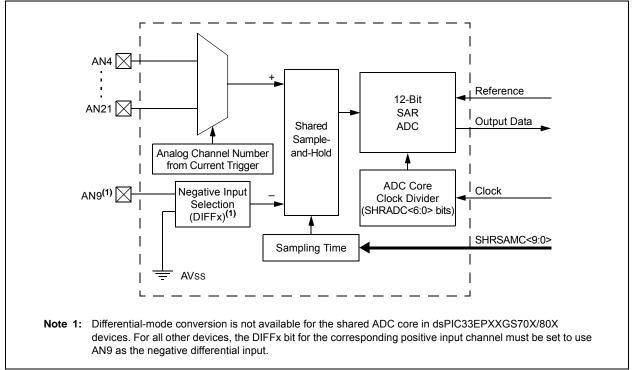
REGISTER 21-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

- bit 2-0 MODE<2:0>: CLCx Mode bits
 - 111 = Single Input Transparent Latch with S and R
 - 110 = JK Flip-Flop with R
 - 101 = Two-Input D Flip-Flop with R
 - 100 = Single Input D Flip-Flop with S and R
 - 011 = SR Latch
 - 010 = Four-Input AND
 - 001 = Four-Input OR-XOR
 - 000 = Four-Input AND-OR

REGISTER 21-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)


U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	G4POL	G3POL	G2POL	G1POL
bit 7							bit 0


l egend.

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-4	Unimplemented: Read as '0'				
bit 3	G4POL: Gate 4 Polarity Control bit				
	1 = Channel 4 logic output is inverted when applied to the logic cell0 = Channel 4 logic output is not inverted				
bit 2	G3POL: Gate 3 Polarity Control bit				
	1 = Channel 3 logic output is inverted when applied to the logic cell0 = Channel 3 logic output is not inverted				
bit 1	G2POL: Gate 2 Polarity Control bit				
	1 = Channel 2 logic output is inverted when applied to the logic cell0 = Channel 2 logic output is not inverted				
bit 0	G1POL: Gate 1 Polarity Control bit				
	1 = Channel 1 logic output is inverted when applied to the logic cell0 = Channel 1 logic output is not inverted				

FIGURE 22-3: SHARED ADC CORE BLOCK DIAGRAM

REGISTER 22-29: ADCAL0H: ADC CALIBRATION REGISTER 0 HIGH

R-0. HSC U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 CAL3RDY ____ ____ ____ CAL3SKIP **CAL3DIFF** CAL3EN **CAL3RUN** bit 15 bit 8 R-0, HSC U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 CAL2RDY CAL2SKIP CAL2DIFF CAL2EN CAL2RUN ____ ____ bit 7 bit 0 Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit -n = Value at POR x = Bit is unknown '1' = Bit is set '0' = Bit is cleared bit 15 CAL3RDY: Dedicated ADC Core 3 Calibration Status Flag bit 1 = Dedicated ADC Core 3 calibration is finished 0 = Dedicated ADC Core 3 calibration is in progress bit 14-12 Unimplemented: Read as '0' bit 11 CAL3SKIP: Dedicated ADC Core 3 Calibration Bypass bit 1 = After power-up, the dedicated ADC Core 3 will not be calibrated 0 = After power-up, the dedicated ADC Core 3 will be calibrated bit 10 CAL3DIFF: Dedicated ADC Core 3 Differential-Mode Calibration bit 1 = Dedicated ADC Core 3 will be calibrated in Differential Input mode 0 = Dedicated ADC Core 3 will be calibrated in Single-Ended Input mode bit 9 CAL3EN: Dedicated ADC Core 3 Calibration Enable bit 1 = Dedicated ADC Core 3 calibration bits (CALxRDY, CALxSKIP, CALxDIFF and CALxRUN) can be accessed by software 0 = Dedicated ADC Core 3 calibration bits are disabled CAL3RUN: Dedicated ADC Core 3 Calibration Start bit bit 8 1 = If this bit is set by software, the dedicated ADC Core 3 calibration cycle is started; this bit is automatically cleared by hardware 0 = Software can start the next calibration cycle bit 7 CAL2RDY: Dedicated ADC Core 2 Calibration Status Flag bit 1 = Dedicated ADC Core 2 calibration is finished 0 = Dedicated ADC Core 2 calibration is in progress bit 6-4 Unimplemented: Read as '0' bit 3 CAL2SKIP: Dedicated ADC Core 2 Calibration Bypass bit 1 = After power-up, the dedicated ADC Core 2 will not be calibrated 0 = After power-up, the dedicated ADC Core 2 will be calibrated bit 2 CAL2DIFF: Dedicated ADC Core 2 Differential-Mode Calibration bit 1 = Dedicated ADC Core 2 will be calibrated in Differential Input mode 0 = Dedicated ADC Core 2 will be calibrated in Single-Ended Input mode bit 1 CAL2EN: Dedicated ADC Core 2 Calibration Enable bit 1 = Dedicated ADC Core 2 calibration bits (CALxRDY, CALxSKIP, CALxDIFF and CALxRUN) can be accessed by software 0 = Dedicated ADC Core 2 calibration bits are disabled CAL2RUN: Dedicated ADC Core 2 Calibration Start bit bit 0 1 = If this bit is set by software, the dedicated ADC Core 2 calibration cycle is started; this bit is automatically cleared by hardware 0 = Software can start the next calibration cycle

REGISTER 23-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			FLTEI	N<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_			FLTE	N<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 23-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3BP3	F3BP2	F3BP1	F3BP0	F2BP3	F2BP2	F2BP1	F2BP0
bit 15		·					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F1BP3	F1BP2	F1BP1	F1BP0	F0BP3	F0BP2	F0BP1	F0BP0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
R = Readabl -n = Value at		W = Writable '1' = Bit is set		U = Unimpler '0' = Bit is cle	,	d as '0' x = Bit is unkr	nown
				•	,		nown
	POR		1	ʻ0' = Bit is cle	,		nown
-n = Value at	F3BP<3:0>:	'1' = Bit is set	k for Filter 3 b	ʻ0' = Bit is cle its	,		iown
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas	k for Filter 3 b n RX FIFO bu	'0' = Bit is cle its ffer	,		nown
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	k for Filter 3 b n RX FIFO bu	'0' = Bit is cle its ffer	,		nown
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	k for Filter 3 b n RX FIFO bu	'0' = Bit is cle its ffer	,		nown
-n = Value at	F3BP<3:0>: 1111 = Filter	'1' = Bit is set RX Buffer Mas hits received in	k for Filter 3 b n RX FIFO bu	'0' = Bit is cle its ffer	,		nown
-n = Value at	F3BP<3:0>: 1111 = Filter 1110 = Filter 0001 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in	k for Filter 3 b n RX FIFO bu n RX Buffer 14 n RX Buffer 1	'0' = Bit is cle its ffer	,		nown
-n = Value at bit 15-12	F3BP<3:0>: 1111 = Filter 1110 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0	ʻ0' = Bit is cle its ffer 1	ared	x = Bit is unkr	nown
-n = Value at bit 15-12 bit 11-8	F3BP<3:0>: 1111 = Filter 1110 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in RX Buffer Mas	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0 k for Filter 2 b	'0' = Bit is cle its ffer 4	es as bits 15-12	x = Bit is unkr	nown
-n = Value at bit 15-12	F3BP<3:0>: 1111 = Filter 1110 = Filter	'1' = Bit is set RX Buffer Mas hits received in hits received in hits received in hits received in RX Buffer Mas	k for Filter 3 b n RX FIFO bur n RX Buffer 14 n RX Buffer 1 n RX Buffer 0 k for Filter 2 b	'0' = Bit is cle its ffer 4	ared	x = Bit is unkr	nown

27.7 JTAG Interface

The dsPIC33EPXXXGS70X/80X family devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"				
	(DS70608) in the "dsPIC33/PIC24 Family				
	Reference Manual" for further information on				
	usage, configuration and operation of the				
	JTAG interface.				

27.8 In-Circuit Serial Programming[™] (ICSP[™])

The dsPIC33EPXXXGS70X/80X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming $\mathbb{C}(\mathsf{LSP}^{\mathsf{TM}})$.

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.9 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/ Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, VSS and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.10 Code Protection and CodeGuard™ Security

dsPIC33EPXXXGS70X/80X devices offer multiple levels of security for protecting individual intellectual property. The program Flash protection can be broken up into three segments: Boot Segment (BS), General Segment (GS) and Configuration Segment (CS). Boot Segment has the highest security privilege and can be thought to have limited restrictions when accessing other segments. General Segment has the least security and is intended for the end user system code. Configuration Segment contains only the device user configuration data which is located at the end of the program memory space.

The code protection features are controlled by the Configuration registers, FSEC and FBSLIM. The FSEC register controls the code-protect level for each segment and if that segment is write-protected. The size of BS and GS will depend on the BSLIM<12:0> bits setting and if the Alternate Interrupt Vector Table (AIVT) is enabled. The BSLIM<12:0> bits define the number of pages for BS with each page containing 512 IW. The smallest BS size is one page, which will consist of the Interrupt Vector Table (IVT) and 256 IW of code protection.

If the AIVT is enabled, the last page of BS will contain the AIVT and will not contain any BS code. With AIVT enabled, the smallest BS size is now two pages (1024 IW), with one page for the IVT and BS code, and the other page for the AIVT. Write protection of the BS does not cover the AIVT. The last page of BS can always be programmed or erased by BS code. The General Segment will start at the next page and will consume the rest of program Flash except for the Flash Configuration Words. The IVT will assume GS security only if BS is not enabled. The IVT is protected from being programmed or page erased when either security segment has enabled write protection.

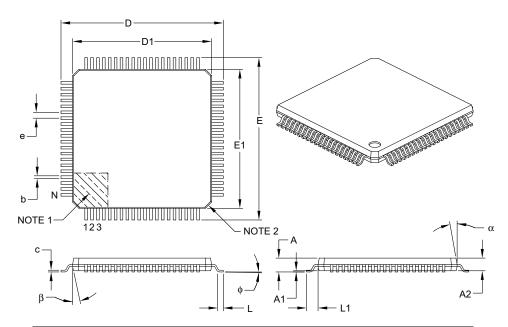
Note: Refer to "CodeGuard™ Intermediate Security" (DS70005182) in the "dsPIC33/ PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

TABLE 30-43:SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK3 Input Frequency	—	—	25	MHz	(Note 3)
SP72	TscF	SCK3 Input Fall Time				ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK3 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO3 Data Output Fall Time	—	-	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO3 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO3 Data Output Valid after SCK3 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO3 Data Output Setup to First SCK3 Edge	20	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI3 Data Input to SCK3 Edge	20	—		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI3 Data Input to SCK3 Edge	15	_		ns	
SP50	TssL2scH, TssL2scL	SS3 ↓ to SCK3 ↑ or SCK3 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS3 ↑ to SDO3 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS3 ↑ after SCK3 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)
SP60	TssL2doV	SDO3 Data Output Valid after SS3 Edge	—	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.


3: The minimum clock period for SCK3 is 66.7 ns. Therefore, the SCK3 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI3 pins.

5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIMETERS			
	Dimension Limits		NOM	MAX	
Number of Leads	N		80		
Lead Pitch	e		0.50 BSC		
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E		14.00 BSC		
Overall Length	D		14.00 BSC		
Molded Package Width	E1		12.00 BSC		
Molded Package Length	D1	12.00 BSC			
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

F

61
61
64
63
62
63
62

G

Getting Started Guidelines	15
Connection Requirements	15
CPU Logic Filter Capacitor Connection (VCAP)	16
Decoupling Capacitors	15
External Oscillator Pins	17
ICSP Pins	17
Master Clear (MCLR) Pin	16
Oscillator Value Conditions on Start-up	18
Targeted Applications	18
Unused I/Os	18

н

High-Speed Analog Comparator	
Applications	335
Description	334
Digital-to-Analog Comparator (DAC)	335
Features Overview	333
Hysteresis	336
Pulse Stretcher and Digital Logic	335
Resources	336
High-Speed PWM	
Features	187
Resources	188
Write-Protected Registers	188
High-Speed, 12-Bit Analog-to-Digital Converter (ADC)	273
Control Registers	276
Features Overview	273
Resources	276

I

I/O Ports 12	25
Configuring Analog/Digital Port Pins13	30
Control Registers 13	31
Helpful Tips 14	40
Open-Drain Configuration13	30
Parallel I/O (PIO)12	
Register Maps 12	27
PORTA 12	27
PORTB 12	27
PORTC 12	28
PORTD 12	28
PORTE 12	29
Resources14	41
Write/Read Timing13	30
In-Circuit Debugger 35	57
MPLAB ICD 3	73
PICkit 3 Programmer	73
In-Circuit Emulation34	47
In-Circuit Serial Programming (ICSP) 347, 35	57
Input Capture17	77
Control Registers 17	78
Resources17	77

Input Change Notification (ICN)	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	53
MAC Instructions	54
MCU Instructions	
Move and Accumulator Instructions	54
Other Instructions	54
Instruction Set Summary	361
Overview	364
Symbols Used in Opcode Descriptions	362
Instruction-Based Power-Saving Modes	115
Idle	116
Sleep	
Inter-Integrated Circuit (I ² C)	245
Control Registers	247
Resources	245
Inter-Integrated Circuit. See I ² C.	
Internet Address	474
Interrupt Controller	
Alternate Interrupt Vector Table (AIVT)	73
Control and Status Registers	
INTCON1	81
INTCON2	81
INTCON3	81
INTCON4	81
INTTREG	81
Interrupt Vector Details	
Interrupt Vector Table (IVT)	73
Reset Sequence	73
Resources	
Interrupts Coincident with Power Save Instructions	116
J	

JTAG Boundary Scan Interface	347
JTAG Interface	357

L

Leading-Edge Blanking (LEB)	187
LPRC Oscillator	
Use with WDT	356

Μ

Memory Organization	31
Resources	39
Special Function Register Maps	40
Microchip Internet Web Site	474
Modulo Addressing	
Applicability	
Operation Example	55
Start and End Address	
W Address Register Selection	55
MPLAB REAL ICE In-Circuit Emulator System	373
MPLAB X Integrated Development	
Environment Software	371
MPLINK Object Linker/MPLIB Object Librarian	372
Multiplexer Input Sources	
CLC1	265
CLC2	266
CLC3	267
CLC4	268