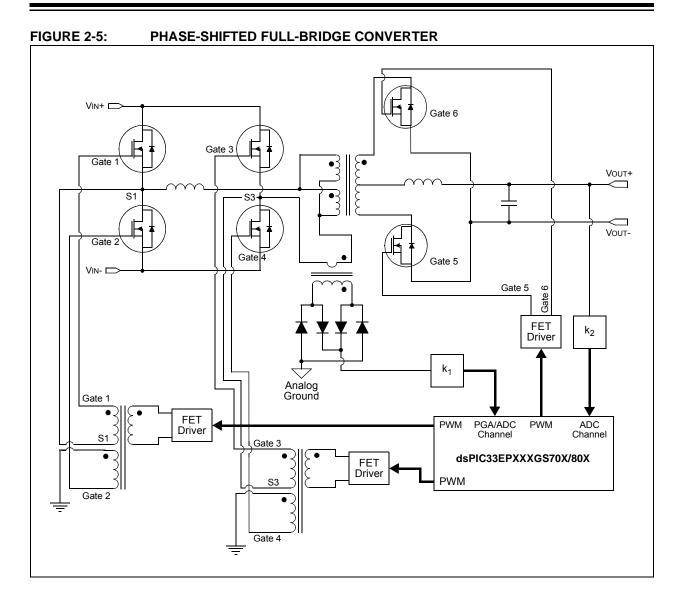


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

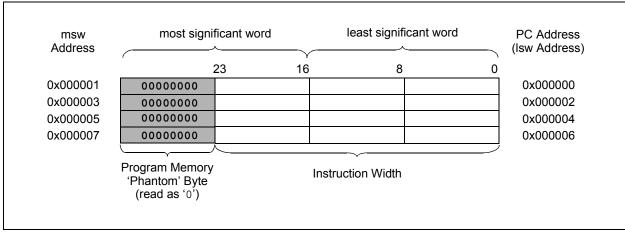
E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs706-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-5).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.2.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGS70X/80X family devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-5: PROGRAM MEMORY ORGANIZATION

TABLE 7-1:	INTERRUPT VECTOR DETAILS ((CONTINUED))

Interrupt Source	Vector	IRQ	IVT Address	In	terrupt Bit Lo	ocation
interrupt Source	#	#	IVI Address	Flag	Enable	Priority
T4 – Timer4	35	27	0x00004A	IFS1<11> T4IF	IEC1<11> T4IE	IPC6<14:12> T4IP<2:0>
T5 – Timer5	36	28	0x00004C	IFS1<12> T5IF	IEC1<12> T5IE	IPC7<2:0> T5IP<2:0>
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13> INT2IF	IEC1<13> INT2IE	IPC7<6:4> INT2IP<2:0>
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14> U2RXIF	IEC1<14> U2RXIE	IPC7<10:8> U2RXIP<2:0>
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15> U2TXIF	IEC1<15> U2TXIE	IPC7<14:12> U2TXIP<2:0>
SPI2TX – SPI2 Transfer Done	40	32	0x000054	IFS2<0> SPI2TXIF	IEC2<0> SPI2TXIE	IPC8<2:0> SPI2TXIP<2:0>
SPI2RX – SPI2 Receive Done	41	33	0x000056	IFS2<1> SPI2RXIF	IEC2<1> SPI2RXIE	IPC8<6:4> SPI2RXIP<2:0>
C1RX – CAN1 RX Data Ready	42	34	0x000058	IFS2<2> C1RXIF	IEC2<2> C1RXIE	IPC8<10:8> C1RXIP<2:0>
C1 – CAN1 Combined Error	43	35	0x000059	IFS2<3> C1IF	IEC2<3> C1IE	IPC8<14:12> C1IP<2:0>
DMA3 – DMA Channel 3	44	36	0x00005A	IFS2<4> DMA3IF	IEC2<4> DMA3IE	IPC9<2:0> DMA3IP<2:0>
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5> IC3IF	IEC2<5> IC3IE	IPC9<6:4> IC3IP<2:0>
IC4 – Input Capture 4	46	38	0x000060	IFS2<6> IC4IF	IEC2<6> IC4IE	IPC9<10:8> IC4IP<2:0>
Reserved	47-56	39-48	0x000062-0x000074	_	_	_
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1> SI2C2IF	IEC3<1> SI2C2IE	IPC12<6:4> SI2C2IP<2:0>
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2> MI2C2IF	IEC3<2> MI2C2IE	IPC12<10:8> MI2C2IP<2:0>
Reserved	59-61	51-53	0x00007A-0x00007E	_	—	_
INT4 – External Interrupt 4	62	54	0x000080	IFS3<6> INT4IF	IEC3<6> INT4IE	IPC13<10:8> INT4IP<2:0>
C2RX – CAN2 RX Data Ready	63	55	0x000082	IFS3<7> C2RXIF	IEC3<7> C2RXIE	IPC13<14:12> C2RXIP<2:0>
C2 – CAN 2 Combined Error	64	56	0x000083	IFS3<8> C2IF	IEC3<8> C2IE	IPC14<2:0> C2IP<2:0>
PSEM – PWM Special Event Match	65	57	0x000086	IFS3<9> PSEMIF	IEC3<9> PSEMIE	IPC14<6:4> PSEMIP<2:0>
Reserved	66-72	58-64	0x000088-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1> U1EIF	IEC4<1> U1EIE	IPC16<6:4> U1EIP<2:0>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2> U2EIF	IEC4<2> U2EIE	IPC16<10:8> U2EIP<2:0>
Reserved	75-77	67-69	0x00009A-0x0000A2	_	_	_
C1TX – CAN1 TX Data Request	78	70	0x0000A0	IFS4<6> C1TXIF	IEC4<6> C1TXIE	IPC17<10:8> C1TXIP<2:0>
C2TX – CAN2 TX Data Request	79	71	0x0000A	IFS4<7> C2TXIF	IEC4<7> C2TXIE	IPC17<14:12> C2TXIP<2:0>
Reserved	80	72	0x0000A4	_	_	_

REGISTER 8-3: DMAxSTAH: DMA CHANNEL x START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	
bit 15				·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA<	23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimple	mented bit, read	as '0'	

 κ = κ eadable bitV = VVritable bit<math>U = Unimplemented bit, read as '0'<math>-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: DMA Primary Start Address bits (source or destination)

REGISTER 8-4: DMAxSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.00-0	10,00-0					10.00-0	10.00-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
-							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u				x = Bit is unkr	nown		

bit 15-0 STA<15:0>: DMA Primary Start Address bits (source or destination)

REGISTER 11-31: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINAR7 | CLCINAR6 | CLCINAR5 | CLCINAR4 | CLCINAR3 | CLCINAR2 | CLCINAR1 | CLCINAR0 |
| bit 15 | • | | | | | | bit 8 |
| | | | | | | | |
| U-0 |
| _ | _ | _ | _ | | _ | _ | _ |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8CLCINAR<7:0>: Assign CLC Input A (CLCINA) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0Unimplemented: Read as '0'

REGISTER 11-32: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15				•			bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLCINBR7 | CLCINBR6 | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **CLCINBR<7:0>:** Assign CLC Input B (CLCINB) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

	U-0	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		
R/W-0 ENFLTA	U-0				OCISELU		
ENFLTA	U-0						bit
ENFLTA	00	U-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
bit 7	_		OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
							bit
Legend:		USC - Hardwa	are Settable/Cle	arablo bit			
R = Readab	lo hit	W = Writable b			ented bit, read a	ae 'O'	
-n = Value a		'1' = Bit is set	п	'0' = Bit is clea		x = Bit is unkr	
							101111
bit 15-14	Unimpleme	ented: Read as '0	,				
bit 13	OCSIDL: 0	utput Compare x	Stop in Idle Mo	de Control bit			
	1 = Output	Compare x halts	in CPU Idle mo	de			
	0 = Output	Compare x contir	ues to operate	in CPU Idle mo	de		
bit 12-10	OCTSEL<2	:0>: Output Com	oare x Clock Se	lect bits			
	111 = Perip	heral clock (FP)					
	110 = Rese						
	101 = Rese		was of the OCy				
		K is the clock sou			Ironous clock is	supported)	
		K is the clock sou					
		K is the clock sou					
	000 = T2CL	K is the clock sou	urce of the OCx				
bit 9-8	Unimpleme	ented: Read as '0	,				
bit 7	ENFLTA: Fa	ault A Input Enabl	e bit				
	1 = Output	Compare Fault A	input (OCFA) is	s enabled			
	0 = Output	Compare Fault A	input (OCFA) is	s disabled			
bit 6-5	Unimpleme	ented: Read as '0	,				
bit 4	OCFLTA: P	WM Fault A Cond	lition Status bit				
		ault A condition c					
	0 = No PW	M Fault A condition	on on the OCFA	pin has occurre	ed		
bit 3		: Trigger Status N					
		TAT (OCxCON2<	,	/hen OCxRS = (OCxTMR or in s	oftware	
	0 = TRIGS	TAT is cleared on	y by software				

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

16.0 HIGH-SPEED PWM

Note: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM Module" (DS70000323) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The high-speed PWM on dsPIC33EPXXXGS70X/80X devices supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction
- Uninterruptible Power Supply (UPS)
- Inverters
- Battery Chargers
- · Digital Lighting

16.1 Features Overview

The high-speed PWM module incorporates the following features:

- Eight PWMx Generators with Two Outputs per Generator
- · Two Master Time Base modules
- Individual Time Base and Duty Cycle for each
 PWM Output
- Duty Cycle, Dead Time, Phase Shift and a Frequency Resolution of 1.04 ns
- Independent Fault and Current-Limit Inputs
- · Redundant Output
- True Independent Output
- Center-Aligned PWM mode
- · Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Dual Trigger from PWMx to Analog-to-Digital Converter (ADC)
- PWMxL and PWMxH Output Pin Swapping
- Independent PWMx Frequency, Duty Cycle and Phase-Shift Changes
- Enhanced Leading-Edge Blanking (LEB) Functionality
- PWM Capture Functionality

Note: Duty cycle, dead time, phase shift and frequency resolution is 8.32 ns in Center-Aligned PWM mode.

Figure 16-1 conceptualizes the PWM module in a simplified block diagram. Figure 16-2 illustrates how the module hardware is partitioned for each PWMx output pair for the Complementary PWM mode.

The PWM module contains eight PWM generators. The module has up to 16 PWMx output pins: PWM1H/ PWM1L through PWM8H/PWM8L. For complementary outputs, these 16 I/O pins are grouped into high/low pairs. PWM1 through PWM6 can be used to trigger an ADC conversion.

16.2 Feature Description

The PWM module is designed for applications that require:

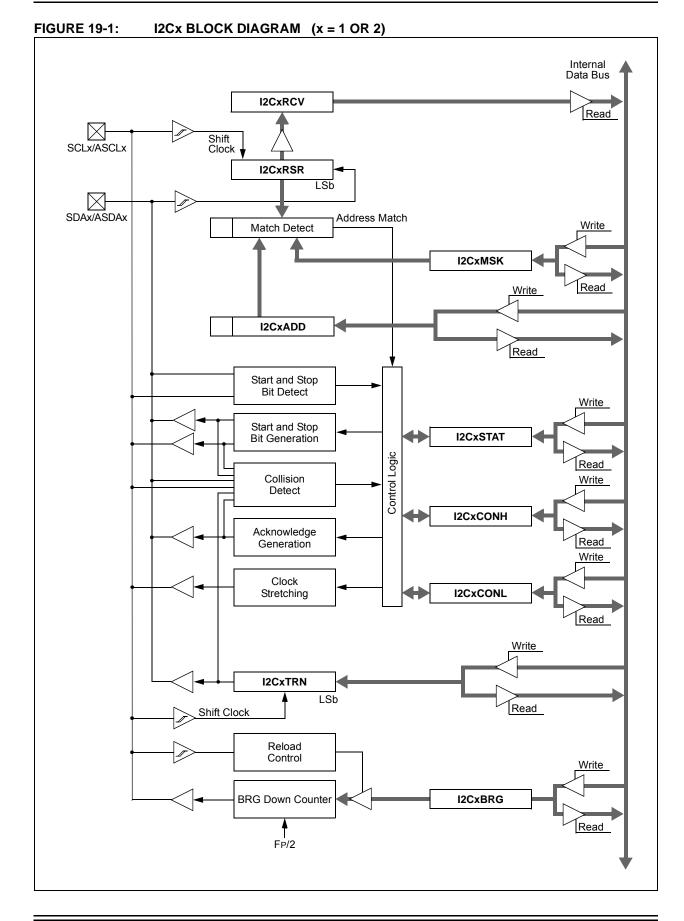
- High resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode and Push-Pull mode outputs
- The ability to create multiphase PWM outputs

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

Phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable.

Multiphase PWM is often used to improve DC/DC Converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC Converters are often operated in parallel, but phase shifted in time. A single PWM output, operating at 250 kHz, has a period of 4 μ s but an array of four PWM channels, staggered by 1 μ s each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

Variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50% and the power flow is controlled by varying the relative phase shift between the two PWM generators.


REGISTER 16-15: PHASEX: PWMx PRIMARY PHASE-SHIFT REGISTER (x = 1 to 8)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHASE	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit, read	l as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWMx Generator bits

- **Note 1:** If PWMCONx<9> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs
 - True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Phase-shift value for PWMxH only
 - When the PHASEx/SPHASEx registers provide the phase shift with respect to the master time base; therefore, the valid range is 0x0000 through period
 - **2:** If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL
 - True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Independent time base period value for PWMxH only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range is 0x0000-0xFFF8

19.2 I²C Control Registers

REGISTER 19-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:	HC = Hardware Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	I2CEN: I2Cx Enable bit
	 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module; all I²C pins are controlled by port functions
bit 14	Unimplemented: Read as '0'
bit 13	I2CSIDL: I2Cx Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)
	 1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch)
	If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception. Hardware is clear at the end of every slave data byte reception.
	If STREN = 0: Bit is R/S (i.e., software can only write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception.
bit 11	STRICT: Strict I2Cx Reserved Address Enable bit
	 1 = <u>Strict Reserved Addressing is Enabled:</u> In Slave mode, the device will NACK any reserved address. In Master mode, the device is allowed to generate addresses within the reserved address space.
	 0 = <u>Reserved Addressing is Acknowledged:</u> In Slave mode, the device will ACK any reserved address. In Master mode, the device should not address a slave device with a reserved address.
bit 10	A10M: 10-Bit Slave Address bit
	1 = I2CxADD is a 10-bit slave address0 = I2CxADD is a 7-bit slave address
bit 9	DISSLW: Disable Slew Rate Control bit
	1 = Slew rate control is disabled0 = Slew rate control is enabled
bit 8	SMEN: SMBus Input Levels bit
	 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)
	 1 = Enables interrupt when a general call address is received in I2CxRSR (module is enabled for reception) 0 = General call address is disabled

20.1 UART Helpful Tips

- In multi-node, direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pullup or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the UxRX pin.
 - b) If URXINV = 1, use a pull-down resistor on the UxRX pin.
- 2. The first character received on a wake-up from Sleep mode, caused by activity on the UxRX pin of the UARTx module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

20.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

20.2.1 KEY RESOURCES

- "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 22-3: ADCON2L: ADC CONTROL REGISTER 2 LOW

R/W-0	R/W-0	r-0	R/W-0	r-0	R/W-0	R/W-0	R/W-0
REFCIE	REFERCIE	—	EIEN	—	SHREISEL2(1)	SHREISEL1 ⁽¹⁾	SHREISEL0(1)
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	SHRADCS6	SHRADCS5	SHRADCS4	SHRADCS3	SHRADCS2	SHRADCS1	SHRADCS0
bit 7							bit 0
Legend:		r = Reserved	bit				
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn
bit 15 bit 14	1 = Common 0 = Common REFERCIE: E 1 = Common	interrupt will b interrupt is dis 3and Gap or R interrupt will b	e generated w abled for the k eference Volta e generated w	when the band band gap read age Error Com when a band ga	imon Interrupt E	e ready Enable bit voltage error is o	detected
bit 13	Reserved: M	•		5-1		,	
bit 12	EIEN: Early I	nterrupts Enab	le bit				
	1 = The early	interrupt featu	re is enabled	•		s (when the EIS ⁻ hen the ANxRD`	• •
bit 11	Reserved: M	aintain as '0'					
bit 10-8	SHREISEL<2	2:0>: Shared C	ore Early Inte	rrupt Time Sel	ection bits ⁽¹⁾		
	110 = Early ir 101 = Early ir 100 = Early ir 011 = Early ir 010 = Early ir 001 = Early ir	nterrupt is set a nterrupt is set a	and interrupt is and interrupt is and interrupt is and interrupt is and interrupt is and interrupt is	s generated 7 s generated 6 s generated 5 s generated 4 s generated 3 s generated 2	TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clocks TADCORE Clocks	prior to when the prior to when the	e data is ready e data is ready
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	SHRADCS<6	:0>: Shared A	DC Core Inpu	t Clock Divide	r bits		
	Clock Period) 1111111 = 2 • • • • • • • • • • • • • • • • • • •		ck Periods Periods Periods	RESRC (Source	Clock Periods)	for one shared	TADCORE (Core
		Source Clock					
	For the 6-bit shar from '100' to '11:	ed ADC core r 1', are not valic	esolution (SHF I and should ne	ot be used. Fo	r the 8-bit share		lution

(SHRRES<1:0> = 01), the SHREISEL<2:0> settings, '110' and '111', are not valid and should not be used.

REGISTER 22-32: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0 or 1)

bit 15	R/W/0	R/W-0						
bit 15								
	bit 15							bit
CMPEN<15:8>	_	R/W-0						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **CMPEN<15:0>:** Comparator Enable for Corresponding Input Channels bits

0 = Conversion result for corresponding channel is not used by the comparator

REGISTER 22-33: ADCMPxENH: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER HIGH (x = 0 or 1)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	—
bit 15 bit 8							

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			CMPEN	<21:16>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0

CMPEN<21:16>: Comparator Enable for Corresponding Input Channels bits

1 = Conversion result for corresponding channel is used by the comparator

0 = Conversion result for corresponding channel is not used by the comparator

^{1 =} Conversion result for corresponding channel is used by the comparator

BUFFER 21-7: CANx MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	7<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	6<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, rea	ıd as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkı	nown	

bit 15-8	Byte 7<15:8>: CANx Message Byte 7 bits

bit 7-0 Byte 6<7:0>: CANx Message Byte 6 bits

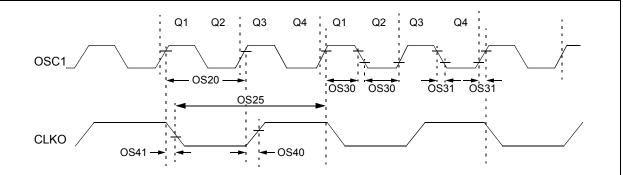
BUFFER 21-8: CANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	FILHIT<4:0> ⁽¹⁾				
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7 bit							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.
bit 7-0	Unimplemented: Read as '0'


Note 1: Only written by module for receive buffers, unused for transmit buffers.

REGISTER 24-1: CMPxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)

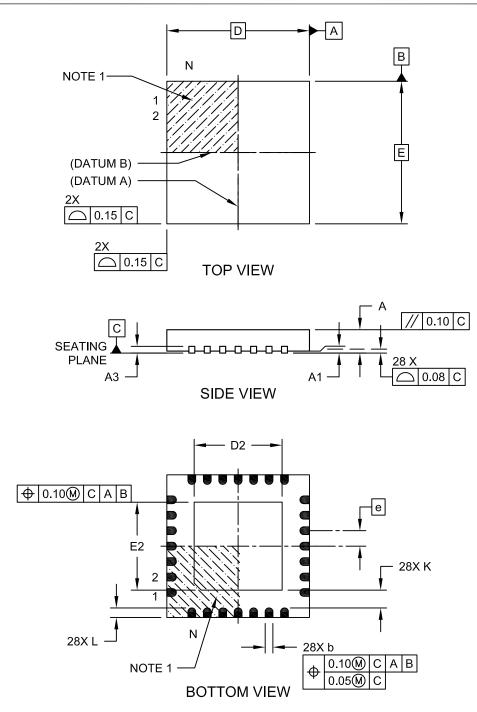
bit 5	EXTREF: Enable External Reference bit
	 1 = External source provides reference to DACx (maximum DAC voltage is determined by the external voltage source)
	0 = AVDD provides reference to DACx (maximum DAC voltage is AVDD)
bit 4	HYSPOL: Comparator Hysteresis Polarity Select bit
	 1 = Hysteresis is applied to the falling edge of the comparator output 0 = Hysteresis is applied to the rising edge of the comparator output
bit 3	CMPSTAT: Comparator Current State bit
	Reflects the current output state of Comparator x, including the setting of the CMPPOL bit.
bit 2	ALTINP: Alternate Input Select bit
	1 = INSEL<1:0> bits select alternate inputs
	0 = INSEL<1:0> bits select comparator inputs
bit 1	CMPPOL: Comparator Output Polarity Control bit
	1 = Output is inverted
	0 = Output is non-inverted
bit 0	RANGE: DACx Output Voltage Range Select bit
	 1 = AVDD is the maximum DACx output voltage 0 = Unimplemented, do not use

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

FIGURE 30-2: EXTERNAL CLOCK TIMING

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Sym	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	60	MHz	EC
		Oscillator Crystal Frequency	3.5 10	_	10 40	MHz MHz	XT HS
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	+125°C
		Tosc = 1/Fosc	7.14	_	DC	ns	+85°C
OS25 Tcy	TCY	Instruction Cycle Time ⁽²⁾	16.67	_	DC	ns	+125°C
		Instruction Cycle Time ⁽²⁾	14.28	_	DC	ns	+85°C
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	-	—	20	ns	EC
OS40	TckR	CLKO Rise Time ^(3,4)		5.2		ns	
OS41	TckF	CLKO Fall Time ^(3,4)	_	5.2	_	ns	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	-	12	_	mA/V	HS, VDD = 3.3V, TA = +25°C
			_	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C

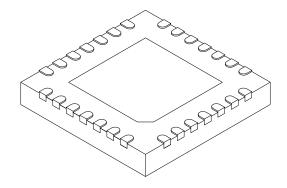
TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS


Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized but not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

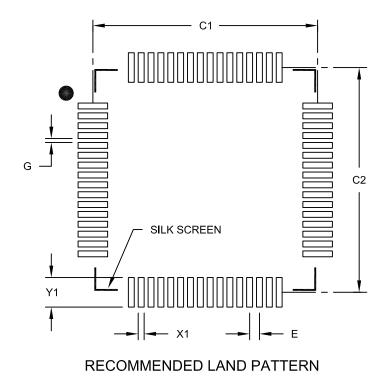
	Units		MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX		
Number of Pins			28			
Pitch	е		0.65 BSC			
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	Thickness A3 0.20 REF		0.20 REF			
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.70		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	3.65	3.70	4.70		
Terminal Width	b	0.23	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed Pad	К	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units MILLIMETERS **Dimension Limits** MIN NOM MAX Contact Pitch 0.50 BSC Е Contact Pad Spacing C1 11.40 Contact Pad Spacing C2 11.40 Contact Pad Width (X64) 0.30 X1 Contact Pad Length (X64) Y1 1.50 0.20 **Distance Between Pads** G

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

Timing Diagrams	
BOR and Master Clear Reset Characteristics	391
CANx I/O	426
External Clock	388
High-Speed PWMx Fault Characteristics	397
High-Speed PWMx Module Characteristics	397
I/O Characteristics	391
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	424
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	424
Input Capture x (ICx) Characteristics	
OCx/PWMx Characteristics	
Output Compare x (OCx) Characteristics	
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,	
CKE = 0, CKP = x, SMP = 1)	401
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,	
CKE = 1, CKP = x, SMP = 1)	400
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	398
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	399
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 0, SMP = 0)	408
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 1, SMP = 0)	406
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 0, SMP = 0)	402
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 1, SMP = 0)	404
SPI3 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	413
SPI3 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	412
SPI3 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	410
SPI3 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	411
SPI3 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	420
SPI3 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	418
SPI3 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	414
SPI3 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	416
Timer1-Timer5 External Clock Characteristics	
UARTx I/O Characteristics	

U

UART	
Unique Device Identifier (UDID) 32	2
Universal Asynchronous Receiver	
Transmitter (UART) 253	5
Control Registers 255	;
Helpful Tips 254	ŀ
Resources 254	ŀ
Universal Asynchronous Receiver Transmitter. See UART.	
User OTP Memory 355	j
V	
Voltage Regulator (On-Chip) 355	;
W	
Watchdog Timer (WDT)	5
Programming Considerations	
WWW Address	

WWW, On-Line Support 10