

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs704t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PWM	1		FCLCON3	C64	000000000000000000000000000000000000000	IOCON6	CC2	1100000000000000000
PTCON	C00	000000000000000000000000000000000000000	PDC3	C66	000000000000000000000000000000000000000	FCLCON6	CC4	000000000000000000000000000000000000000
PTCON2	C02	000000000000000000000000000000000000000	PHASE3	C68	000000000000000000000000000000000000000	PDC6	CC6	000000000000000000000000000000000000000
PTPER	C04	1111111111111000	DTR3	C6A	000000000000000000000000000000000000000	PHASE6	CC8	000000000000000000000000000000000000000
SEVTCMP	C06	000000000000000000000000000000000000000	ALTDTR3	C6C	000000000000000000000000000000000000000	DTR6	CCA	000000000000000000000000000000000000000
MDC	C0A	000000000000000000000000000000000000000	SDC3	C6E	000000000000000000000000000000000000000	ALTDTR6	CCC	000000000000000000000000000000000000000
STCON	C0E	000000000000000000000000000000000000000	SPHASE3	C70	000000000000000000000000000000000000000	SDC6	CCE	000000000000000000000000000000000000000
STCON2	C10	000000000000000000000000000000000000000	TRIG3	C72	000000000000000000000000000000000000000	SPHASE6	CD0	000000000000000000000000000000000000000
STPER	C12	1111111111111000	TRGCON3	C74	000000000000000000000000000000000000000	TRIG6	CD2	000000000000000000000000000000000000000
SSEVTCMP	C14	000000000000000000000000000000000000000	STRIG3	C76	000000000000000000000000000000000000000	TRGCON6	CD4	000000000000000000000000000000000000000
СНОР	C1A	000000000000000000000000000000000000000	PWMCAP3	C78	000000000000000000000000000000000000000	STRIG6	CD6	000000000000000000000000000000000000000
PWMKEY	C1E	*****	LEBCON3	C7A	000000000000000000000000000000000000000	PWMCAP6	CD8	000000000000000000000000000000000000000
PWM Generato	r		LEBDLY3	C7C	000000000000000000000000000000000000000	LEBCON6	CDA	000000000000000000000000000000000000000
PWMCON1	C20	000000000000000000000000000000000000000	AUXCON3	C7E	000000000000000000000000000000000000000	LEBDLY6	CDC	000000000000000000000000000000000000000
IOCON1	C22	110000000000000000	PWMCON4	C80	000000000000000000000000000000000000000	AUXCON6	CDE	000000000000000000000000000000000000000
FCLCON1	C24	000000000000000000000000000000000000000	IOCON4	C82	110000000000000000	PWMCON7	CE0	000000000000000000000000000000000000000
PDC1	C26	000000000000000000	FCLCON4	C84	000000000000000000	IOCON7	CE2	11000000000000000
PHASE1	C28	000000000000000000	PDC4	C86	000000000000000000	FCLCON7	CE4	000000000000000000
DTR1	C2A	000000000000000000	PHASE4	C88	000000000000000000	PDC7	CE6	000000000000000000000000000000000000000
ALTDTR1	C2C	000000000000000000	DTR4	C8A	000000000000000000	PHASE7	CE8	000000000000000000000000000000000000000
SDC1	C2E	000000000000000000	ALTDTR4	C8C	000000000000000000	DTR7	CEA	000000000000000000000000000000000000000
SPHASE1	C30	000000000000000000	SDC4	C8E	000000000000000000	ALTDTR7	CEC	000000000000000000000000000000000000000
TRIG1	C32	000000000000000000	SPHASE4	C90	000000000000000000	SDC7	CEE	000000000000000000000000000000000000000
TRGCON1	C34	000000000000000000	TRIG4	C92	000000000000000000	SPHASE7	CF0	000000000000000000
STRIG1	C36	00000000000000000	TRGCON4	C94	000000000000000000	TRIG7	CF2	000000000000000000
PWMCAP1	C38	00000000000000000	STRIG4	C96	000000000000000000	TRGCON7	CF4	000000000000000000000000000000000000000
LEBCON1	C3A	000000000000000000	PWMCAP4	C98	000000000000000000	STRIG7	CF6	000000000000000000000000000000000000000
LEBDLY1	C3C	000000000000000000	LEBCON4	C9A	000000000000000000	PWMCAP7	CF8	000000000000000000000000000000000000000
AUXCON1	C3E	000000000000000000	LEBDLY4	C9C	000000000000000000	LEBCON7	CFA	000000000000000000000000000000000000000
PWMCON2	C40	000000000000000000	AUXCON4	C9E	000000000000000000	LEBDLY7	CFC	000000000000000000000000000000000000000
IOCON2	C42	11000000000000000	PWMCON5	CA0	000000000000000000	AUXCON7	CFE	000000000000000000000000000000000000000
FCLCON2	C44	00000000000000000	IOCON5	CA2	11000000000000000	PWMCON8	D00	000000000000000000000000000000000000000
PDC2	C46	000000000000000000	FCLCON5	CA4	000000000000000000	IOCON8	D02	11000000000000000
PHASE2	C48	000000000000000000	PDC5	CA6	000000000000000000	FCLCON8	D04	000000000000000000000000000000000000000
DTR2	C4A	000000000000000000	PHASE5	CA8	000000000000000000	PDC8	D06	000000000000000000000000000000000000000
ALTDTR2	C4C	000000000000000000	DTR5	CAA	000000000000000000000000000000000000000	PHASE8	D08	000000000000000000000000000000000000000
SDC2	C4E	000000000000000000	ALTDTR5	CAC	000000000000000000000000000000000000000	ALTDTR8	D0C	000000000000000000000000000000000000000
SPHASE2	C50	000000000000000000000000000000000000000	SDC5	CAE	000000000000000000000000000000000000000	SDC8	D0E	000000000000000000000000000000000000000
TRIG2	C52	000000000000000000000000000000000000000	SPHASE5	CB0	000000000000000000000000000000000000000	SPHASE8	D10	000000000000000000000000000000000000000
TRGCON2	C54	000000000000000000000000000000000000000	TRIG5	CB2	000000000000000000000000000000000000000	TRIG8	D12	000000000000000000000000000000000000000
STRIG2	C56	000000000000000000000000000000000000000	TRGCON5	CB4	000000000000000000000000000000000000000	TRGCON8	D14	000000000000000000000000000000000000000
PWMCAP2	C58	000000000000000000000000000000000000000	STRIG5	CB6	000000000000000000000000000000000000000	STRIG8	D16	000000000000000000000000000000000000000
LEBCON2	C5A	000000000000000000000000000000000000000	PWMCAP5	CB8	000000000000000000000000000000000000000	PWMCAP8	D18	000000000000000000000000000000000000000
LEBDLY2	C5C	000000000000000000000000000000000000000	LEBCON5	CBA	000000000000000000000000000000000000000	LEBCON8	D1A	000000000000000000000000000000000000000
AUXCON2	C5E	000000000000000000000000000000000000000	LEBDLY5	CBC	000000000000000000000000000000000000000	LEBDLY8	D1C	000000000000000000000000000000000000000
PWMCON3	C60	000000000000000000	AUXCON5	CBE	000000000000000000000000000000000000000	AUXCON8	D1E	000000000000000000000000000000000000000
IOCON3	C62	110000000000000000	PWMCON6	CC0	000000000000000000000000000000000000000			

TABLE 4-14: SFR BLOCK C00h-D00h

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

4.9 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGS70X/80X family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXXGS70X/80X family devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-19: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0		PC<22:1>				
(Code Execution)			x xxxx xxx0					
TBLRD/TBLWT (Byte/Word Read/Write)	User	TB	LPAG<7:0>	Data EA<15:0>				
		02	xxx xxxx	XXXX XXXX XXXX XXXX				
	Configuration	TBLPAG<7:0>		Data EA<15:0>				
		12	xxx xxxx	xxxx	xx			

FIGURE 4-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

Note 1: The Least Significant bit (LSb) of Program Space addresses is always fixed as '0' to maintain word alignment of data in the Program and Data Spaces.

2: Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0	⁽¹⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/C-0	R-0	R/W-0	R/C-0				
WR	WREN	WRERR	NVMSIDL ⁽²⁾	SFTSWP ⁽⁶⁾	P2ACTIV ⁽⁶⁾	RPDF	URERR				
bit 15	•				-		bit 8				
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾				
	—	_	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^(3,4)				
bit 7							bit 0				
Legend:		C = Clearab	le bit	SO = Settable	Only bit						
R = Reada	able bit	W = Writable	e bit	U = Unimplem	ented bit, read a	as '0'					
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	ired	x = Bit is unkn	own				
bit 15	WR: Write C	ontrol bit ⁽¹⁾									
	1 = Initiates	a Program Fl	ash Memory c	or erase operati	on; the operation	on is self-timed	and the bit is				
	⊂cleared 0 = Program	by hardware o o or erase one	nce the operation is compl	tion is complete	2						
bit 14	WREN Write	- Enable bit(1)									
Sit 11	1 = Enables	Flash program	n/erase operat	ions							
	0 = Inhibits I	-lash program	/erase operation	ons							
bit 13	bit 13 WRERR: Write Sequence Error Flag bit ⁽¹⁾										
	1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically										
	on any s	et attempt of the	ne WR bit)	pleted normally	,						
hit 12		IVM Stop in Id	le Control bit(2)	/						
	1 = Flash vol	ltage regulato	r goes into Sta	ndby mode dur	ina Idle mode						
	0 = Flash vo	ltage regulato	r is active duri	ng Idle mode							
bit 11	SFTSWP: Pa	artition Soft Sv	vap Status bit ⁽⁶	5)							
	1 = Partition	s have been s	successfully sw	apped using th	е воотѕwр inst	ruction (soft sw	ap)				
	0 = Awaiting the Activ	successful pa Partition ba	artition swap us sed on the FB	ing the воотsи TSEQ register	IP instruction or	a device Reset	will determine				
bit 10	P2ACTIV: Pa	artition 2 Activ	e Status bit ⁽⁶⁾								
	1 = Partition 0 = Partition	2 Flash is ma 1 Flash is ma	pped into the a pped into the a	active region active region							
bit 9	RPDF: Row	Programming	Data Format b	oit							
	1 = Row dat	a to be stored	in RAM is in c	ompressed forr	nat						
	0 = Row dat	a to be stored	in RAM is in u	incompressed f	ormat						
bit 8	URERR: Roy	w Programmin	ig Data Underr	un Error bit							
	1 = Indicates 0 = No data	s row program underrun erro	iming operation or is detected	n has been term	ninated						
bit 7-4	Unimplemer	nted: Read as	· '0'								
Note 1:	These bits can or	nly be reset on	a POR.								
2:	If this bit is set, po	ower consump	otion will be fur	ther reduced (II	DLE) and upon e	exiting Idle mod	e, there is a				
3:	All other combina	tions of NVM)P<3:0> are u	nimplemented							
4:	Execution of the	PWRSAV instru	ction is ignored	d while any of th	ne NVM operatio	ons are in prog	ress.				
5:	Two adjacent wor	rds on a 4-wor	d boundary ar	e programmed	during execution	n of this operati	ion.				
6:	Only applicable w	hen operating	, in Dual Partiti	on mode.	-	-					

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—		_	_	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
—	—	—	_		LSTCI	H<3:0>	
bit 7							bit 0
Legend:							
R = Readab	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown	
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3-0	LSTCH<3:0>	: Last DMA Co	ntroller Chani	nel Active Statu	us bits		
	1111 = No DM	MA transfer ha	s occurred sir	nce system Res	set		
	•	veu					
	•						
	•						
	0100 = Rese r	rved					
	0011 = Last c	lata transfer wa	as handled by	Channel 3			
	0010 = Last c	lata transfer wa	as handled by	Channel 2			
	0001 = Last c	lata transfer wa	as handled by	Channel 1			
	0000 = Last c	lata transfer wa	as handled by	Channel 0			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
		—		—		—	SPI3MD		
bit 7							bit 0		
									
Legend:									
R = Readable	e bit	W = Writable	oit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15	PWM8MD: P	WM8 Module D	isable bit						
	$1 = PWM8 m_0$	odule is disable	d d						
hit 14			u isahle hit						
bit I I	1 = PWM7 module is disabled								
	0 = PWM7 m	odule is enable	d						
bit 13	PWM6MD: P	WM6 Module D	isable bit						
	1 = PWM6 m	odule is disable	d						
	0 = PWM6 m	odule is enable	d						
bit 12	PWM5MD: P	WM5 Module D	isable bit						
	$1 = PWM5 m_0$	odule is disable	d d						
hit 11			isahle hit						
bit II	1 = PWM4 m	odule is disable	d						
	0 = PWM4 m	odule is enable	d						
bit 10	PWM3MD: P	WM3 Module D	isable bit						
	1 = PWM3 m	odule is disable	d						
	0 = PWM3 m	odule is enable	d						
bit 9	PWM2MD: P	WM2 Module D	isable bit						
	$1 = PWM2 m_0^2$	odule is disable odule is enable	d d						
bit 8	PWM1MD: P	WM1 Module D	isable bit						
bit o	1 = PWM1 m	odule is disable	d						
	0 = PWM1 m	odule is enable	d						
bit 7-1	Unimplemen	ted: Read as 'o)'						
bit 0	SPI3MD: SPI	3 Module Disat	ole bit						
	1 = SPI3 mod	lule is disabled							
	$0 = SPI3 \mod$	iule is enabled							

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

TABLE 11-10: PORTE REGISTER MAP⁽¹⁾

IADLL I	1-10. F		LOISILI													
File Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TRISE								TRISE<	:15:0>							
PORTE		RE<15:0>														
LATE		LATE<15:0>														
ODCE		ODCE<15:0>														
CNENE								CNIEE<	<15:0>							
CNPUE								CNPUE	<15:0>							
CNPDE	CNPDE<15:0>															
ANSELE		—	—	—	—	_	_	—	—		_	_	_	_	_	

Legend: — = unimplemented, read as '0'.

Note 1: Refer to Table 11-5 for bit availability on each pin count variant.

REGISTER 11-17: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT4R7	FLT4R6	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0
bit 15	- -						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT3R7	FLT3R6	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0
bit 7		•					bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	FLT4R<7:0>: Assign PWM Fault 4 (FLT4) to the Corresponding RPn Pin bits
	See Table 11-11 which contains a list of remappable inputs for the index value.
bit 7-0	FLT3R<7:0>: Assign PWM Fault 3 (FLT3) to the Corresponding RPn Pin bits
	See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-18: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| U1CTSR7 | U1CTSR6 | U1CTSR5 | U1CTSR4 | U1CTSR3 | U1CTSR2 | U1CTSR1 | U1CTSR0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| U1RXR7 | U1RXR6 | U1RXR5 | U1RXR4 | U1RXR3 | U1RXR2 | U1RXR1 | U1RXR0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

 bit 15-8
 U1CTSR<7:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

 bit 7-0
 U1RXR<7:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits

See Table 11-11 which contains a list of remappable inputs for the index value.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP53R6	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	RP52R6	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cleared x = B			nown

REGISTER 11-45: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

bit 15	Unimplemented: Read as '0'
bit 14-8	RP53R<6:0>: Peripheral Output Function is Assigned to RP53 Output Pin bits (see Table 11-13 for peripheral function numbers)
bit 7	Unimplemented: Read as '0'
bit 6-0	RP52R<6:0>: Peripheral Output Function is Assigned to RP52 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 11-46: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP55R6	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	RP54R6	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	
bit 15 Unimplemented: Read as '0'								
bit 14-8	bit 14-8 RP55R<6:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-13 for peripheral function numbers)							

- bit 7 **Unimplemented:** Read as '0'
- RP54R<6:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits bit 6-0 (see Table 11-13 for peripheral function numbers)

REGISTER 16-10: MDC: PWMx MASTER DUTY CYCLE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	2<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur				x = Bit is unkr	nown		

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

Note 1: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

2: As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

REGISTER 16-11: PWMKEY: PWMx PROTECTION LOCK/UNLOCK KEY REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PWMKE	Y<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PWMK	EY<7:0>			
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 **PWMKEY<15:0>:** PWMx Protection Lock/Unlock Key Value bits

REGISTER 16-22: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (x = 1 to 8) (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator bits
	11111 = Reserved
	10001 = Reserved
	10000 = Analog Comparator 4
	01111 = Analog Comparator 3
	01110 = Analog Comparator 2
	01101 = Analog Comparator 1
	01100 = Fault 12
	01011 = Fault 11
	01010 = Fault 10
	01001 = Fault 9
	01000 = Fault 8
	00111 = Fault 7
	00110 = Fault 6
	00101 = Fault 5
	00100 = Fault 4
	00011 = Fault 3
	00010 = Fault 2
	00000 = Reserved
bit 2	FLTPOL: Fault Polarity for PWMx Generator bit ⁽¹⁾
	1 = The selected Fault source is active-low
	0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWMx Generator bits
	11 = Fault input is disabled
	10 = Reserved
	01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (cycle)
	00 = The selected Fault source forces the PWMxH. PWMxL pins to FLTDATx values (latched condition)

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

REGISTER 16-23: STRIGx: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 8)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STRGC	MP<12:5>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
	ę	STRGCMP<4:0	>			—	_	
bit 7						·	bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-3	STRGCMP<1	2:0>: Seconda	iry Trigger Co	mpare Value bits	3			
	When the sec that can trigg	condary PWMx er the ADC mod	functions in th dule.	e local time base	e, this register	contains the co	mpare values	
bit 2-0	Unimplemen	ted: Read as 'd)'					

Note 1: STRIGx cannot generate the PWM trigger interrupts.

REGISTER 17-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_			PTGQPTR<4:0	0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the Step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 17-13: PTGQUEX: PTG STEP QUEUE REGISTER x (x = 0-15)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STEP(2x +	· 1)<7:0> (2)					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STEP(2x)<7:0> ⁽²⁾									
bit 7							bit 0		

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾
A queue location for storage of the STEP(2x +1) command byte.bit 7-0STEP(2x)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP(2x) command byte.

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 17-1 for the Step command encoding.
 - 3: The Step registers maintain their values on any type of Reset.

PTG Output Number	PTG Output Description			
PTGO0	Trigger/synchronization source for OC1			
PTGO1	Trigger/synchronization source for OC2			
PTGO2	Trigger/synchronization source for OC3			
PTGO3	Trigger/synchronization source for OC4			
PTGO4	Clock source for OC1			
PTGO5	Clock source for OC2			
PTGO6	Clock source for OC3			
PTGO7	Clock source for OC4			
PTGO8	Trigger/synchronization source for IC1			
PTGO9	Trigger/synchronization source for IC2			
PTGO10	Trigger/synchronization source for IC3			
PTGO11	Trigger/synchronization source for IC4			
PTGO12	Sample trigger for ADC			
PTGO13	Reserved			
PTGO14	Reserved			
PTGO15	Reserved			
PTGO16	PWM time base synchronous source for PWM3			
PTGO17	PWM time base synchronous source for PWM4			
PTGO18	PWM time base synchronous source for PWM5			
PTGO19	PWM time base synchronous source for PWM6			
PTGO20	Reserved			
PTGO21	Reserved			
PTGO22	Reserved			
PTGO23	Reserved			
PTGO24	Reserved			
PTGO25	Reserved			
PTGO26	CLC1 input			
PTGO27	CLC2 input			
PTGO28	CLC3 input			
PTGO29	CLC4 input			
PTGO30	PTG output to PPS input selection, RPI6			
PTGO31	PTG output to PPS input selection, RPI7			

TABLE 17-2: PTG OUTPUT DESCRIPTIONS

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
—	—	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0		
bit 15							bit 8		
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0		
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	FILHIT<4:0>:	Filter Hit Num	ber bits						
	10000-11111	1 = Reserved							
	01111 = Filte	r 15							
	•								
	•								
	00001 = Filte	r 1							
	00000 = Filte	r 0							
bit 7	Unimplemen	ted: Read as '	0'						
bit 6-0	ICODE<6:0>:	: Interrupt Flag	Code bits						
	1000101-111	11111 = Reser	ved						
	1000100 = P 1000011 = R	eceiver overflo	w interrupt						
1000011 – Re (/ake-up interru	pt						
	1000001 = Error interrupt								
	1000000 = N	o interrupt							
	•								
	•								
	0010000-011	11111 = Reser	ved						
	0001111 = R	B15 buffer inte	rrupt						
	•								
	•								
	0001001 = R	B9 buffer inter							
	0001000 = R 0000111 = T	RB7 buffer inter	rrunt						
	0000111 = T 0000110 = T	RB6 buffer inte	errupt						
	0000101 = T	RB5 buffer inte	rrupt						
	0000100 = T	RB4 buffer inte	rrupt						
	0000011 = T	RB3 buffer inte	errupt						
	0000010 = T 0000001 = T	RB1 buffer inte	errupt						
	0000000 = T	RB0 buffer inte	rrupt						

REGISTER 23-3: CxVEC: CANx INTERRUPT CODE REGISTER

TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Description					
CTXT4<2:0>	Alternate Working Register Set 4 Interrupt Priority Level (IPL) Select bits					
	111 = Reserved					
	110 = Assigned to IPL of 7					
	101 = Assigned to IPL of 6					
	100 = Assigned to IPL of 5					
	011 = Assigned to IPL of 4					
	010 = Assigned to IPL of 3					
	001 = Assigned to IPL of 2					
	000 = Assigned to IPL of 1					
BTMODE<1:0>	Boot Mode Configuration bits					
	11 = Single Partition mode					
	10 = Dual Partition mode					
	01 = Protected Dual Partition mode					
	00 = Privileged Dual Partition mode					

Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.

NOTES:

FIGURE 30-23: SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS^(1,2)

32.2 Package Details

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SEE VIEW C

Microchip Technology Drawing C04-052C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Lin		MIN	NOM	MAX	
Number of Leads	Ν	44			
Lead Pitch	е	0.80 BSC			
Overall Height	Α	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	igth D1 10.00 BSC				
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	θ	0°	3.5°	7°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2