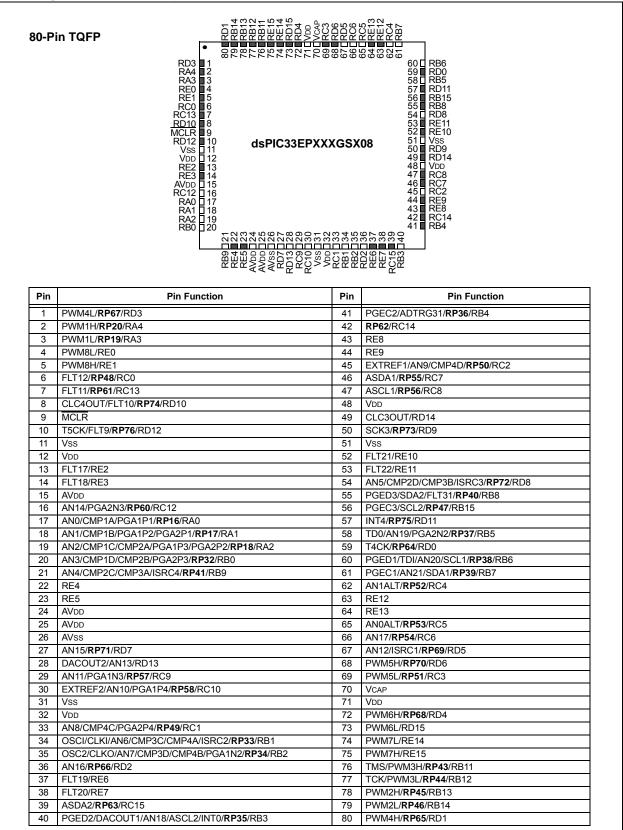


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

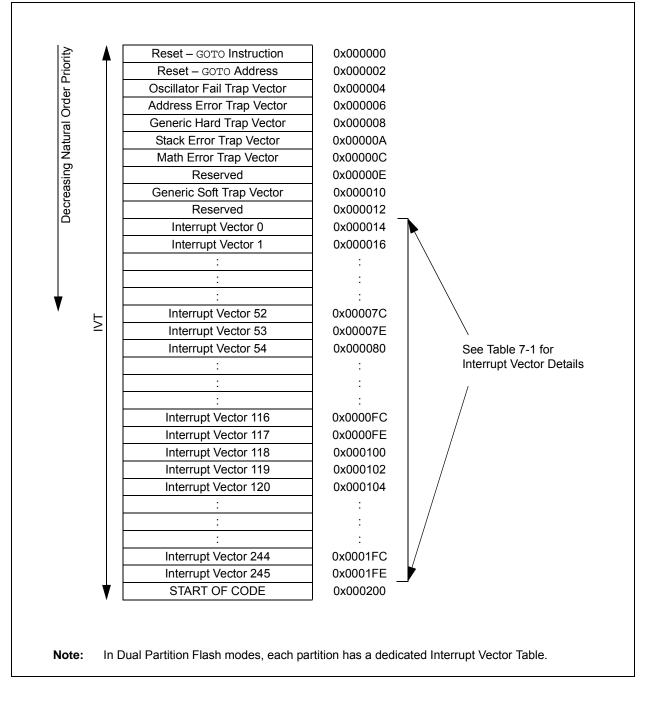
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs706t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.

FIGURE 7-1: dsPIC33EPXXXGS70X/80X FAMILY INTERRUPT VECTOR TABLE

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

•

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **2:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	PLLDIV8
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
PLLDIV<7:0>									
bit 7							bit 0		

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9 Unimplemented: Read as '0'

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0
—			DMAMD	PTGMD	—	PGA1MD	
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is clea		x = Bit is unkn	iown
bit 15-12	Unimpleme	nted: Read as	0'				
bit 11	CMP4MD: (CMP4 Module D	isable bit				
		nodule is disable					
		nodule is enable					
bit 10		CMP3 Module D					
		nodule is disable nodule is enable					
bit 9		CMP2 Module D					
bit 0		nodule is disable					
	-	nodule is enable					
bit 8	CMP1MD: (CMP1 Module D	isable bit				
	1 = CMP1 n	nodule is disable	ed				
	0 = CMP1 n	nodule is enable	d				
bit 7-5	Unimpleme	ented: Read as	0'				
bit 4		MA Module Disa					
		odule is disabled odule is enabled					
bit 3		G Module Disal					
DILS	_	dule is disabled					
		dule is enabled					
bit 2	Unimpleme	nted: Read as	0'				
bit 1	-	PGA1 Module Di					
	1 = PGA1 m	nodule is disable	d				
	0 = PGA1 m	nodule is enable	d				
bit 0	Unimpleme	nted: Read as	0'				

-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
Legend:							
bit 7	•	1	•				bit (
IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-8	IC2R<7:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits
	See Table 11-11 which contains a list of remappable inputs for the index value.
bit 7-0	IC1R<7:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits
	See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-14: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC4R7	IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| IC3R7 | IC3R6 | IC3R5 | IC3R4 | IC3R3 | IC3R2 | IC3R1 | IC3R0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8IC4R<7:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0IC3R<7:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-21: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	-	—
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SS1R7	SS1R6	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7			·		·		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **SS1R<7:0>:** Assign SPI1 Slave Select (SS1) to the Corresponding RPn Pin bits See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 11-22: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0	
bit 15						•	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown		

bit 15-8SCK2INR<7:0>: Assign SPI2 Clock Input (SCK2) to the Corresponding RPn Pin bits
See Table 11-11 which contains a list of remappable inputs for the index value.bit 7-0SDI2R<7:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits

See Table 11-11 which contains a list of remappable inputs for the index value.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = OCxRS compare event is used for synchronization
 - 11110 = INT2 pin synchronizes or triggers OCx
 - 11101 = INT1 pin synchronizes or triggers OCx
 - 11100 = Reserved
 - 11011 = CMP4 module synchronizes or triggers OCx
 - 11010 = CMP3 module synchronizes or triggers OCx
 - 11001 = CMP2 module synchronizes or triggers OCx
 - 11000 = CMP1 module synchronizes or triggers OCx
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 input capture interrupt event synchronizes or triggers OCx
 - 10010 = IC3 input capture interrupt event synchronizes or triggers OCx
 - 10001 = IC2 input capture interrupt event synchronizes or triggers OCx
 - 10000 = IC1 input capture interrupt event synchronizes or triggers OCx
 - 01111 = Timer5 synchronizes or triggers OCx
 - 01110 = Timer4 synchronizes or triggers OCx
 - 01101 = Timer3 synchronizes or triggers OCx
 - 01100 = Timer2 synchronizes or triggers OCx (default)
 - 01011 = Timer1 synchronizes or triggers OCx
 - 01010 = PTG Trigger Output x⁽³⁾
 - 01001 = Reserved
 - 01000 = IC4 input capture event synchronizes or triggers OCx
 - 00111 = IC3 input capture event synchronizes or triggers OCx
 - 00110 = IC2 input capture event synchronizes or triggers OCx
 - 00101 = IC1 input capture event synchronizes or triggers OCx
 - 00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
 - 00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$
 - $00010 = OC2 \text{ module synchronizes or triggers } OCx^{(1,2)}$
 - 00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$
 - 00000 = No sync or trigger source for OCx
- Note 1: Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.
 - 3: For each OCMPx instance, a different PTG trigger out is used:
 - OCMP1 PTG trigger out [0]
 - OCMP2 PTG trigger out [1]
 - OCMP3 PTG trigger out [2]
 - OCMP4 PTG trigger out [3]

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 16-2: PTCON2: PWMx CLOCK DIVIDER SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	_	—	—	PCLKDIV<2:0>(1)		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

- 110 = Divide-by-64, maximum PWM timing resolution
- 101 = Divide-by-32, maximum PWM timing resolution
- 100 = Divide-by-16, maximum PWM timing resolution
- 011 = Divide-by-8, maximum PWM timing resolution
- 010 = Divide-by-4, maximum PWM timing resolution
- 001 = Divide-by-2, maximum PWM timing resolution
- 000 = Divide-by-1, maximum PWM timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-22: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (x = 1 to 8) (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator bits 11111 = Reserved 10001 = Reserved 10000 = Analog Comparator 4 01111 = Analog Comparator 3 01110 = Analog Comparator 2 01101 = Analog Comparator 1 01100 = Fault 12 01011 = Fault 11 01010 = Fault 11 01010 = Fault 10 01001 = Fault 9 01000 = Fault 8 00111 = Fault 7
	00110 = Fault 7 $00110 = Fault 6$ $00101 = Fault 5$ $00100 = Fault 4$ $00011 = Fault 3$ $00010 = Fault 2$ $00001 = Fault 1$ $00000 = Reserved$
bit 2	FLTPOL: Fault Polarity for PWMx Generator bit ⁽¹⁾ 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWMx Generator bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (cycle) 00 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (latched condition)

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

REGISTER 16-23: STRIGX: PWMX SECONDARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 8)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STRGC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		STRGCMP<4:0	>			_	_
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-3	When the se	<12:0>: Seconda econdary PWMx ger the ADC mod	functions in th	•		contains the co	mpare values
bit 2-0		nted: Read as '					

Note 1: STRIGx cannot generate the PWM trigger interrupts.

REGISTER 21-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = Data Source 2 non-inverted signal is enabled for Gate 3
	0 = Data Source 2 non-inverted signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	 1 = Data Source 2 inverted signal is enabled for Gate 3 0 = Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	 1 = Data Source 1 non-inverted signal is enabled for Gate 3 0 = Data Source 1 non-inverted signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = Data Source 1 inverted signal is enabled for Gate 3
	0 = Data Source 1 inverted signal is disabled for Gate 3

REGISTER 22-22: ADIEL: ADC INTERRUPT ENABLE REGISTER LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IE<	:15:8>			
bit 15							bit 8
	5444.0	D # 44 0	D # M / 0	5444.0	D 444 0	D 444.0	D 444 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IE	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, rea	id as '0'		
-n = Value at POR '1' =		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 IE<15:0>: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

REGISTER 22-23: ADIEH: ADC INTERRUPT ENABLE REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			IE<2	1:16>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0

IE<21:16>: Common Interrupt Enable bits

1 = Common and individual interrupts are enabled for the corresponding channel

0 = Common and individual interrupts are disabled for the corresponding channel

REGISTER 22-26: ADTRIGxL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5) (CONTINUED)

bit 4-0 TRGSRC(4x)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits 11111 = ADTRG31 11110 = PTG Trigger Output 30 11101 = PWM Generator 6 current-limit trigger 11100 = PWM Generator 5 current-limit trigger 11011 = PWM Generator 4 current-limit trigger 11010 = PWM Generator 3 current-limit trigger 11001 = PWM Generator 2 current-limit trigger 11000 = PWM Generator 1 current-limit trigger 10111 = Output Compare 2 trigger 10110 = Output Compare 1 trigger 10101 = CLC2 output 10100 = PWM Generator 6 secondary trigger 10011 = PWM Generator 5 secondary trigger 10010 = PWM Generator 4 secondary trigger 10001 = PWM Generator 3 secondary trigger 10000 = PWM Generator 2 secondary trigger 01111 = PWM Generator 1 secondary trigger 01110 = PWM secondary Special Event Trigger 01101 = Timer2 period match 01100 = Timer1 period match 01011 = CLC1 output 01010 = PWM Generator 6 primary trigger 01001 = PWM Generator 5 primary trigger 01000 = PWM Generator 4 primary trigger 00111 = PWM Generator 3 primary trigger 00110 = PWM Generator 2 primary trigger 00101 = PWM Generator 1 primary trigger 00100 = PWM Special Event Trigger 00011 = Reserved 00010 = Level software trigger 00001 = Common software trigger

00000 = No trigger is enabled

REGISTER 22-34: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER

FLEN MODE1 MODE0 OVRSAM2 OVRSAM1 OVRSAM0 IE RI bit 15	REGISTER	22-34: ADFL (x = 0	_xCON: ADC) or 1)	DIGITAL FIL	TER x CONT	ROL REGIS	FER			
FLEN MODE1 MODE0 OVRSAM2 OVRSAM1 OVRSAM0 IE RI bit 15 Image: State	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HSC		
U-0 U-0 R/W-0 R/W R/W R/W R/W R/W	FLEN	MODE1	MODE0	OVRSAM2	OVRSAM1	OVRSAM0	IE	RDY		
- - FLCHSEL4 FLCHSEL3 FLCHSEL2 FLCHSEL1 FLCHSEL1 bit 7 Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit - - - 0 = Filter is disabled and the RDY bit is cleared - - - - bit 14-13 MODE<1:0>: Filter Mode bits - - - - 1 = Averaging mode -	bit 15							bit 8		
bit 7 Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit 1 = Filter is enabled 0 = Filter is disabled and the RDY bit is cleared bit 14-13 MODE<1:0:: Filter Mode bits 11 = Averaging mode 10 = Reserved 00 = Oversampling mode 10 = Reserved 00 = Oversampling mode 11 = 128 (16-bit result in the ADFLxDAT register is in 12.4 format) 110 = 32x (16-bit result in the ADFLxDAT register is in 12.4 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 010 = 64x (13-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 126x 110 = 128. 110 = 128. 110 = 128. 111 = 128 100 = 32. 111 = 128 100 = 32. 111 = 128 100 = 32. 111 = 128 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 128 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 100 = 32. 111 = 16X 101 = 4X 101 =	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
Legend: U = Unimplemented bit, read as '0' R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit 1 = Filter is disabled and the RDY bit is cleared x = Bit is unknown bit 14.13 MODE<1:0>: Filter Mode bits 1 = Averaging mode 10 = Reserved 00 = Oversampling mode 00 = Oversampling mode 10 = Reserved 11 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 010 = 0 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format) 010 = 0 = 32x (15-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 128x (13-bit result in the ADFLxDAT register is in 12.4 format) 010 = 64x (13-bit result in the ADFLxDAT register is in 12.1 format) 011 = 128x 101 = 128x 101 = 128x 100 = 128x 101 = 128x 101 = 128x 101 = 128x 101 = 128x 101 = 128x 101 = 128x 101 = 128x	—	—	—	FLCHSEL4	FLCHSEL3	FLCHSEL2	FLCHSEL1	FLCHSEL0		
R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit 1 = Filter is enabled 0 0 = Filter is disabled and the RDY bit is cleared 0 = Filter is disabled and the RDY bit is cleared 0 bit 14-13 MODE-1:0>: Filter Mode bits 1 = Reserved 0 0 = Reserved 00 = Oversampling mode 0 = Coresampling mode 0 = Reserved 00 = Oversampling mode 0 = Norsampling mode bit 12-10 OVRSAM = Site result in the ADFLxDAT register is in 12.4 format) 110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 32x (14-bit result in the ADFLxDAT register is in 12.1 format) 100 = 2x (13-bit result in the ADFLxDAT register is in 12.2 format) 001 = 4x (14-bit result in the ADFLxDAT register is in 12.2 format) 001 = 4x (14-bit result in the ADFLxDAT register is in 12.2 format) 001 = 4x (14-bit result in the ADFLxDAT register is in 12.1 format) 001 = 16x (14-bit result in the ADFLxDAT register is in 12.1 format) 111 = 256x 111 = 256x 111 = 256x 111 = 256x 111 = 256x 111 = 256x 111 = 256x 111 = 256	bit 7							bit (
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 FLEN: Filter Enable bit 1 = Filter is enabled 0 = Filter is disabled and the RDY bit is cleared bit 14-13 MODE<1:0>: Filter Mode bits 1 = Averaging mode 0 = Reserved 01 = Reserved 00 = Oversampling mode 0 = Reserved 0 = Oversampling mode bit 12-10 OVRSAM 2:0>: Filter Averaging/Oversampling Ratio bits If MODE I11 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 10 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 100 = 2x (15-bit result in the ADFLxDAT register is in 12.4 format) 100 = 2x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) 010 = 64x (15-bit result in the ADFLxDAT register is in 12.1 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) 011 = 128x 10 = 128x 10 = 64x 100 = 32x 11 = 16x 10 = 8x 010 = 42x 10 = 64x 10 = 2x 101 = 16x 10 = 8x 10 = 8x 010 = 8x 10 = 16x 10 = 16x 010 = 8x 10	Legend:		U = Unimpler	mented bit, read	as '0'					
bit 15 FLEN: Filter Enabled 0 = Filter is enabled 0 = Filter is disabled and the RDY bit is cleared bit 14-13 MODE<1:0>: Filter Mode bits 11 = Averaging mode 10 = Reserved 01 = Reserved 00 = Oversampling mode bit 12-10 OVRSAM<2:0>: Filter Averaging/Oversampling Ratio bits If MODE<1:0> = 00; 111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 100 = 32x (15-bit result in the ADFLxDAT register is in 12.4 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format) 101 = 2x (14-bit result in the ADFLxDAT register is in 12.4 format) 101 = 25x (16-bit result in the ADFLxDAT register is in 12.4 format) 010 = 64x (15-bit result in the ADFLxDAT register is in 12.1 format) 001 = 64x (15-bit result in the ADFLxDAT register is in 12.1 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) 011 = 128x 101 = 128x 101 = 64x 100 = 4x 001 = 4x 000 = 2x bit 9 IE: Filte	R = Readab	le bit	W = Writable	bit	HSC = Hardw	/are Settable/C	learable bit			
 i = Filter is enabled i = Filter is disabled and the RDY bit is cleared bit 14-13 MODE i = Averaging mode 10 = Reserved 01 = Reserved 00 = Oversampling mode bit 12-10 OVRSAM i = Averaging mode i = Reserved 00 = Oversampling mode bit 12-10 OVRSAM i = Reserved i = Reserved i = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) i = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) i = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) i = 8x (14-bit result in the ADFLxDAT register is in 12.4 format) i = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) i = 26x (16-bit result in the ADFLxDAT register is in 12.4 format) i = 126x (14-bit result in the ADFLxDAT register is in 12.4 format) i = 26x (16-bit result in the ADFLxDAT register is in 12.4 format) i = 126x it result in the ADFLxDAT register is in 12.4 format) i = 128x it is in 12.4 format) i = 128x it is in 12.4 format) i = 128x it is in 12.2 format) i = 128x it is in 12.4 format) i = 44x it is a state is in 12.4 format) i = 26x it is in 12.4 format) i = 16x it is a state is is in 12.4 format) i = 16x it is a state is is is is is is a state is is is is a state is is is is is is a state is is is is is a state is is is is is is cleared by hardware when the result is result will be ready is is is cleared by hardware when the resu	-n = Value a	It POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown		
bit 14-13 MODE<1:0:: Filter Mode bits 11 = Averaging mode 10 = Reserved 01 = Reserved 00 = Oversampling mode bit 12-10 OVRSAM<2:0:: Filter Averaging/Oversampling Ratio bits <u>If MODE<1:0> = 00</u> : 111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 110 = 32x (15-bit result in the ADFLxDAT register is in 12.2 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format) 102 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format) 103 = 64x (15-bit result in the ADFLxDAT register is in 12.4 format) 104 = 45x (16-bit result in the ADFLxDAT register is in 12.4 format) 105 = 64x (15-bit result in the ADFLxDAT register is in 12.2 format) 106 = 4x (13-bit result in the ADFLxDAT register is in 12.2 format) 107 = 16x (14-bit result in the ADFLxDAT register is in 12.1 format) 111 = 256x 111 = 256x 110 = 128x 101 = 64x 100 = 32x 011 = 16x 000 = 2x bit 9 IE: Filter Common ADC Interrupt Enable bit 1 = Common ADC interrupt Will be generated when the filter result will be ready 0 = Common ADC interrupt will be generated for the filter bit 8 RDY: Oversampling Filter Data Ready Flag bit This bit is cleared by hardware when the result is read from the ADFLxDAT register. 1 = Data in the ADFLxDAT register is read from the ADFLxDAT register. 1 = Data in the ADFLxDAT register is read from the ADFLxDAT register. 1 = Data in the ADFLxDAT register is read from the ADFLxDAT register.	bit 15	1 = Filter is e	nabled							
 11 = Averaging mode 10 = Reserved 01 = Reserved 00 = Oversampling mode bit 12-10 OVRSAM<2:0>: Filter Averaging/Oversampling Ratio bits <u>If MODE<1:0> = 00:</u> 111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 101 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.1 format) 101 = 256x (16-bit result in the ADFLxDAT register is in 12.1 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.1 format) 010 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format) 001 = 16x (14-bit result in the ADFLxDAT register is in 12.3 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.3 format) 001 = 16x (14-bit result in the ADFLxDAT register is in 12.1 format) 111 = 256x 110 = 128x 100 = 32x 111 = 26ax 100 = 32x 111 = 26ax 100 = 32x 111 = 18x 100 = 32x 111 = 16x 110 = 128x 111 = 100 = 100000000000000000000000000		0 = Filter is d	isabled and the	e RDY bit is clea	ared					
If MODE<1:0> = 00: 111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 100 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format) 100 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.3 format) 001 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format) 001 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format) 001 = 16x (14-bit result in the ADFLxDAT register is in 12.3 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) If MODE 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) If MODE 110 = 128x 110 = 128x 111 = 266x 111 = 16x 100 = 32x 011 = 16x 010 = 8x 001 = 4x 000 = 2x bit 9 IE: Filter Common ADC Interrupt Enable bit 1 = Common ADC interrupt will be generated when the filter result will be ready 0 = Common ADC interrupt will not be generated for the filter bit 8 RD	bit 1 4 -10	11 = Averagi 10 = Reserve 01 = Reserve	ng mode ed ed							
1 = Common ADC interrupt will be generated when the filter result will be ready 0 = Common ADC interrupt will not be generated for the filter bit 8 RDY: Oversampling Filter Data Ready Flag bit This bit is cleared by hardware when the result is read from the ADFLxDAT register. 1 = Data in the ADFLxDAT register is ready	bit 12-10	If MODE<1:0 111 = 128x (110 = 32x (1 101 = 8x (14 100 = 2x (13 011 = 256x (010 = 64x (13 001 = 16x (14 000 = 4x (13 If MODE<1:0 111 = 256x 110 = 128x 101 = 64x 100 = 32x 011 = 16x 010 = 8x 001 = 4x	01 = Reserved 00 = Oversampling mode OVRSAM<2:0>: Filter Averaging/Oversampling Ratio bits <u>If MODE<1:0> = 00:</u> 111 = 128x (16-bit result in the ADFLxDAT register is in 12.4 format) 110 = 32x (15-bit result in the ADFLxDAT register is in 12.3 format) 101 = 8x (14-bit result in the ADFLxDAT register is in 12.2 format) 100 = 2x (13-bit result in the ADFLxDAT register is in 12.4 format) 011 = 256x (16-bit result in the ADFLxDAT register is in 12.4 format) 010 = 64x (15-bit result in the ADFLxDAT register is in 12.3 format) 010 = 64x (14-bit result in the ADFLxDAT register is in 12.3 format) 001 = 16x (14-bit result in the ADFLxDAT register is in 12.2 format) 000 = 4x (13-bit result in the ADFLxDAT register is in 12.1 format) <u>If MODE<1:0> = 11 (12-bit result in the ADFLxDAT register in all instances):</u> 111 = 256x 110 = 128x 101 = 64x 100 = 32x 011 = 16x 010 = 8x							
bit 8 RDY: Oversampling Filter Data Ready Flag bitThis bit is cleared by hardware when the result is read from the ADFLxDAT register.1 = Data in the ADFLxDAT register is ready	bit 9	1 = Common	ADC interrupt	will be generate	ed when the fill		e ready			
0 = The ADFLxDAT register has been read and new data in the ADFLxDAT register is not read	bit 8	RDY: Oversa This bit is cle 1 = Data in th	mpling Filter D ared by hardwa ne ADFLxDAT i	ata Ready Flag are when the re- register is ready	bit sult is read from	m the ADFLxD	-	not readv		
bit 7-5 Unimplemented: Read as '0'	bit 7-5		-				3.000. 101	, J		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F15BP3	F15BP2	F15BP1	F15BP0	F14BP3	F14BP2	F14BP1	F14BP0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
F13BP3	F13BP2	F13BP1	F13BP0	F12BP3	F12BP2	F12BP1	F12BP0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-12	F15BP<3:0>	5BP<3:0>: RX Buffer Mask for Filter 15 bits								
	1111 = Filter hits received in RX FIFO buffer									
	1110 = Filte r	hits received in	n RX Buffer 14	1						
	•									
	•									
	0001 = Filter	hits received in	n RX Buffer 1							
	0000 = Filte r	hits received in	n RX Buffer 0							
bit 11-8	F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bits 15-12)									
bit 7-4	F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bits 15-12)									
bit 7-4	F13BP<3:0>	: RX Buffer Ma	sk for Filter 13	3 bits (same va	lues as bits 15-	12)				

REGISTER 23-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4

bit 3-0 F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
74	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
75	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
76	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
78	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
79	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
15		SWAP	Wn	Wn = byte swap Wn	1	1	None
80	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
81	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
82	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
83	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
84	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
85	XOR	XOR	f	f = f.XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
86	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

NOTES:

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

FIGURE 30-31: CANX MODULE I/O TIMING CHARACTERISTICS

CxTX Pin (output)	Old Value		New Value	
CxRX Pin (input)	-	CA10 CA11	÷- F:	
(input)	4	CA20		

TABLE 30-49: CANX MODULE I/O TIMING REQUIREMENTS

AC CHAR	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
CA10	TIOF	Port Output Fall Time	—	_	_	ns	See Parameter DO32
CA11	TIOR	Port Output Rise Time	—	—	—	ns	See Parameter DO31
CA20	TCWF	Pulse Width to Trigger CAN Wake-up Filter	120	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

NOTES:

Timing Diagrams	
BOR and Master Clear Reset Characteristics	391
CANx I/O	426
External Clock	388
High-Speed PWMx Fault Characteristics	397
High-Speed PWMx Module Characteristics	397
I/O Characteristics	391
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	424
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	424
Input Capture x (ICx) Characteristics	
OCx/PWMx Characteristics	
Output Compare x (OCx) Characteristics	
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,	
CKE = 0, CKP = x, SMP = 1)	401
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,	
CKE = 1, CKP = x, SMP = 1)	400
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	398
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	399
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 0, SMP = 0)	408
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 0, CKP = 1, SMP = 0)	406
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 0, SMP = 0)	402
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,	
CKE = 1, CKP = 1, SMP = 0)	404
SPI3 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	413
SPI3 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	412
SPI3 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	410
SPI3 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	411
SPI3 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	420
SPI3 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	418
SPI3 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	414
SPI3 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	416
Timer1-Timer5 External Clock Characteristics	
UARTx I/O Characteristics	

U

UART	
Unique Device Identifier (UDID)	2
Universal Asynchronous Receiver	
Transmitter (UART) 253	3
Control Registers 25	5
Helpful Tips254	4
Resources 254	4
Universal Asynchronous Receiver Transmitter. See UART.	
User OTP Memory 355	5
V	
Voltage Regulator (On-Chip) 355	5
W	
Watchdog Timer (WDT)	6
Programming Considerations	
WWW Address	

WWW, On-Line Support 10