

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

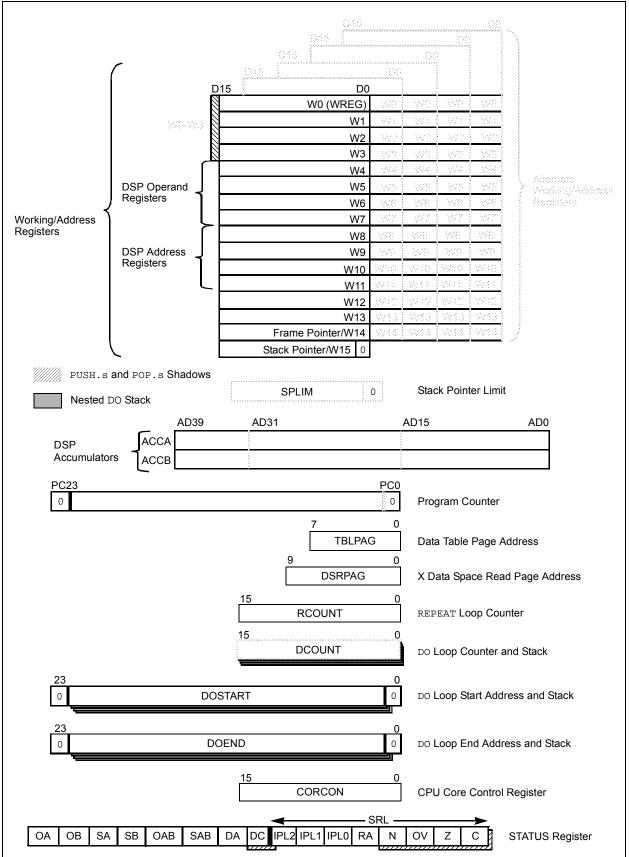
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	33
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs705t-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	
9.0	Oscillator Configuration	103
10.0	Power-Saving Features	115
11.0	I/O Ports	125
12.0	Timer1	
13.0	Timer2/3 and Timer4/5	173
14.0	Input Capture	177
15.0	Output Compare	181
16.0	High-Speed PWM	
17.0		
18.0		
19.0		
20.0		
21.0		
22.0	J - [J J J J	
23.0		
24.0	High-Speed Analog Comparator	
25.0		
26.0	Constant-Current Source	
27.0	Special Features	
28.0	Instruction Set Summary	
29.0		
30.0		
	DC and AC Device Characteristics Graphs	
	Packaging Information	
Appe	endix A: Revision History	
Index	Χ	
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
Prod	uct Identification System	

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.6.1 KEY RESOURCES

- "dsPIC33E Enhanced CPU" (DS70005158) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **"Oscillator Module"** (DS70005131) in the *"dsPIC33/PIC24 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGS70X/80X family oscillator system provides:

- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- On-the-Fly Clock Switching between Various Clock Sources
- Doze mode for System Power Savings
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- Configuration Bits for Clock Source Selection
- Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 9-1.

REGISTER 9-7: LFSR: LINEAR FEEDBACK SHIFT REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				LFSR<14:8>	,		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LFS	R<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			

bit 15 Unimplemented: Read as '0'

bit 14-0 LFSR<14:0>: Pseudorandom Data bits

Function	RPnR<6:0>	Output Name
Default PORT	0000000	RPn tied to Default Pin
U1TX	0000001	RPn tied to UART1 Transmit
U1RTS	0000010	RPn tied to UART1 Request-to-Send
U2TX	0000011	RPn tied to UART2 Transmit
U2RTS	0000100	RPn tied to UART2 Request-to-Send
SDO1	0000101	RPn tied to SPI1 Data Output
SCK1	0000110	RPn tied to SPI1 Clock Output
SS1	0000111	RPn tied to SPI1 Slave Select
SDO2	0001000	RPn tied to SPI2 Data Output
SCK2	0001001	RPn tied to SPI2 Clock Output
SS2	0001010	RPn tied to SPI2 Slave Select
C1TX	0001110	RPn tied to CAN1 Transmit
C2TX	0001111	RPn tied to CAN2 Transmit
OC1	0010000	RPn tied to Output Compare 1 Output
OC2	0010001	RPn tied to Output Compare 2 Output
OC3	0010010	RPn tied to Output Compare 3 Output
OC4	0010011	RPn tied to Output Compare 4 Output
ACMP1	0011000	RPn tied to Analog Comparator 1 Output
ACMP2	0011001	RPn tied to Analog Comparator 2 Output
ACMP3	0011010	RPn tied to Analog Comparator 3 Output
SDO3	0011111	RPn tied to SPI3 Data Output
SCK3	0100000	RPn tied to SPI3 Clock Output
SS3	0100001	RPn tied to SPI3 Slave Select
SYNCO1	0101101	RPn tied to PWM Primary Master Time Base Sync Output
SYNCO2	0101110	RPn tied to PWM Secondary Master Time Base Sync Output
REFCLKO	0110001	RPn tied to Reference Clock Output
ACMP4	0110010	RPn tied to Analog Comparator 4 Output
PWM4H	0110011	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM4L	0110100	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM5H	0110101	RPn tied to PWM Output Pins Associated with PWM Generator 5
PWM5L	0110110	RPn tied to PWM Output Pins Associated with PWM Generator 5
PWM6H	0111001	RPn tied to PWM Output Pins Associated with PWM Generator 6
PWM6L	0111010	RPn tied to PWM Output Pins Associated with PWM Generator 6
PWM7H	0111011	RPn tied to PWM Output Pins Associated with PWM Generator 7
PWM7L	0111100	RPn tied to PWM Output Pins Associated with PWM Generator 7
PWM8H	0111101	RPn tied to PWM Output Pins Associated with PWM Generator 8
PWM8L	0111110	RPn tied to PWM Output Pins Associated with PWM Generator 8
CLC1OUT	0111111	RPn tied to CLC1 Output
CLC2OUT	1000000	RPn tied to CLC2 Output
CLC3OUT ⁽¹⁾	1000001	RPn tied to CLC3 Output
CLC4OUT ⁽¹⁾	1000010	RPn tied to CLC4 Output

Note 1: PPS outputs are only available on dsPIC33EPXXXGS702 (28-pin) devices.

U-0	R/W-0						
—	RP181R6	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0
bit 15							bit 8
11-0	R/W-0	R/W-0	R/\/_0	R/W-0	R/\\/_0	R/W-0	R/\\/_0

bit 7							bit 0
—	RP180R6	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0
U-0	R/W-0						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 **RP181R<6:0>:** Peripheral Output Function is Assigned to RP181 Output Pin bits (see Table 11-13 for peripheral function numbers)

bit 7 Unimplemented: Read as '0'

bit 6-0 **RP180R<6:0>:** Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 11-13 for peripheral function numbers)

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾		SYNCSEL4(4)	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0(4)
bit 7							bit 0

Legend:	HS = Hardware Settable bi	t	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'
--

bit 8 **IC32:** Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)

- 1 = Odd ICx and even ICx form a single 32-bit input capture module⁽¹⁾
- 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture x Trigger Operation Select bit⁽²⁾

- 1 = Input source is used to trigger the input capture timer (Trigger mode)
- 0 = Input source is used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear
- bit 5 Unimplemented: Read as '0'
- Note 1: The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.

17.2 PTG Control Registers

REGISTER 17-1: PTGCST: PTG CONTROL/STATUS REGISTER

	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0		
PTGEN	_	PTGSIDL	PTGTOGL	_	PTGSWT ⁽²⁾	PTGSSEN	PTGIVIS		
bit 15				•			bit 8		
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
PTGSTRT	PTGWDTO				_	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹		
bit 7							bit		
Legend:		HS = Hardware	e Settable bit						
R = Readable	bit	W = Writable b		U = Unimple	mented bit, rea	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown		
bit 15		6 Module Enable	e bit						
		ule is enabled							
bit 14		nted: Read as '0	,						
bit 13	-	TG Stop in Idle I							
		ues module ope		vice enters Id	le mode				
	0 = Continue	s module opera	tion in Idle mod	е					
bit 12	PTGTOGL: F	PTG TRIG Outp	ut Toggle Mode	bit					
	0 = Each exe	the state of the ecution of the Pt the PTGPWDx I	GTRIG comma				rmined by the		
bit 11	Unimplemen	ted: Read as 'o	,						
bit 10	PTGSWT: PT	G Software Trig	ger bit ⁽²⁾						
		the PTG module		ff +)					
h # 0		(clearing this b		nect)					
bit 9		PTG Enable Sing Single-Step mod							
		Single-Step mo							
bit 8		G Counter/Time		rol bit					
		f the PTGSDLI	•		registers retur	n the current v	alues of the		
	0 = Reads of	nding Counter/ f the PTGSDLIN	I, PTGCxLIM or			he value previo	usly written t		
bit 7	those PTG Limit registers PTCSTPT. Start PTC Sequencer bit								
	PTGSTRT: Start PTG Sequencer bit 1 = Starts to sequentially execute commands (Continuous mode)								
	 0 = Stops executing commands 								
bit 6	PTGWDTO:	PTG Watchdog	Timer Time-out	Status bit					
bit 6	1 = PTG Wat	PTG Watchdog chdog Timer ha chdog Timer ha	s timed out						

2: This bit is only used with the PTGCTRL Step command software trigger option.

To set up the SPIx module for Audio mode:

- 1. Clear the SPIxBUFL and SPIxBUFH registers.
- 2. If using interrupts:
 - a) Clear the interrupt flag bits in the respective IFSx register.
 - b) Set the interrupt enable bits in the respective IECx register.
 - a) Write the SPIxIP bits in the respective IPCx register to set the interrupt priority.
- Write the desired settings to the SPIxCON1L, SPIxCON1H and SPIxCON2L registers with AUDEN (SPIxCON1H<15>) = 1.
- 4. Clear the SPIROV bit (SPIxSTATL<6>).
- Enable SPIx operation by setting the SPIEN bit (SPIxCON1L<15>).
- 6. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL and SPIxBUFH registers.

REGISTER 18-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

Legend: R = Readable		W = Writable			ented bit read	(0)	
bit 7							bit 0
SSEN ⁽²⁾	CKP	MSTEN	DISSDI	DISSCK	MCLKEN ⁽³⁾	SPIFE	ENHBUF
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
SPIEN	_	SPISIDL	DISSDO	MODE32 ^(1,4)	MODE16 ^(1,4)	SMP	CKE ⁽¹⁾
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 SPIEN: SPIx On bit

- 1 = Enables module
- 0 = Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR modifications

bit 14 Unimplemented: Read as '0'

- bit 13 SPISIDL: SPIx Stop in Idle Mode bit
 - 1 = Halts in CPU Idle mode
 - 0 = Continues to operate in CPU Idle mode

bit 12 DISSDO: Disable SDOx Output Port bit

1 = SDOx pin is not used by the module; pin is controlled by port function

0 = SDOx pin is controlled by the module

bit 11-10 MODE32 and MODE16: Serial Word Length Select bits^(1,4)

MODE32	MODE16	AUDEN	Communication
1	x		32-Bit
0	1	0	16-Bit
0	0		8-Bit
1	1		24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
1	0	-	32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	1	T	16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame
0	0 0		16-Bit FIFO, 16-Bit Channel/32-Bit Frame

Note 1: When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.

- 2: When FRMEN = 1, SSEN is not used.
- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.

REGISTER 18-5: SPIxSTATH: SPIx STATUS REGISTER HIGH

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	RXELM5 ⁽³⁾	RXELM4 ⁽²⁾	RXELM3 ⁽¹⁾	RXELM2	RXELM1	RXELM0
bit 15							bit 8

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
_	—	TXELM5 ⁽³⁾	TXELM4 ⁽²⁾	TXELM3 ⁽¹⁾	TXELM2	TXELM1	TXELM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)^(1,2,3)

Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

REGISTER 22-26: ADTRIGxL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5) (CONTINUED)

bit 4-0 TRGSRC(4x)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits 11111 = ADTRG31 11110 = PTG Trigger Output 30 11101 = PWM Generator 6 current-limit trigger 11100 = PWM Generator 5 current-limit trigger 11011 = PWM Generator 4 current-limit trigger 11010 = PWM Generator 3 current-limit trigger 11001 = PWM Generator 2 current-limit trigger 11000 = PWM Generator 1 current-limit trigger 10111 = Output Compare 2 trigger 10110 = Output Compare 1 trigger 10101 = CLC2 output 10100 = PWM Generator 6 secondary trigger 10011 = PWM Generator 5 secondary trigger 10010 = PWM Generator 4 secondary trigger 10001 = PWM Generator 3 secondary trigger 10000 = PWM Generator 2 secondary trigger 01111 = PWM Generator 1 secondary trigger 01110 = PWM secondary Special Event Trigger 01101 = Timer2 period match 01100 = Timer1 period match 01011 = CLC1 output 01010 = PWM Generator 6 primary trigger 01001 = PWM Generator 5 primary trigger 01000 = PWM Generator 4 primary trigger 00111 = PWM Generator 3 primary trigger 00110 = PWM Generator 2 primary trigger 00101 = PWM Generator 1 primary trigger 00100 = PWM Special Event Trigger 00011 = Reserved 00010 = Level software trigger 00001 = Common software trigger

00000 = No trigger is enabled

23.4 CAN Message Buffers

CAN Message Buffers are part of RAM memory. They are not CAN Special Function Registers. The user application must directly write into the RAM area that is configured for CAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: CANx MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_			SID10	SID9	SID8	SID7	SID6		
bit 15				• •			bit 8		
R/W-x	R/W-x R/W-x R/W-x		R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID5	SID4	SID4 SID3 SID2			SID0	SRR	IDE		
bit 7							bit 0		
Legend: R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-2	SID<10:0>: S	Standard Identif	ier bits						
bit 1	SRR: Substit	ute Remote Re	quest bit						
	When IDE =	0:							
	1 = Message	will request rer	note transmis	ssion					
	0 = Normal message								
	When IDE =	1:							
	The SRR bit	must be set to '	1'.						
bit 0	IDE: Extende	d Identifier bit							
		 1 = Message will transmit an Extended Identifier 0 = Message will transmit a Standard Identifier 							

BUFFER 21-2: CANx MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	— — EIC			<17:14>	
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	<13:6>			
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = B		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

NOTES:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CMPON	_	CMPSIDL	HYSSEL1	HYSSELO	FLTREN	FCLKSEL	DACOE		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	HC-0, HS	R/W-0	R/W-0	R/W-0		
INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE		
bit 7		I			I		bit 0		
Legend:		HC = Hardware	e Clearable bit	HS = Hardwa	are Settable bit				
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15	1 = Compara	mparator Opera tor module is er tor module is di	nabled	s power consu	Imption)				
bit 14	Unimplemen	ted: Read as 'd)'						
bit 13	CMPSIDL: C	omparator Stop	in Idle Mode b	it					
	0 = Continue If a device has	ues module opera s module opera s multiple compa	tion in Idle moo rators, any CMF	de PSIDL bit set to		omparators while	e in Idle mode.		
bit 12-11)>: Comparator	Hysteresis Sel	ect bits					
	11 = 45 mV k 10 = 30 mV k 01 = 15 mV k 00 = No hyste	nysteresis	ed						
bit 10	FLTREN: Dig	ital Filter Enabl	e bit						
	1 = Digital filt 0 = Digital filt								
bit 9	FCLKSEL: D	igital Filter and	Pulse Stretche	r Clock Select	bit				
	•	er and pulse str er and pulse str	•						
bit 8	DACOE: DAG	Cx Output Enab	le bit						
		alog voltage is o alog voltage is r							
bit 7-6	INSEL<1:0>:	INSEL<1:0>: Input Source Select for Comparator bits							
	11 = Selects 10 = Selects 01 = Selects 00 = Selects		in in in in						
	01 = Selects 00 = Selects	PGA2 output PGA1 output			an china tina	The software			

REGISTER 24-1: CMPxCON: COMPARATOR x CONTROL REGISTER

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

25.2 PGA Resources

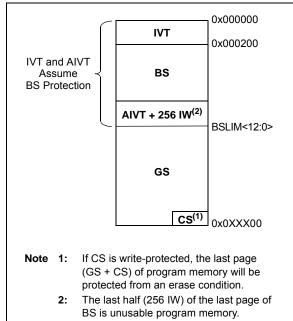
Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page contains the latest updates and additional information.

25.2.1 KEY RESOURCES

- "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 25-1: PGAxCON: PGAx CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0				
bit 15						<u>.</u>	bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
_	_	_	_	_	GAIN2	GAIN1	GAIN0				
bit 7		•				-	bit C				
Legend:											
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	1 as '0'					
-n = Value at POR '1' = Bit is set			t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	PGAEN: PGA	Ax Enable bit									
	1 = PGAx mo	= PGAx module is enabled									
	0 = PGAx mo	odule is disable	d (reduces po	wer consumpt	ion)						
bit 14	PGAOEN: PO	GAx Output En	able bit								
	1 = PGAx out	1 = PGAx output is connected to the DACOUTx pin									
	0 = PGAx out	tput is not conr	nected to the I	DACOUTx pin							
bit 13-11	SELPI<2:0>:	PGAx Positive	e Input Selecti	on bits							
	111 = Reserv	ved									
	110 = Reserv	110 = Reserved									
	101 = Reserv	101 = Reserved									
	100 = Reserv	ved									
	011 = PGAxF	-									
	010 = PGAxF	>3									
		22									

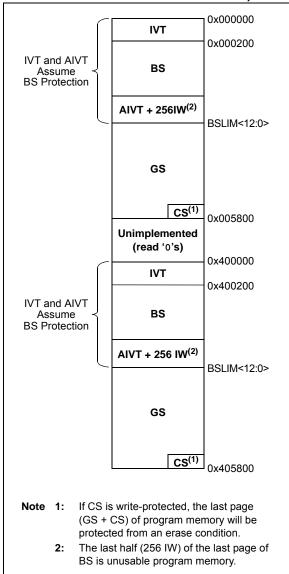

001 = PGAxP2 000 = PGAxP1

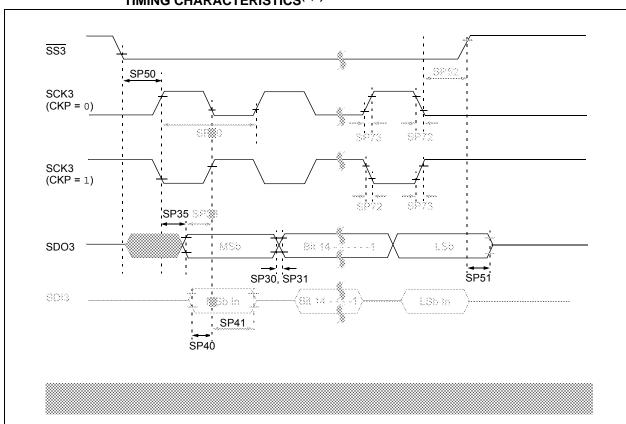
bit 10-8 **SELNI<2:0>:** PGAx Negative Input Selection bits

- 111 = Reserved 110 = Reserved
 - 101 = Reserved
 - 100 = Reserved
 - 011 = Ground (Single-Ended mode)
 - 010 = PGAxN3
 - 001 = PGAxN2
 - 000 = Ground (Single-Ended mode)
- bit 7-3 Unimplemented: Read as '0'

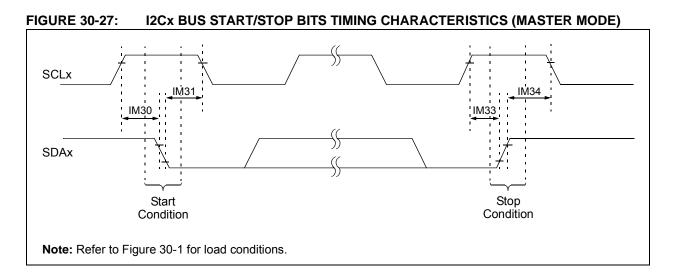
The different device security segments are shown in Figure 27-3. Here, all three segments are shown but are not required. If only basic code protection is required, then GS can be enabled independently or combined with CS, if desired.

FIGURE 27-3: SECURITY SEGMENTS EXAMPLE FOR dsPIC33EPXXXGS70X/80X DEVICES

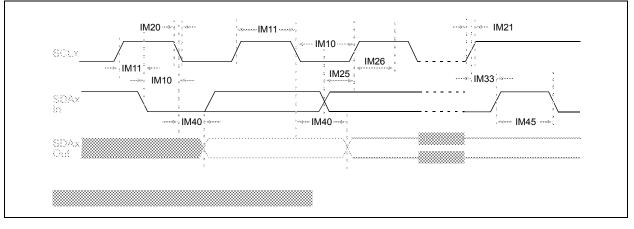

dsPIC33EPXXXGS70X/80X family devices can be operated in Dual Partition mode, where security is required for each partition. When operating in Dual Partition mode, the Active and Inactive Partitions both contain unique copies of the Reset vector, Interrupt Vector Tables (IVT and AIVT, if enabled) and the Flash Configuration Words. Both partitions have the three security segments described previously. Code may not be executed from the Inactive Partition, but it may be programmed by, and read from, the Active Partition, subject to defined code protection. Figure 27-4 and Figure 27-5 show the different security segments for devices operating in Dual Partition mode.


The device may also operate in a Protected Dual Partition mode or in Privileged Dual Partition mode. In Protected Dual Partition mode, Partition 1 is permanently erase/write-protected. This implementation allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1. For example, a fail-safe bootloader can be placed in Partition 1, along with a fail-safe backup code image, which can be used or rewritten into Partition 2.

Privileged Dual Partition mode performs the same function as Protected Dual Partition mode, except additional constraints are applied in an effort to prevent code in the Boot Segment and General Segment from being used against each other.


FIGURE 27-4:

SECURITY SEGMENTS EXAMPLE FOR dsPIC33EP64GS70X/80X DEVICES (DUAL PARTITION MODES)



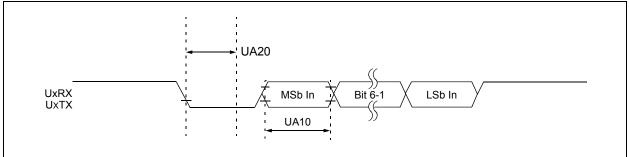

FIGURE 30-25: SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS^(1,2)

FIGURE 30-32: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 30-50: UARTX MODULE I/O TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
UA10	TUABAUD	UARTx Baud Time	66.67		_	ns		
UA11	FBAUD	UARTx Baud Frequency	—	_	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	—	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-51: ANALOG CURRENT SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
AVD01	IDD	Analog Modules Current Consumption	_	9			Characterized data with the following modules enabled: APLL, 5 ADC Cores, 2 PGAs and 4 Analog Comparators	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.