

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs705-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Address	All Resets	Register	Address	All Resets	Register	Address	All Resets
PORTA			ANSELB	E1E	0000001011101111	CNPDD	E3C	000000000000000000000000000000000000000
TRISA	E00	000000000011111	PORTC			ANSELD	E3E	0110000110100000
PORTA	E02	000000000000000000	TRISC	E20	0111011111111111	PORTE		
LATA	E04	000000000000000000	PORTC	E22	000000000000000000	TRISE	E40	11111111111111111
ODCA	E06	000000000000000000	LATC	E24	000000000000000000	PORTE	E42	000000000000000000
CNENA	E08	000000000000000000	ODCC	E26	000000000000000000	LATE	E44	000000000000000000
CNPUA	E0A	000000000000000000	CNENC	E28	000000000000000000	ODCE	E46	000000000000000000
CNPDA	E0C	000000000000000000	CNPUC	E2A	000000000000000000	CNENE	E48	000000000000000000
ANSELA	E0E	000000000000111	CNPDC	E2C	000000000000000000	CNPUE	E4A	000000000000000000
PORTB			ANSELC	E2E	0001011001110111	CNPDE	E4C	000000000000000000000000000000000000000
TRISB	E10	0111101111111111	PORTD			ANSELE	E4E	110000010000000
PORTB	E12	000000000000000000	TRISD	E30	11111111111111111	CPU		
LATB	E14	000000000000000000	PORTD	E32	000000000000000000	VISI	F88	000000000000000000
ODCB	E16	000000000000000000	LATD	E34	000000000000000000000000000000000000000	JTAG		
CNENB	E18	000000000000000000	ODCD	E36	000000000000000000	JDATAH	FF0	00000000000000000
CNPUB	E1A	000000000000000000	CNEND	E38	000000000000000000	JDATAL	FF2	00000000000000000
CNPDB	E1C	000000000000000000	CNPUD	E3A	000000000000000000			

TABLE 4-15: SFR BLOCK E00h-F00h

Legend: x = unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS7000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGS70X/80X family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGS70X/80X family CPU.

The interrupt controller has the following features:

- Six Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies
- Alternate Interrupt Vector Table (AIVT) for Debug Support

7.1 Interrupt Vector Table

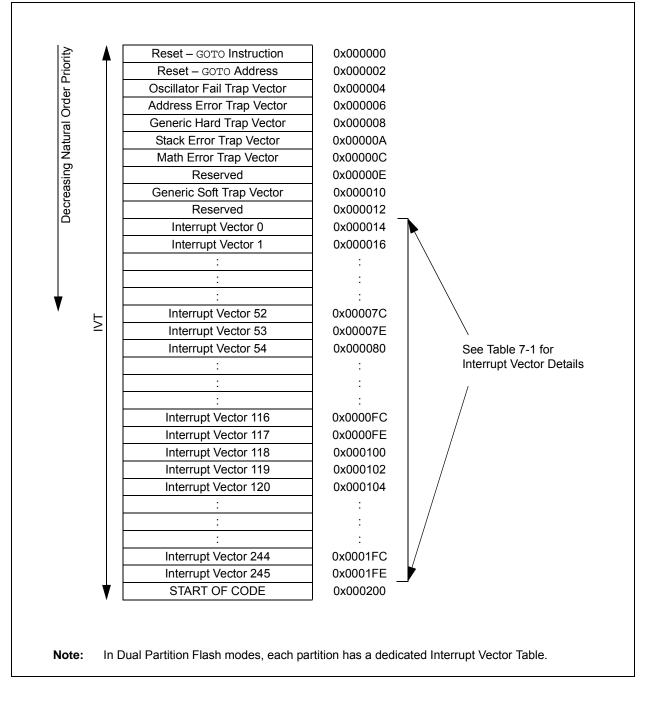
The dsPIC33EPXXXGS70X/80X family Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location, 000004h. The IVT contains six non-maskable trap vectors and up to 246 sources of interrupts. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT), shown in Figure 7-2, is available only when the Boot Segment is defined and the AIVT has been enabled. To enable the Alternate Interrupt Vector Table, the Configuration bit, AIVTDIS in the FSEC register, must be programmed and the AIVTEN bit must be set (INTCON2<8> = 1). When the AIVT is enabled, all interrupt and exception processes use the alternate vectors instead of the default vectors. The AIVT begins at the start of the last page of the Boot Segment, defined by BSLIM<12:0>. The second half of the page is no longer usable space. The Boot Segment must be at least 2 pages to enable the AIVT.

Note: Although the Boot Segment must be enabled in order to enable the AIVT, application code does not need to be present inside of the Boot Segment. The AIVT (and IVT) will inherit the Boot Segment code protection.


The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGS70X/80X family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1: dsPIC33EPXXXGS70X/80X FAMILY INTERRUPT VECTOR TABLE

REGISTER 8-5: DMAxSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0			
	_				—		_			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	STB<23:16>									
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: DMA Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAxSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 STB<15:0>: DMA Secondary Start Address bits (source or destination)

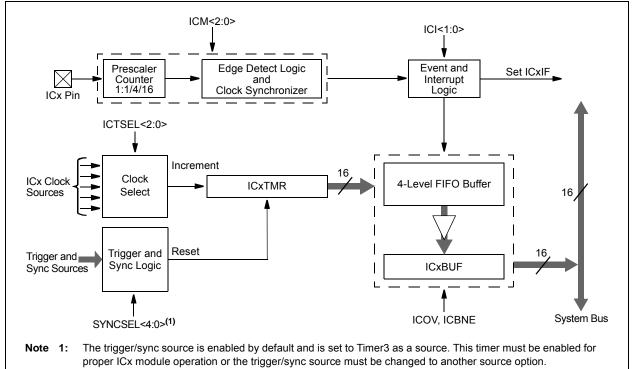
14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/ 80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture with Dedicated Timer" (DS70000352) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurements. The dsPIC33EPXXXGS70X/80X devices support four input capture channels.

Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in all modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation, with up to 21 User-Selectable Trigger/Sync Sources available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to Six Clock Sources available for each module, Driving a Separate Internal 16-Bit Counter


14.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

14.1.1 KEY RESOURCES

- "Input Capture with Dedicated Timer" (DS70000352) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 14-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

REGISTER 17-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—		—
bit 15					•		bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			PTGQPTR<4:0	>	
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the Step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 17-13: PTGQUEX: PTG STEP QUEUE REGISTER x (x = 0-15)^(1,3)

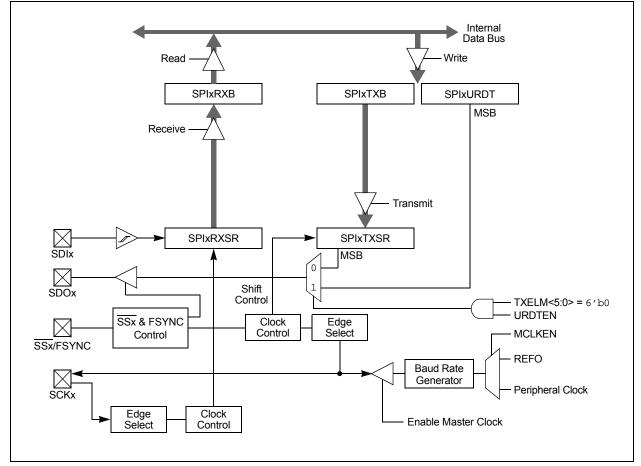
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STEP(2x +	- 1)<7:0> (2)					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STEP(2x)<7:0> ⁽²⁾									
bit 7							bit (

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾
A queue location for storage of the STEP(2x +1) command byte.bit 7-0STEP(2x)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP(2x) command byte.

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 17-1 for the Step command encoding.
 - 3: The Step registers maintain their values on any type of Reset.


To set up the SPIx module for the Standard Master mode of operation:

- 1. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L and SPIxCON1H registers with the MSTEN bit (SPIxCON1L<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTATL<6>).
- 4. Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 5. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

To set up the SPIx module for the Standard Slave mode of operation:

- 1. Clear the SPIxBUF registers.
- 2. If using interrupts:
 - a) Clear the SPIxBUFL and SPIxBUFH registers.
 - b) Set the interrupt enable bits in the respective IECx register.
 - c) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with the MSTEN bit (SPIxCON1L<5>) = 0.
- 4. Clear the SMP bit.
- If the CKE bit (SPIxCON1L<8>) is set, then the SSEN bit (SPIxCON1L<7>) must be set to enable the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM (STANDARD MODE)

20.3 UART Control Registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0		
bit 15				•			bit 8		
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL		
bit 7							bit (
Legend:		HC = Hardwar	e Clearable b	it					
R = Readable	e bit	W = Writable b			ented bit, read	l as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own		
bit 15	1 = UARTx i 0 = UARTx i minimal	s disabled; all U	ARTx pins are ARTx pins are			ed by UEN<1:0 UARTx power co			
bit 14	Unimplemented: Read as '0'								
bit 13	USIDL: UARTx Stop in Idle Mode bit								
		nues module op es module opera			le mode				
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾								
		oder and decod							
bit 11	RTSMD: Mod	SMD: Mode Selection for UxRTS Pin bit							
		oin is in Simplex oin is in Flow Co							
bit 10	Unimplemen	ted: Read as '0	,						
bit 9-8	UEN<1:0>: U	JARTx Pin Enab	le bits						
	10 = UxTX, U 01 = UxTX, U	JxRX, UxCTS a JxRX and UxRT nd UxRX pins a	nd UxRTS pin S pins are en	s are enabled a abled and used	n <u>d used</u> <u>UxCTS pin is</u>	controlled by PC controlled by PC BCLKx pins are	ORT latches		
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	nable bit				
	in hardw	continues to sam are on the follow -up is enabled			generated on	the falling edge;	bit is cleare		
bit 6	LPBACK: UA	ARTx Loopback	Mode Select	bit					
		Loopback mode k mode is disab							
"d		-				0000582) in the JARTx module fo	or receive or		
	-	nly available for	the 16y PDC	modo (BBCH -	0)				

2: This feature is only available for the 16x BRG mode (BRGH = 0).

21.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Input MUX Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Input Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 21-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

D 444 0										
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0			
LCEN	—	—	—	INTP	INTN	—	—			
bit 15							bit 8			
R-0	R-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
LCOE	LCOUT LCPOL — — MODE2 MODE1 MO									
bit 7							bit 0			
Logondi										
Legend: R = Readabl	e hit	W = Writable t	nit	II – Unimplen	nented bit, read	1 ac '0'				
-n = Value at		'1' = Bit is set	JIL	'0' = Bit is clea		x = Bit is unkr				
	IFUR	I – DILIS SEL			areu		IOWIT			
bit 15	LCEN: CLCx	Enable bit								
		enabled and mi	kina input siar	nals						
		disabled and ha								
bit 14-12	Unimplemer	nted: Read as 'o	,							
bit 11	INTP: CLCx	Positive Edge In	terrupt Enable	e bit						
		will be generate will not be gene		ng edge occurs	on LCOUT					
bit 10	INTN: CLCx Negative Edge Interrupt Enable bit									
	1 = Interrupt	will be generate will not be gene	ed when a falli		on LCOUT					
bit 9-8	Unimplemer	nted: Read as '0	,							
bit 7	LCOE: CLCx	Port Enable bit								
	1 = CLCx port pin output is enabled									
	0 = CLCx port pin output is disabled									
	LCOUT: CLCx Data Output Status bit									
bit 6		•	status bit							
bit 6	1 = CLCx out	tput high	Satus Dit							
	1 = CLCx out 0 = CLCx out	tput high tput low								
bit 6 bit 5	1 = CLCx out 0 = CLCx out LCPOL: CLC	tput high tput low Cx Output Polarit	y Control bit							
	1 = CLCx out 0 = CLCx out LCPOL: CLC 1 = The outp	tput high tput low	y Control bit is inverted	ed						

REGISTER 22-4: ADCON2H: ADC CONTROL REGISTER 2 HIGH

R-0, HSC	R-0, HSC	r-0	r-0	r-0	r-0	R/W-0	R/W-0
REFRDY	REFERR	—	—	—	—	SHRSAMC9	SHRSAMC8
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SHRSAMC7 | SHRSAMC6 | SHRSAMC5 | SHRSAMC4 | SHRSAMC3 | SHRSAMC2 | SHRSAMC1 | SHRSAMC0 |
| bit 7 | · | | | | | | bit 0 |

Legend:	r = Reserved bit	U = Unimplemented bit, read as '0'		
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown		

bit 15	REFRDY: Band Gap and Reference Voltage Ready Flag bit 1 = Band gap is ready 0 = Band gap is not ready
bit 14	REFERR: Band Gap or Reference Voltage Error Flag bit 1 = Band gap was removed after the ADC module was enabled (ADON = 1) 0 = No band gap error was detected
bit 13-10	Reserved: Maintain as '0'
bit 9-0	<pre>SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC core sample time. 111111111 = 1025 TADCORE</pre>

REGISTER 22-10: ADCON5H: ADC CONTROL REGISTER 5 HIGH

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
—			—	WARMTIME3	WARMTIME2	WARMTIME1	WARMTIME0					
bit 15							bit 8					
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
SHRCIE	_			C3CIE	C2CIE	C1CIE	COCIE					
bit 7							bit 0					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own					
			-				-					
bit 15-12	Unimpleme	nted: Read as	'0'									
bit 11-8	WARMTIME	E<3:0>: ADC De	edicated Core	x Power-up Del	ay bits							
			wer-up delay	in the number o	f the Core Sour	ce Clock Perio	ds (TCORESRC)					
	for all ADC											
	-	68 Source Cloc										
		1110 = 16384 Source Clock Periods 1101 = 8192 Source Clock Periods										
		1100 = 4096 Source Clock Periods										
	1011 = 204	1011 = 2048 Source Clock Periods										
		1010 = 1024 Source Clock Periods										
		1001 = 512 Source Clock Periods										
		1000 = 256 Source Clock Periods 0111 = 128 Source Clock Periods										
		Source Clock Pe										
		Source Clock Pe										
		Source Clock Pe										
		Source Clock Pe										
bit 7			-	mon Interrupt Er								
	 1 = Common interrupt will be generated when ADC core is powered and ready for operation 0 = Common interrupt is disabled for an ADC core ready event 											
bit 6-4		nted: Read as		ADC core ready	event							
bit 3	-			ommon Interrunt	Fnable bit							
bit o		C3CIE: Dedicated ADC Core 3 Ready Common Interrupt Enable bit 1 = Common interrupt will be generated when ADC Core 3 is powered and ready for operation										
	 0 = Common interrupt is disabled for an ADC Core 3 ready event 											
bit 2	C2CIE: Dedicated ADC Core 2 Ready Common Interrupt Enable bit											
				when ADC Core		nd ready for op	eration					
bit 1		-		ADC Core 2 read common Interrupt	-							
			-	when ADC Core		nd ready for on	eration					
				ADC Core 1 read			Gradion					
bit 0	COCIE: Ded	icated ADC Co	re 0 Ready Co	ommon Interrupt	Enable bit							
	1 = Commo	n interrupt will b	e generated v	when ADC Core	0 is powered a	nd ready for op	eration					
	0 = Commo	n interrupt is dis	abled for an A	ADC Core 0 read	dy event							

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable bit		U = Unimpler	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-12	F15BP<3:0>: RX Buffer Mask for Filter 15 bits									
	1111 = Filter hits received in RX FIFO buffer									
	1110 = Filte r	hits received in	n RX Buffer 14	1						
	•									
	•									
	0001 = Filter	hits received in	n RX Buffer 1							
	0000 = Filte r	hits received in	n RX Buffer 0							
bit 11-8	F14BP<3:0>	F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bits 15-12)								
bit 7-4	F13BP<3:0>: RX Buffer Mask for Filter 13			13 bits (same values as bits 15-12)						
bit 7-4	F13BP<3:0>	: RX Buffer Ma	sk for Filter 13	3 bits (same va	lues as bits 15-	12)				

REGISTER 23-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

bit 3-0 F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)

BUFFER 21-7: CANx MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	7<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	6<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, rea	ıd as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkı	nown	

bit 15-8	Byte 7<15:8>: CANx Message Byte 7 bits

bit 7-0 Byte 6<7:0>: CANx Message Byte 6 bits

BUFFER 21-8: CANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—			FILHIT<4:0>(1)	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.
bit 7-0	Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

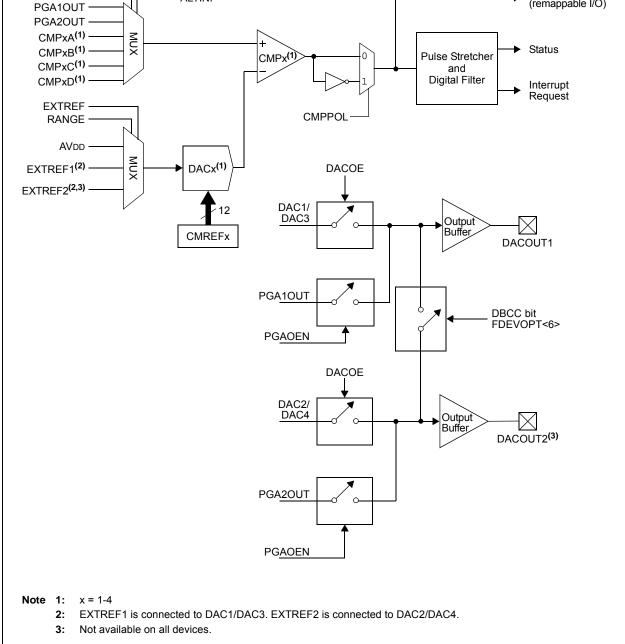

24.2 Module Description

FIGURE 24-1:

Figure 24-1 shows a functional block diagram of one analog comparator from the high-speed analog comparator module. The analog comparator provides high-speed operation with a typical delay of 15 ns. The negative input of the comparator is always connected to the DACx circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin. The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

HIGH-SPEED ANALOG COMPARATOR x MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CMPON	_	CMPSIDL	HYSSEL1	HYSSELO	FLTREN	FCLKSEL	DACOE		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	HC-0, HS	R/W-0	R/W-0	R/W-0		
INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE		
bit 7		I			I		bit 0		
Legend:		HC = Hardware	e Clearable bit	HS = Hardwa	are Settable bit				
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15	1 = Compara	mparator Opera tor module is er tor module is di	nabled	s power consu	imption)				
bit 14	Unimplemen	ted: Read as 'd)'						
bit 13	CMPSIDL: C	omparator Stop	in Idle Mode b	it					
	0 = Continue If a device has	ues module opera s module opera s multiple compa	tion in Idle moo rators, any CMF	de PSIDL bit set to		omparators while	e in Idle mode.		
bit 12-11		HYSSEL<1:0>: Comparator Hysteresis Select bits 11 = 45 mV hysteresis							
	10 = 30 mV h 01 = 15 mV h	nysteresis	ed						
bit 10	FLTREN: Dig	ital Filter Enabl	e bit						
	1 = Digital filt 0 = Digital filt								
bit 9	FCLKSEL: D	igital Filter and	Pulse Stretche	r Clock Select	bit				
	•	er and pulse str er and pulse str	•						
bit 8	DACOE: DAG	Cx Output Enab	le bit						
		alog voltage is o alog voltage is r							
bit 7-6	INSEL<1:0>:	Input Source S	elect for Comp	arator bits					
	11 = Selects 10 = Selects 01 = Selects 00 = Selects		in in in in						
	01 = Selects 00 = Selects	PGA2 output PGA1 output			an china tina	The software			

REGISTER 24-1: CMPxCON: COMPARATOR x CONTROL REGISTER

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

NOTES:

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
48	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
49	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
50	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None
51 MP1	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
52	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
53	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAE SA,SB,SAE
54	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

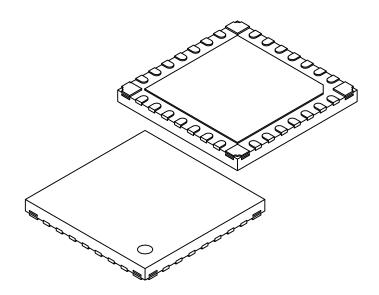
Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 30-37:SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS⁽⁵⁾

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	—		15	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—		ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.


3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN] With 4.65x4.65 mm Exposed Pad and Corner Anchors

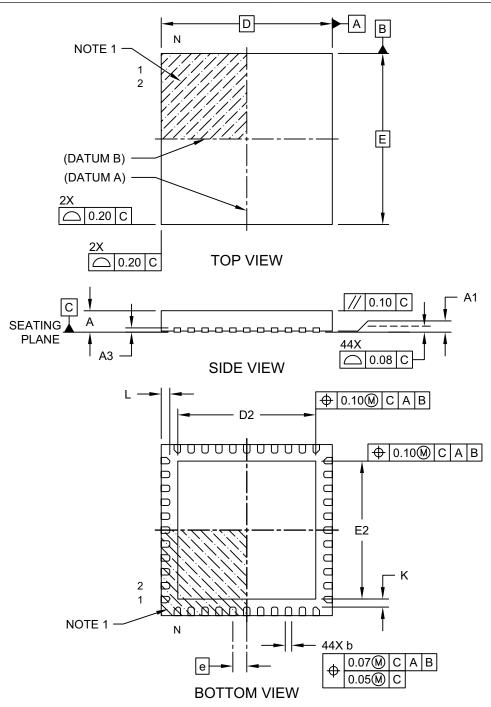
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	N	28				
Pitch	е	0.65 BSC				
Overall Height	Α	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.127 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	4.55	4.65	4.75		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	4.55	4.65	4.75		
Exposed Pad Corner Chamfer	Р	-	0.35	-		
Terminal Width	b	0.25	0.30	0.35		
Corner Anchor Pad	b1	0.35	0.40	0.43		
Corner Pad, Metal Free Zone	b2	0.15	0.20	0.25		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-385B Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103D Sheet 1 of 2