

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs706-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

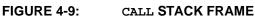
4.5.2 EXTENDED X DATA SPACE

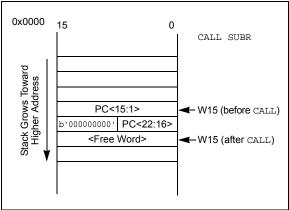
The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible, regardless of the contents of the Data Space Read Page register. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in combination with DSRPAG = 0x00. Consequently, DSRPAG is initialized to 0x001 at Reset.

- Note 1: DSRPAG should not be used to access Page 0. An EDS access with DSRPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSRPAG in software has no effect.

The remaining PSV pages are only accessible using the DSRPAG register in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

4.5.3 SOFTWARE STACK


The W15 register serves as a dedicated Software Stack Pointer (SSP), and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating the Stack Pointer (for example, creating stack frames).


Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGS70X/80X devices and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-9 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes). When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-9. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

4.9 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGS70X/80X family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXXGS70X/80X family devices provides two methods by which Program Space can be accessed during operation:

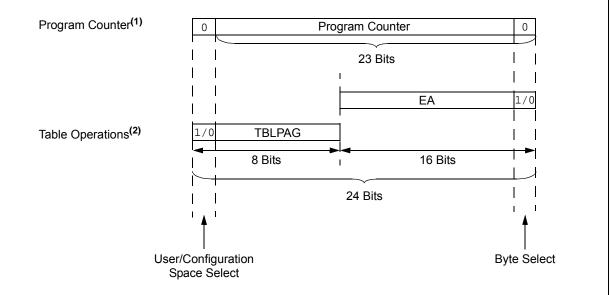

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-19: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Type	Access	Program Space Address					
	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0	0 PC<22:1> 0				
(Code Execution)		0xxx xxxx xxxx			xxx xxxx xxxx xxx0		
TBLRD/TBLWT	User	TBI	_PAG<7:0>		Data EA<15:0>		
(Byte/Word Read/Write)		0x	xxx xxxx	XXXX XXXX XXXX XXXX			
	Configuration	TBLPAG<7:0>			Data EA<15:0>		
		1x	xx xxxx	xxxx	XXXX XXXX XX	xx	

FIGURE 4-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

Note 1: The Least Significant bit (LSb) of Program Space addresses is always fixed as '0' to maintain word alignment of data in the Program and Data Spaces.

2: Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

- bit 2 STKERR: Stack Error Trap Status bit
 - 1 = Stack error trap has occurred
 - 0 = Stack error trap has not occurred
- bit 1 OSCFAIL: Oscillator Failure Trap Status bit
 - 1 = Oscillator failure trap has occurred
 - 0 = Oscillator failure trap has not occurred
- bit 0 Unimplemented: Read as '0'

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
	_	—	_	_	_	—	NAE			
bit 15			•	•	•		bit 8			
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0			
_	_	—	DOOVR	—	_	—	APLL			
bit 7	•		•		•		bit (
Legend:										
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set	:	'0' = Bit is cle	eared	x = Bit is unkr	= Bit is unknown			
bit 15-9	Unimpleme	nted: Read as	'0'							
bit 8	NAE: NVM /	Address Error S	oft Trap Status	s bit						
	1 = NVM ad	dress error soft	trap has occur	rred						
	0 = NVM ad	dress error soft	trap has not o	ccurred						
bit 7-5	Unimpleme	Unimplemented: Read as '0'								
bit 4	DOOVR: DO	Stack Overflow	/ Soft Trap Sta	tus bit						
	1 = DO stack	overflow soft tr	ap has occurr	ed						
	0 = DO stack	overflow soft tr	ap has not oc	curred						

- bit 3-1 Unimplemented: Read as '0'
- bit 0 APLL: Auxiliary PLL Loss of Lock Soft Trap Status bit
 - 1 = APLL lock soft trap has occurred
 - 0 = APLL lock soft trap has not occurred

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—		—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—			—	—	—	SGHT
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-1 Unimplemented: Read as '0'

SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

bit 0

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWM8MD	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—			—			SPI3MD
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	PWM8MD: P	WM8 Module D	isable bit				
	-	odule is disable odule is enable					
bit 14		WM7 Module D	-				
DIL 14		odule is disable					
		odule is enable					
bit 13	PWM6MD: P	WM6 Module D	isable bit				
		odule is disable odule is enable					
bit 12	PWM5MD: P	WM5 Module D	isable bit				
	-	odule is disable					
L:1 44		odule is enable					
bit 11		WM4 Module D odule is disable					
		odule is enable					
bit 10	PWM3MD: P	WM3 Module D	isable bit				
		odule is disable					
		odule is enable					
bit 9		WM2 Module D					
		odule is disable odule is enable	-				
bit 8		WM1 Module D					
		odule is disable					
	0 = PWM1 m	odule is enable	d				
bit 7-1	Unimplemen	ted: Read as 'o)'				
bit 0		3 Module Disat	ole bit				
		lule is disabled					
	0 = SP13 mod	lule is enabled					

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾		SYNCSEL4(4)	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0(4)
bit 7							bit 0

Legend:	HS = Hardware Settable bi	t	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'
--

bit 8 **IC32:** Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)

- 1 = Odd ICx and even ICx form a single 32-bit input capture module⁽¹⁾
- 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture x Trigger Operation Select bit⁽²⁾

- 1 = Input source is used to trigger the input capture timer (Trigger mode)
- 0 = Input source is used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear
- bit 5 Unimplemented: Read as '0'
- Note 1: The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output is set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output is set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 16-6: STCON2: PWMx SECONDARY CLOCK DIVIDER SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	—
bit 15		·		•		•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
		—		— PCLKDIV<2:0> ⁽¹⁾			[1]
bit 7				•			bit 0
Legend:							
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown

bit 15-3 Unimplemented: Read as '0'

bit 2-0

- PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-7: STPER: PWMx SECONDARY MASTER TIME BASE PERIOD REGISTER^(1,2)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			STPE	R<15:8>				
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			STPE	ER<7:0>				
bit 7						bit 0		
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 STPER<15:0>: Secondary Master Time Base (SMTMR) Period Value bits

Note 1: The PWMx time base has a minimum value of 0x0010 and a maximum value of 0xFFF8.

2: Any period value that is less than 0x0028 must have the Least Significant 3 bits set to '0', thus yielding a period resolution at 8.32 ns (at fastest auxiliary clock rate).

REGISTER 16-8: SSEVTCMP: PWMx SECONDARY SPECIAL EVENT COMPARE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVTC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	S	SEVTCMP<4:0)>		—	—	—
bit 7							bit 0
Legend:							

_ogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 SSEVTCMP<12:0>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SSEVTCMP resolution is 8.32 ns.

REGISTER 16-9: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER⁽¹⁾

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	_	—	—	—	—	CHOPCLK6	CHOPCLK5
bit 15			•				bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15
 CHPCLKEN: Enable Chop Clock Generator bit

 1 = Chop clock generator is enabled
 0 = Chop clock generator is disabled

 bit 14-10
 Unimplemented: Read as '0'

 bit 9-3
 CHOPCLK<6:0>: Chop Clock Divider bits

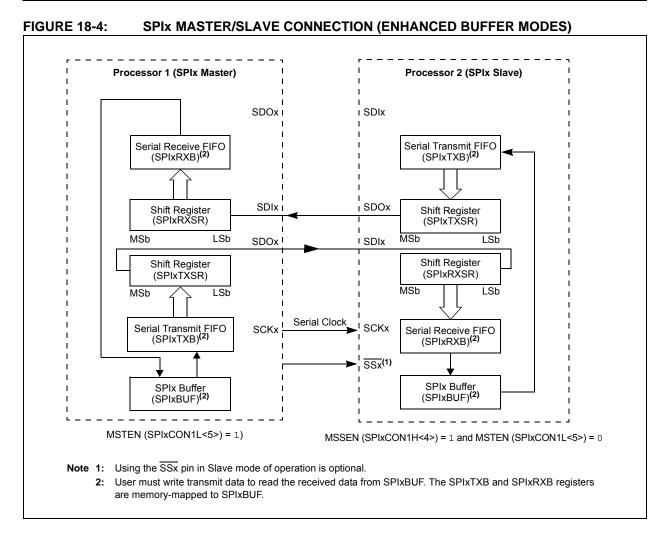
 Value is in 8.32 ns increments. The frequency of the chop clock signal is given by:

 Chop Frequency = 1/(16.64 * (CHOP<7:3> + 1) * Primary Master PWM Input Clock Period)

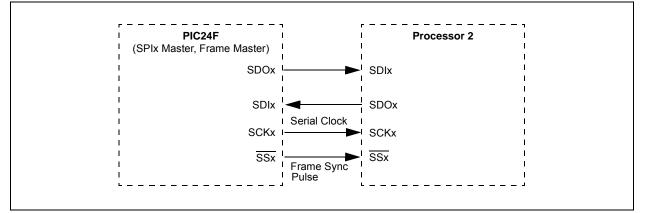
bit 2-0 Unimplemented: Read as '0'

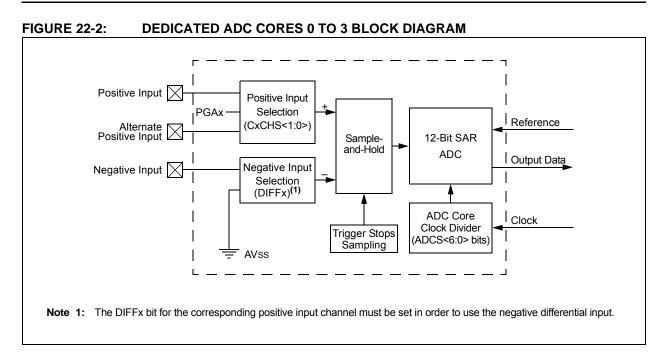
Note 1: The chop clock generator operates with the primary PWMx clock prescaler (PCLKDIV<2:0>) in the PTCON2 register (Register 16-2).

17.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

17.1 Module Introduction


The Peripheral Trigger Generator (PTG) provides a means to schedule complex, high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "Steps", that the user writes to the PTG Queue register (PTGQUE0-PTQUE15) which performs operations, such as wait for input signal, generate output trigger and wait for timer.


The PTG module has the following major features:

- Multiple Clock Sources
- Two 16-Bit General Purpose Timers
- Two 16-Bit General Limit Counters
- Configurable for Rising or Falling Edge Triggering
- Generates Processor Interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to Receive Trigger Signals from these Peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Comparator
 - INT2
- Able to Trigger or Synchronize to these Peripherals:
- Watchdog Timer
- Output Compare
- Input Capture
- ADC
- PWM
- Comparator

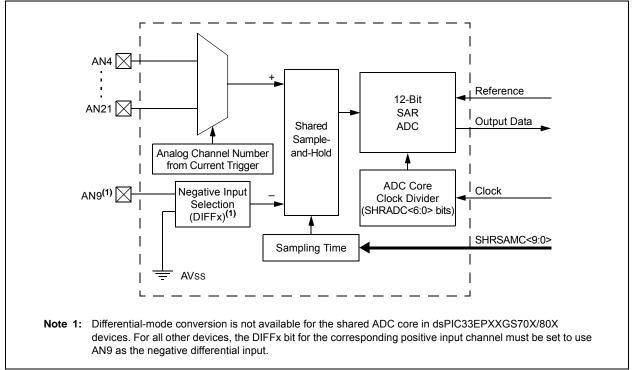


FIGURE 18-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM

FIGURE 22-3: SHARED ADC CORE BLOCK DIAGRAM

REGISTER	22-7: ADC	ON4L: ADC C	ONTROL R	EGISTER 4 L	wo		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_		SAMC3EN	SAMC2EN	SAMC1EN	SAMC0EN
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 2	time spe 0 = After trig next core SAMC2EN: I 1 = After trig time spe 0 = After trig	cified by the SA ger, the sampli e clock cycle Dedicated ADC ger, the conver cified by the SA	AMC<9:0> bits ng will be sto Core 2 Conve sion will be d AMC<9:0> bits	elayed and the as in the ADCORE pped immediate ersion Delay Ena elayed and the s in the ADCORE pped immediate	E3L register ly and the con able bit ADC core will E2L register	version will be continue samp	started on the
bit 1	 SAMC1EN: Dedicated ADC Core 1 Conversion Delay Enable bit 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE1L register 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle 						
bit 0	 SAMCOEN: Dedicated ADC Core 0 Conversion Delay Enable bit 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE0L register 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle 						

27.7 JTAG Interface

The dsPIC33EPXXXGS70X/80X family devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"					
	(DS70608) in the "dsPIC33/PIC24 Family					
	Reference Manual" for further information on					
	usage, configuration and operation of the					
	JTAG interface.					

27.8 In-Circuit Serial Programming[™] (ICSP[™])

The dsPIC33EPXXXGS70X/80X family devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming $\mathbb{C}(\mathsf{LSP}^{\mathsf{TM}})$.

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.9 In-Circuit Debugger

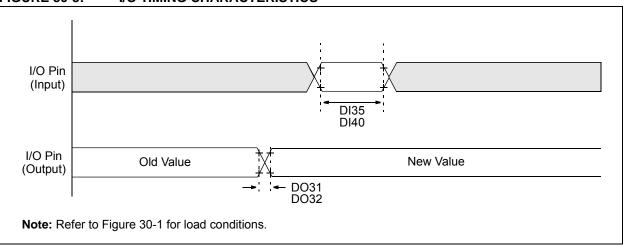
When MPLAB[®] ICD 3 or REAL ICE[™] emulator is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/ Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, VSS and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.10 Code Protection and CodeGuard™ Security


dsPIC33EPXXXGS70X/80X devices offer multiple levels of security for protecting individual intellectual property. The program Flash protection can be broken up into three segments: Boot Segment (BS), General Segment (GS) and Configuration Segment (CS). Boot Segment has the highest security privilege and can be thought to have limited restrictions when accessing other segments. General Segment has the least security and is intended for the end user system code. Configuration Segment contains only the device user configuration data which is located at the end of the program memory space.

The code protection features are controlled by the Configuration registers, FSEC and FBSLIM. The FSEC register controls the code-protect level for each segment and if that segment is write-protected. The size of BS and GS will depend on the BSLIM<12:0> bits setting and if the Alternate Interrupt Vector Table (AIVT) is enabled. The BSLIM<12:0> bits define the number of pages for BS with each page containing 512 IW. The smallest BS size is one page, which will consist of the Interrupt Vector Table (IVT) and 256 IW of code protection.

If the AIVT is enabled, the last page of BS will contain the AIVT and will not contain any BS code. With AIVT enabled, the smallest BS size is now two pages (1024 IW), with one page for the IVT and BS code, and the other page for the AIVT. Write protection of the BS does not cover the AIVT. The last page of BS can always be programmed or erased by BS code. The General Segment will start at the next page and will consume the rest of program Flash except for the Flash Configuration Words. The IVT will assume GS security only if BS is not enabled. The IVT is protected from being programmed or page erased when either security segment has enabled write protection.

Note: Refer to "CodeGuard™ Intermediate Security" (DS70005182) in the "dsPIC33/ PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

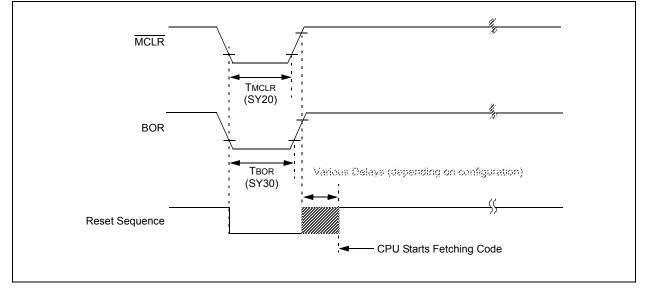
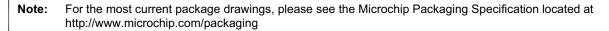


TABLE 30-22: I/O TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T_A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T_A \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DO31	TioR	Port Output Rise Time	_	5	10	ns	
DO32	TIOF	Port Output Fall Time	_	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_		ns	
DI40	TRBP	CNx High or Low Time (input)	2	—	_	Тсү	

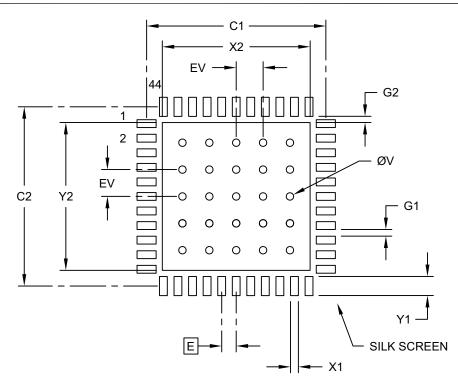

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

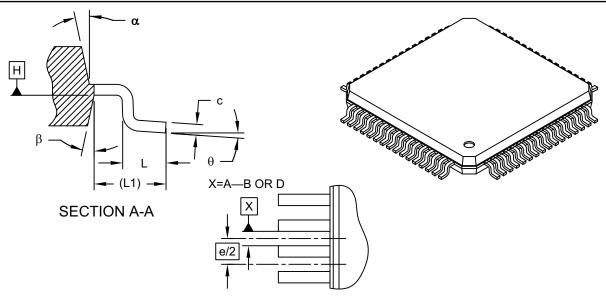
44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

RECOMMENDED LAND PATTERN

	Ν	IILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0°	3.5°	7°
Overall Width	Е		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

Oscillator	
Control Registers	
Resources	
Oscillator Configuration	103
Output Compare	
Control Registers	
Resources	
Р	
Packaging	

Packaging	439
Details	441
Marking	439
Peripheral Module Disable (PMD)	117
Peripheral Pin Select (PPS)	
Available Peripherals	
Available Pins	
Control	135
Control Registers	
Input Mapping	
Output Mapping	
Output Selection for Remappable Pins	
Selectable Input Sources	
Peripheral Trigger Generator (PTG) Module	
Peripheral Trigger Generator. See PTG.	
Pinout I/O Descriptions (table)	12
Power-Saving Features	
Clock Frequency and Switching	
Resources	
Program Address Space	
Construction	
Data Access from Program Memory Using	
Table Instructions	59
Memory Map (dsPIC33EP128GS70X/80X Device	
Dual Partition)	
Memory Map (dsPIC33EP128GS70X/80X	
Devices)	33
Memory Map (dsPIC33EP64GS70X/80X Devices	
Dual Partition)	
Memory Map (dsPIC33EP64GS70X/80X	
Devices)	32
Table Read High Instructions (TBLRDH)	
Table Read Low Instructions (TBLRDL)	
Program Memory	
Interfacing with Data Memory Spaces	58
Organization	
Reset Vector	
Programmable Gain Amplifier (PGA)	
Description	
Resources	
Programmable Gain Amplifier. See PGA.	
Programmer's Model	23
Register Descriptions	
PTG	
Control Registers	215
Introduction	
Output Descriptions	
Step Commands and Format	
Pulse-Width Modulator. See PWM.	223

R Reg

jisters
ACLKCON (Auxiliary Clock Divisor Control) 112
ADCAL0L (ADC Calibration 0 High) 300
ADCAL0L (ADC Calibration 0 Low)
ADCAL1H (ADC Calibration 1 High) 301
ADCMPxCON (ADC Digital Comparator x
Control)
ADCMPxENH (ADC Digital Comparator x
Channel Enable High)
ADCMPxENL (ADC Digital Comparator x
Channel Enable Low)
ADCON1H (ADC Control 1 High)277
ADCON1L (ADC Control 1 Low)
ADCON2H (ADC Control 2 High)
ADCON2L (ADC Control 2 Low)
ADCON3H (ADC Control 3 High)
ADCON3L (ADC Control 3 Low)
ADCON4H (ADC Control 4 High)
ADCON4L (ADC Control 4 Low)
ADCON5H (ADC Control 5 High) 285
ADCON5L (ADC Control 5 Low) 284
ADCORExH (Dedicated ADC Core x
Control High) 287
ADCORExL (Dedicated ADC Core x
Control Low) 286
ADEIEH (ADC Early Interrupt Enable High) 289
ADEIEL (ADC Early Interrupt Enable Low) 289
ADEISTATH (ADC Early Interrupt Status High) 290
ADEISTATL (ADC Early Interrupt Status Low) 290
ADFLxCON (ADC Digital Filter x Control) 304
ADIEH (ADC Interrupt Enable High) 293
ADIEL (ADC Interrupt Enable Low) 293
ADLVLTRGH (ADC Level-Sensitive Trigger
Control High)
ADLVLTRGL (ADC Level-Sensitive Trigger
Control Low)
ADMOD0H (ADC Input Mode Control 0 High)
ADMODOL (ADC Input Mode Control 0 Low)
ADMOD1L (ADC Input Mode Control 1 Low)
ADSTATH (ADC Data Ready Status High)
ADSTATL (ADC Data Ready Status High)
ADTRIGXH (ADC Channel Trigger x
Selection High)
ADTRIGxL (ADC Channel Trigger x
Selection Low)
ALTDTRx (PWMx Alternate Dead-Time)
ANSELx (Analog Select Control x)
AUXCONx (PWMx Auxiliary Control) 211
CHOP (PWMx Chop Clock Generator) 196
CLCxCONH (CLCx Control High) 263
CLCxCONL (CLCx Control Low) 262
CLCxGLSH (CLCx Gate Logic Input Select High) 271
CLCxGLSL (CLCx Gate Logic Input Select Low) 269
CLCxSEL (CLCx Input MUX Select) 264
CLKDIV (Clock Divisor) 109
CMPxCON (Comparator x Control) 337
CMPxDAC (Comparator x DAC Control)
CNENx (Input Change Notification
Interrupt Enable x) 133
· · ·

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

		Examples: dsPIC33EP64GS804-I/PT: dsPIC33, Enhanced Performance, 64-Kbyte Program Memory, SMPS, 44-Pin, Industrial Temperature, TQFP Package.
	(if applicable)	
Package		
Pattern		
Architecture:	33 = 16-Bit Digital Signal Controller	
Flash Memory Family:	EP = Enhanced Performance	
Product Group:	GS = SMPS Family	
Pin Count:	02 = 28-pin 04 = 44-pin 05 = 48-pin 06 = 64-pin 08 = 80-pin	
Temperature Range:	$ \begin{array}{rcl} I &=& -40^\circ C \text{ to } +85^\circ C \text{ (Industrial)} \\ E &=& -40^\circ C \text{ to } +125^\circ C \text{ (Extended)} \end{array} $	
Package:	ML = Plastic Quad, No Lead Package – (44-pin) 8x8 mm body (QFN) MM = Plastic Quad, No Lead Package – (28-pin) 6x6 mm body (QFN-S) 2N = Plastic Quad Flat, No Lead Package – (28-pin) 6x6 mm body (UQFN) PT = Plastic Thin Quad Flatpack – (44-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (48-pin) 7x7 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack – (80-pin) 12x12 mm body (TQFP) SO = Plastic Small Outline, Wide – (28-pin) 7.50 mm body (SOIC)	