

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XEI

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 70 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                     |
| Number of I/O              | 33                                                                               |
| Program Memory Size        | 128KB (43K x 24)                                                                 |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 8K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 17x12b; D/A 1x12b                                                            |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 44-TQFP                                                                          |
| Supplier Device Package    | 44-TQFP (10x10)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep128gs804-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

When a PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses the PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSRPAG register is incremented and the EA<15> bit is set to keep the base address within the PSV window. When an underflow is detected, the DSRPAG register is decremented and the EA<15> bit is set to keep the base

address within the PSV window. This creates a linear PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0 and PSV spaces. Table 4-16 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSRPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

| TABLE 4-16: OVE<br>PS\ | ERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND / SPACE BOUNDARIES <sup>(2,3,4)</sup> |
|------------------------|------------------------------------------------------------------------------------|
|------------------------|------------------------------------------------------------------------------------|

| 0/11       |                    |                | Before       |                        | After          |              |                        |  |
|------------|--------------------|----------------|--------------|------------------------|----------------|--------------|------------------------|--|
| R/W        | Operation          | DSxPAG         | DS<br>EA<15> | Page<br>Description    | DSxPAG         | DS<br>EA<15> | Page<br>Description    |  |
| O,<br>Read | [++Wn]             | DSRPAG = 0x2FF | 1            | PSV: Last lsw<br>page  | DSRPAG = 0x300 | 1            | PSV: First MSB<br>page |  |
| O,<br>Read | 01<br>[Wn++]       | DSRPAG = 0x3FF | 1            | PSV: Last MSB<br>page  | DSRPAG = 0x3FF | 0            | See Note 1             |  |
| U,<br>Read |                    | DSRPAG = 0x001 | 1            | PSV page               | DSRPAG = 0x001 | 0            | See Note 1             |  |
| U,<br>Read | [Wn]<br>Or<br>[Wn] | DSRPAG = 0x200 | 1            | PSV: First Isw<br>page | DSRPAG = 0x200 | 0            | See Note 1             |  |
| U,<br>Read | [ 111 ]            | DSRPAG = 0x300 | 1            | PSV: First MSB<br>page | DSRPAG = 0x2FF | 1            | PSV: Last Isw<br>page  |  |

**Legend:** O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x7FFF).

2: An EDS access, with DSRPAG = 0x000, will generate an address error trap.

3: Only reads from PS are supported using DSRPAG.

4: Pseudolinear Addressing is not supported for large offsets.

### 5.6 Control Registers

Five SFRs are used to write and erase the Program Flash Memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR/H.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, Inactive Partition erase), initiates the program or erase cycle and is used to determine the Active Partition in Dual Partition modes.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

For row programming operation, data to be written to Program Flash Memory is written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of first element in row programming data).

### **REGISTER 6-1: RCON: RESET CONTROL REGISTER<sup>(1)</sup> (CONTINUED)**

| bit 3 | <b>SLEEP:</b> Wake-up from Sleep Flag bit<br>1 = Device has been in Sleep mode<br>0 = Device has not been in Sleep mode |
|-------|-------------------------------------------------------------------------------------------------------------------------|
| bit 2 | IDLE: Wake-up from Idle Flag bit                                                                                        |
|       | <ol> <li>Device has been in Idle mode</li> <li>Device has not been in Idle mode</li> </ol>                              |
| bit 1 | BOR: Brown-out Reset Flag bit                                                                                           |
|       | <ul><li>1 = A Brown-out Reset has occurred</li><li>0 = A Brown-out Reset has not occurred</li></ul>                     |
| bit 0 | POR: Power-on Reset Flag bit                                                                                            |
|       | <ul><li>1 = A Power-on Reset has occurred</li><li>0 = A Power-on Reset has not occurred</li></ul>                       |

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
  - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.



#### FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

### REGISTER 11-37: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

| U-0             | R/W-0                                                                                                                                     | R/W-0            | R/W-0  | R/W-0                                   | R/W-0  | R/W-0  | R/W-0  |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|-----------------------------------------|--------|--------|--------|--|--|
| —               | RP36R6                                                                                                                                    | RP36R5           | RP36R4 | RP36R3                                  | RP36R2 | RP36R1 | RP36R0 |  |  |
| bit 15          |                                                                                                                                           | -                |        |                                         |        |        | bit 8  |  |  |
|                 |                                                                                                                                           |                  |        |                                         |        |        |        |  |  |
| U-0             | R/W-0                                                                                                                                     | R/W-0            | R/W-0  | R/W-0                                   | R/W-0  | R/W-0  | R/W-0  |  |  |
|                 | RP35R6                                                                                                                                    | RP35R5           | RP35R4 | RP35R3                                  | RP35R2 | RP35R1 | RP35R0 |  |  |
| bit 7           |                                                                                                                                           |                  |        |                                         |        |        | bit 0  |  |  |
|                 |                                                                                                                                           |                  |        |                                         |        |        |        |  |  |
| Legend:         |                                                                                                                                           |                  |        |                                         |        |        |        |  |  |
| R = Readable    | bit                                                                                                                                       | W = Writable     | bit    | U = Unimplemented bit, read as '0'      |        |        |        |  |  |
| -n = Value at P | POR                                                                                                                                       | '1' = Bit is set |        | '0' = Bit is cleared x = Bit is unknown |        |        | nown   |  |  |
|                 |                                                                                                                                           |                  |        |                                         |        |        |        |  |  |
| bit 15          | Unimplemen                                                                                                                                | ted: Read as '   | 0'     |                                         |        |        |        |  |  |
| bit 14-8        | <b>RP36R&lt;6:0&gt;:</b> Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-13 for peripheral function numbers) |                  |        |                                         |        |        |        |  |  |
| bit 7           | Unimplemented: Read as '0'                                                                                                                |                  |        |                                         |        |        |        |  |  |

bit 6-0 **RP35R<6:0>:** Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-13 for peripheral function numbers)

#### REGISTER 11-38: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

| U-0               | R/W-0                                                                                            | R/W-0            | R/W-0  | R/W-0                | R/W-0            | R/W-0              | R/W-0  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------|------------------|--------|----------------------|------------------|--------------------|--------|--|--|
|                   | RP38R6                                                                                           | RP38R5           | RP38R4 | RP38R3               | RP38R2           | RP38R1             | RP38R0 |  |  |
| bit 15            |                                                                                                  |                  |        |                      |                  |                    | bit 8  |  |  |
|                   |                                                                                                  |                  |        |                      |                  |                    |        |  |  |
| U-0               | R/W-0                                                                                            | R/W-0            | R/W-0  | R/W-0                | R/W-0            | R/W-0              | R/W-0  |  |  |
| _                 | RP37R6                                                                                           | RP37R5           | RP37R4 | RP37R3               | RP37R2           | RP37R1             | RP37R0 |  |  |
| bit 7             |                                                                                                  |                  |        |                      |                  |                    | bit 0  |  |  |
|                   |                                                                                                  |                  |        |                      |                  |                    |        |  |  |
| Legend:           |                                                                                                  |                  |        |                      |                  |                    |        |  |  |
| R = Readable      | bit                                                                                              | W = Writable     | bit    | U = Unimpler         | mented bit, read | as '0'             |        |  |  |
| -n = Value at POR |                                                                                                  | '1' = Bit is set |        | '0' = Bit is cleared |                  | x = Bit is unknown |        |  |  |
|                   |                                                                                                  |                  |        |                      |                  |                    |        |  |  |
| bit 15            | Unimplemen                                                                                       | ted: Read as '   | 0'     |                      |                  |                    |        |  |  |
| bit 14-8          | bit 14-8 <b>RP38R&lt;6:0&gt;:</b> Peripheral Output Function is Assigned to RP38 Output Pin bits |                  |        |                      |                  |                    |        |  |  |

- (see Table 11-13 for peripheral function numbers)
- bit 7 Unimplemented: Read as '0'
- bit 6-0 **RP37R<6:0>:** Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-13 for peripheral function numbers)

| U-0    | R/W-0   |
|--------|---------|---------|---------|---------|---------|---------|---------|
| —      | RP181R6 | RP181R5 | RP181R4 | RP181R3 | RP181R2 | RP181R1 | RP181R0 |
| bit 15 |         | •       |         |         |         |         | bit 8   |
|        |         |         |         |         |         |         |         |
| 11_0   |         |         |         |         |         |         |         |

| U-0   | R/W-0   |
|-------|---------|---------|---------|---------|---------|---------|---------|
| —     | RP180R6 | RP180R5 | RP180R4 | RP180R3 | RP180R2 | RP180R1 | RP180R0 |
| bit 7 |         |         |         |         |         |         | bit 0   |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

bit 15 Unimplemented: Read as '0'

bit 14-8 **RP181R<6:0>:** Peripheral Output Function is Assigned to RP181 Output Pin bits (see Table 11-13 for peripheral function numbers)

bit 7 Unimplemented: Read as '0'

bit 6-0 **RP180R<6:0>:** Peripheral Output Function is Assigned to RP180 Output Pin bits (see Table 11-13 for peripheral function numbers)

### 12.1 Timer1 Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

### 12.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

NOTES:

### 13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGS70X/80X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare modules (Timer2 and Timer3 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-2.

### 13.1 Timer Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

#### 13.1.1 KEY RESOURCES

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

### REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | IC32  |
| bit 15 |     |     |     |     |     |     | bit 8 |

| R/W-0                 | R/W-0, HS               | U-0 | R/W-0       | R/W-1       | R/W-1       | R/W-0       | R/W-1       |
|-----------------------|-------------------------|-----|-------------|-------------|-------------|-------------|-------------|
| ICTRIG <sup>(2)</sup> | TRIGSTAT <sup>(3)</sup> | —   | SYNCSEL4(4) | SYNCSEL3(4) | SYNCSEL2(4) | SYNCSEL1(4) | SYNCSEL0(4) |
| bit 7                 |                         |     |             |             |             |             | bit 0       |

| Legend:           | HS = Hardware Settable bit |                             |                    |  |  |
|-------------------|----------------------------|-----------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit           | U = Unimplemented bit, read | as '0'             |  |  |
| -n = Value at POR | '1' = Bit is set           | '0' = Bit is cleared        | x = Bit is unknown |  |  |

| hit 15-9 | Unimplemented: Read as '0' |
|----------|----------------------------|
| DIL 13-3 | Unimplemented. Read as 0   |

bit 8 **IC32:** Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)

- 1 = Odd ICx and even ICx form a single 32-bit input capture module<sup>(1)</sup>
- 0 = Cascade module operation is disabled

#### bit 7 ICTRIG: Input Capture x Trigger Operation Select bit<sup>(2)</sup>

- 1 = Input source is used to trigger the input capture timer (Trigger mode)
- 0 = Input source is used to synchronize the input capture timer to a timer of another module (Synchronization mode)

#### bit 6 **TRIGSTAT:** Timer Trigger Status bit<sup>(3)</sup>

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear
- bit 5 Unimplemented: Read as '0'
- Note 1: The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
  - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
  - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
  - 4: Do not use the ICx module as its own sync or trigger source.
  - 5: This option should only be selected as a trigger source and not as a synchronization source.

| REGISTE             | R 18-2: SPI                                                            | xCON1H: SPIx                                                                                         |                                                                  | REGISTER 1                                                     | HIGH                                               |                                                      |                                |
|---------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|--------------------------------|
| R/W-0               | R/W-0                                                                  | R/W-0                                                                                                | R/W-0                                                            | R/W-0                                                          | R/W-0                                              | R/W-0                                                | R/W-0                          |
| AUDEN <sup>(1</sup> | ) SPISGNEX                                                             | IGNROV                                                                                               | IGNTUR                                                           | AUDMONO <sup>(2)</sup>                                         | URDTEN <sup>(3)</sup>                              | AUDMOD1(4)                                           | AUDMOD0(4)                     |
| bit 15              |                                                                        | ·                                                                                                    |                                                                  |                                                                |                                                    |                                                      | bit 8                          |
| R/W-0               | R/W-0                                                                  | R/W-0                                                                                                | R/W-0                                                            | R/W-0                                                          | R/W-0                                              | R/W-0                                                | R/W-0                          |
| FRMEN               | FRMSYNC                                                                | FRMPOL                                                                                               | MSSEN                                                            | FRMSYPW                                                        | FRMCNT2                                            | FRMCNT1                                              | FRMCNT0                        |
| bit 7               |                                                                        |                                                                                                      |                                                                  |                                                                |                                                    |                                                      | bit 0                          |
|                     |                                                                        |                                                                                                      |                                                                  |                                                                |                                                    |                                                      |                                |
| Legend:             |                                                                        |                                                                                                      |                                                                  |                                                                |                                                    |                                                      |                                |
| R = Reada           | able bit                                                               | W = Writable                                                                                         | bit                                                              | U = Unimplem                                                   | ented bit, read                                    | as '0'                                               |                                |
| -n = Value          | at POR                                                                 | '1' = Bit is set                                                                                     |                                                                  | '0' = Bit is clea                                              | red                                                | x = Bit is unkr                                      | nown                           |
| bit 15              | AUDEN: Au<br>1 = Audio p<br>this moor<br>regardle<br>0 = Audio p       | dio Codec Supp<br>rotocol is enable<br>dule functions as<br>ess of their actua<br>rotocol is disable | ort Enable bit<br>d; MSTEN co<br>if FRMEN = 1<br>Il values<br>ed | (1)<br>ntrols the directio<br>., FRMSYNC = M                   | n of both SCK<br>ISTEN, FRMC                       | x and frame (a.<br>NT<2:0> = 001                     | k.a. LRC), and<br>and SMP = 0, |
| bit 14              | SPISGNEX<br>1 = Data fro<br>0 = Data fro                               | <mark>ີ:</mark> SPIx Sign-Exte<br>m RX FIFO is siູ<br>m RX FIFO is no                                | end RX FIFO<br>gn-extended<br>ot sign-extende                    | Read Data Enab<br>ed                                           | le bit                                             |                                                      |                                |
| bit 13              | IGNROV: lg                                                             | nore Receive Ov                                                                                      | verflow bit                                                      |                                                                |                                                    |                                                      |                                |
|                     | 1 = A Rece<br>by the r<br>0 = A ROV                                    | ive Overflow (RC<br>eceive data<br>is a critical error                                               | DV) is NOT a that stops SP                                       | critical error; duri<br>I operation                            | ng ROV, data                                       | in the FIFO is r                                     | not overwritten                |
| bit 12              | IGNTUR: lg                                                             | nore Transmit Ui                                                                                     | nderrun bit                                                      |                                                                |                                                    |                                                      |                                |
|                     | 1 = A Trans<br>until the<br>0 = A TUR                                  | mit Underrun (T<br>SPIxTXB is not<br>is a critical error                                             | UR) is NOT a<br>empty<br>that stops SP                           | a critical error and<br>I operation                            | d data indicate                                    | ed by URDTEN                                         | is transmitted                 |
| bit 11              | AUDMONO                                                                | : Audio Data For                                                                                     | mat Transmit                                                     | bit <sup>(2)</sup>                                             |                                                    |                                                      |                                |
|                     | 1 = Audio da<br>0 = Audio da                                           | ata is mono (i.e.,<br>ata is stereo                                                                  | each data wo                                                     | ord is transmitted                                             | on both left ar                                    | nd right channe                                      | ls)                            |
| bit 10              | URDTEN: T                                                              | ransmit Underru                                                                                      | n Data Enable                                                    | e bit <sup>(3)</sup>                                           |                                                    |                                                      |                                |
|                     | 1 = Transmi<br>0 = Transmi                                             | ts data out of SP<br>ts the last receive                                                             | IxURDT regis                                                     | ster during Transr<br>g Transmit Under                         | nit Underrun c<br>run conditions                   | onditions                                            |                                |
| bit 9-8             | AUDMOD<1                                                               | I:0>: Audio Proto                                                                                    | ocol Mode Se                                                     | lection bits <sup>(4)</sup>                                    |                                                    |                                                      |                                |
|                     | 11 = PCM/D<br>10 = Right J<br>01 = Left Ju<br>00 = I <sup>2</sup> S mo | SP mode<br>ustified mode: T<br>stified mode: Thi<br>de: This module                                  | his module fu<br>s module fund<br>functions as i                 | nctions as if SPIF<br>ctions as if SPIFE<br>if SPIFE = 0, rega | E = 1, regard<br>= 1, regardle<br>ardless of its a | less of its actua<br>ss of its actual<br>ctual value | ll value<br>value              |
| bit 7               | FRMEN: Fra                                                             | amed SPIx Supp                                                                                       | ort bit                                                          |                                                                |                                                    |                                                      |                                |
|                     | 1 = Framed<br>0 = Framed                                               | SPIx support is<br>SPIx support is                                                                   | enabled (SSx<br>disabled                                         | pin is used as th                                              | e FSYNC inpu                                       | it/output)                                           |                                |
| Note 1:             | AUDEN can on                                                           | ly be written whe                                                                                    | en the SPIEN                                                     | bit = 0.                                                       |                                                    |                                                      |                                |
| 2:<br>3:            | AUDMONO car<br>URDTEN is onl                                           | n only be written<br>y valid when IGN                                                                | when the SPI<br>ITUR = 1.                                        | EN bit = 0 and is                                              | only valid for                                     | AUDEN = 1.                                           |                                |
| ۸.                  |                                                                        | 1.0> hite can on                                                                                     | ly be written y                                                  | when the SDIEN A                                               | it = 0 and are                                     | only valid who                                       |                                |

#### 4: The AUDMOD<1:0> bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.



### FIGURE 18-5: SPIX MASTER, FRAME MASTER CONNECTION DIAGRAM



| U-0           | U-0             | U-0                 | U-0                                           | U-0                               | U-0              | U-0                     | U-0            |
|---------------|-----------------|---------------------|-----------------------------------------------|-----------------------------------|------------------|-------------------------|----------------|
| —             | —               |                     |                                               |                                   | —                |                         |                |
| bit 15        |                 |                     |                                               |                                   |                  |                         | bit 8          |
|               |                 |                     |                                               |                                   |                  |                         |                |
| U-0           | R/W-0           | R/W-0               | R/W-0                                         | R/W-0                             | R/W-0            | R/W-0                   | R/W-0          |
| —             | PCIE            | SCIE                | BOEN                                          | SDAHT                             | SBCDE            | AHEN                    | DHEN           |
| bit 7         |                 |                     |                                               |                                   |                  |                         | bit 0          |
| Levende       |                 |                     |                                               |                                   |                  |                         |                |
| R - Readable  | a hit           | M = M/ritable b     | it                                            | II – I Inimplem                   | onted hit read   | ae 'O'                  |                |
| -n = Value at |                 | '1' = Bit is set    | it.                                           | $0^{\circ} = \text{Bit is clear}$ | ared             | as u<br>v = Bit is unkn | own            |
|               |                 |                     |                                               |                                   |                  |                         | OWIT           |
| bit 15-7      | Unimplemen      | ted: Read as '0     | ,                                             |                                   |                  |                         |                |
| bit 6         | PCIE: Stop C    | ondition Interrup   | ot Enable bit (I                              | <sup>2</sup> C Slave mode         | only)            |                         |                |
|               | 1 = Enables i   | nterrupt on dete    | ction of Stop of                              | condition                         |                  |                         |                |
|               | 0 = Stop dete   | ction interrupts    | are disabled                                  |                                   |                  |                         |                |
| bit 5         | SCIE: Start C   | ondition Interrup   | ot Enable bit (I                              | <sup>2</sup> C Slave mode         | only)            |                         |                |
|               | 1 = Enables i   | nterrupt on dete    | ction of Start o                              | or Restart condi                  | tions            |                         |                |
| hit 4         |                 | r Overwrite Enal    | ale uisableu<br>ble hit (I <sup>2</sup> C Sla | we mode only)                     |                  |                         |                |
|               | 1 = 12CxRCV     | / is updated and    | ACK is gener                                  | ated for a recei                  | ved address/da   | ata byte, ignorin       | a the state of |
|               | the I2CO        | V only if the RB    | F bit = $0$                                   |                                   |                  |                         | 5              |
|               | 0 = 12CxRCV     | / is only updated   | I when I2COV                                  | is clear                          |                  |                         |                |
| bit 3         | SDAHT: SDA      | x Hold Time Sel     | ection bit                                    |                                   |                  |                         |                |
|               | 1 = Minimum     | of 300 ns hold t    | ime on SDAx                                   | after the falling                 | edge of SCLx     |                         |                |
| hit 2         | SBCDE: Slav     | ve Mode Bus Co      | Illision Detect I                             | Enable bit (I <sup>2</sup> C.)    | Slave mode on    | ly)                     |                |
| Dit 2         | 1 = Enables s   | slave bus collisio  | n interrupts                                  |                                   |                  | 'y)                     |                |
|               | 0 = Slave bus   | s collision interru | pts are disabl                                | ed                                |                  |                         |                |
|               | If the rising e | dge of SCLx and     | SDAx is sam                                   | pled low when                     | the module is i  | n a high state, t       | he BCL bit is  |
| h:+ 1         |                 | us goes idie. Thi   | s Detection m                                 | ode is only valid                 | d during data ai | nd ACK transmi          | it sequences.  |
| DILI          | 1 = Following   | n the 8th falling   |                                               | Indue only)                       | ning received :  | address byte            | the SCI REI    |
|               | (I2CxCO         | NL<12>) bit will    | be cleared a                                  | nd SCLx will be                   | held low         | address byte,           |                |
|               | 0 = Address     | holding is disab    | ed                                            |                                   |                  |                         |                |
| bit 0         | DHEN: Data      | Hold Enable bit     | (I <sup>2</sup> C Slave mo                    | de only)                          |                  |                         |                |
|               | 1 = Following   | g the 8th falling   | edge of SCL                                   | x for a received                  | d data byte, the | e slave hardwa          | re clears the  |
|               | 0 = Data hold   | ding is disabled    |                                               |                                   |                  |                         |                |
|               |                 | 5                   |                                               |                                   |                  |                         |                |

### REGISTER 19-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

#### R-0, HSC R-0. HSC R-0. HSC R-0. HSC R/C-0. HS U-0 U-0 R-0. HSC ACKSTAT ACKTIM ADD10 TRSTAT BCL GCSTAT bit 15 bit 8 R/C-0, HS R/C-0, HS R/C-0, HSC R/C-0, HSC R-0, HSC R-0, HSC R-0, HSC R-0, HSC Ρ IWCOL I2COV DΑ S RW RBF TBF bit 7 bit 0 Legend: C = Clearable bit '0' = Bit is cleared HS = Hardware Settable bit R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit -n = Value at POR '1' = Bit is set U = Unimplemented bit, read as '0' ACKSTAT: Acknowledge Status bit (when operating as I<sup>2</sup>C master, applicable to master transmit operation) bit 15 1 = NACK was received from slave 0 = ACK was received from slave Hardware is set or clear at the end of a slave Acknowledge. **TRSTAT:** Transmit Status bit (when operating as I<sup>2</sup>C master, applicable to master transmit operation) bit 14 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge. bit 13 **ACKTIM:** Acknowledge Time Status bit (I<sup>2</sup>C Slave mode only) $1 = I^2C$ bus is an Acknowledge sequence, set on the 8th falling edge of SCLx 0 = Not an Acknowledge sequence, cleared on the 9th rising edge of SCLx bit 12-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation 0 = No bus collision detected Hardware is set at detection of a bus collision. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware is set when address matches the general call address. Hardware is clear at Stop detection. bit 8 ADD10: 10-Bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop detection. bit 7 IWCOL: I2Cx Write Collision Detect bit 1 = An attempt to write to the I2CxTRN register failed because the I<sup>2</sup>C module is busy $0 = No \ collision$ Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software). I2COV: I2Cx Receive Overflow Flag bit bit 6 1 = A byte was received while the I2CxRCV register was still holding the previous byte 0 = No overflowHardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software). D\_A: Data/Address bit (I<sup>2</sup>C Slave mode only) bit 5 1 = Indicates that the last byte received was data 0 = Indicates that the last byte received was a device address Hardware is clear at a device address match. Hardware is set by reception of a slave byte.

### REGISTER 22-4: ADCON2H: ADC CONTROL REGISTER 2 HIGH

| R-0, HSC | R-0, HSC | r-0 | r-0 | r-0 | r-0 | R/W-0    | R/W-0    |
|----------|----------|-----|-----|-----|-----|----------|----------|
| REFRDY   | REFERR   | —   | —   | —   | —   | SHRSAMC9 | SHRSAMC8 |
| bit 15   |          |     |     | •   |     |          | bit 8    |

| R/W-0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SHRSAMC7 | SHRSAMC6 | SHRSAMC5 | SHRSAMC4 | SHRSAMC3 | SHRSAMC2 | SHRSAMC1 | SHRSAMC0 |
| bit 7    |          |          |          |          |          |          | bit 0    |

| Legend:           | r = Reserved bit | U = Unimplemented bit, read as '0'    |                    |  |
|-------------------|------------------|---------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | HSC = Hardware Settable/Clearable bit |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared                  | x = Bit is unknown |  |

| bit 15    | REFRDY: Band Gap and Reference Voltage Ready Flag bit                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
|           | 1 = Band gap is ready                                                                                                                |
|           | 0 = Band gap is not ready                                                                                                            |
| bit 14    | REFERR: Band Gap or Reference Voltage Error Flag bit                                                                                 |
|           | <ul> <li>1 = Band gap was removed after the ADC module was enabled (ADON = 1)</li> <li>0 = No band gap error was detected</li> </ul> |
| bit 13-10 | Reserved: Maintain as '0'                                                                                                            |
| bit 9-0   | SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits                                                                             |
|           | These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC core sample time.                        |
|           | 111111111 = 1025 TADCORE                                                                                                             |
|           | •                                                                                                                                    |
|           | •                                                                                                                                    |
|           | •                                                                                                                                    |
|           | 000000001 = 3 TADCORE                                                                                                                |
|           | 00000000 = 2 TADCORE                                                                                                                 |

### REGISTER 22-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW

| R/W-0                              | R/W-0 | U-0   | U-0               | R/W-0           | R/W-0           | R/W-0 | R/W-0 |
|------------------------------------|-------|-------|-------------------|-----------------|-----------------|-------|-------|
|                                    |       |       | LVLE              | N<15:8>         |                 |       |       |
| bit 15                             |       |       |                   |                 |                 |       | bit 8 |
|                                    |       |       |                   |                 |                 |       |       |
| R/W-0                              | R/W-0 | R/W-0 | R/W-0             | R/W-0           | R/W-0           | R/W-0 | R/W-0 |
|                                    |       |       | LVLE              | EN<7:0>         |                 |       |       |
| bit 7                              |       |       |                   |                 |                 |       | bit 0 |
|                                    |       |       |                   |                 |                 |       |       |
| Legend:                            |       |       |                   |                 |                 |       |       |
| R = Readable bit W = Writable bit  |       | bit   | U = Unimplen      | nented bit, rea | ad as '0'       |       |       |
| -n = Value at POR '1' = Bit is set |       |       | '0' = Bit is clea | ared            | x = Bit is unkr | nown  |       |

bit 15-0 LVLEN<15:0>: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

#### REGISTER 22-14: ADLVLTRGH: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER HIGH

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 |
|-------|-----|-------|-------|-------|---------|-------|-------|
| —     | —   |       |       | LVLEN | <21:16> |       |       |
| bit 7 |     |       |       |       |         |       | bit 0 |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

bit 15-6 Unimplemented: Read as '0'

bit 5-0 LVLEN<21:16>: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

### REGISTER 23-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1

| R/W-1                            | R/W-1 | R/W-1            | R/W-1                              | R/W-1            | R/W-1 | R/W-1              | R/W-1 |  |
|----------------------------------|-------|------------------|------------------------------------|------------------|-------|--------------------|-------|--|
|                                  |       |                  | FLTE                               | N<15:8>          |       |                    |       |  |
| bit 15                           |       |                  |                                    |                  |       |                    | bit 8 |  |
|                                  |       |                  |                                    |                  |       |                    |       |  |
| R/W-1                            | R/W-1 | R/W-1            | R/W-1                              | R/W-1            | R/W-1 | R/W-1              | R/W-1 |  |
|                                  |       |                  | FLTE                               | N<7:0>           |       |                    |       |  |
| bit 7                            |       |                  |                                    |                  |       |                    | bit 0 |  |
|                                  |       |                  |                                    |                  |       |                    |       |  |
| Legend:                          |       |                  |                                    |                  |       |                    |       |  |
| R = Readable bit W = Writable bi |       | bit              | U = Unimplemented bit, read as '0' |                  |       |                    |       |  |
| -n = Value at POR                |       | '1' = Bit is set |                                    | '0' = Bit is cle | ared  | x = Bit is unknown |       |  |

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

#### REGISTER 23-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1

| R/W-0         | R/W-0                                                                   | R/W-0            | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0              |  |  |
|---------------|-------------------------------------------------------------------------|------------------|------------------|------------------------------------|----------------------|-------|--------------------|--|--|
| F3BP3         | F3BP2                                                                   | F3BP1            | F3BP0            | F2BP3                              | F2BP2                | F2BP1 | F2BP0              |  |  |
| bit 15        |                                                                         |                  |                  |                                    |                      |       | bit 8              |  |  |
|               |                                                                         |                  |                  |                                    |                      |       |                    |  |  |
| R/W-0         | R/W-0                                                                   | R/W-0            | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0              |  |  |
| F1BP3         | F1BP2                                                                   | F1BP1            | F1BP0            | F0BP3                              | F0BP2                | F0BP1 | F0BP0              |  |  |
| bit 7         |                                                                         |                  |                  |                                    |                      |       | bit 0              |  |  |
|               |                                                                         |                  |                  |                                    |                      |       |                    |  |  |
| Legend:       |                                                                         |                  |                  |                                    |                      |       |                    |  |  |
| R = Readable  | e bit                                                                   | W = Writable     | bit              | U = Unimplemented bit, read as '0' |                      |       |                    |  |  |
| -n = Value at | POR                                                                     | '1' = Bit is set |                  | '0' = Bit is cle                   | '0' = Bit is cleared |       | x = Bit is unknown |  |  |
|               |                                                                         |                  |                  |                                    |                      |       |                    |  |  |
| bit 15-12     | F3BP<3:0>:                                                              | RX Buffer Mas    | k for Filter 3 b | oits                               |                      |       |                    |  |  |
|               | 1111 = Filter                                                           | hits received in | n RX FIFO bu     | lffer                              |                      |       |                    |  |  |
|               | 1110 = Filter                                                           | hits received in | n RX Buffer 1    | 4                                  |                      |       |                    |  |  |
|               | •                                                                       |                  |                  |                                    |                      |       |                    |  |  |
|               | •                                                                       |                  |                  |                                    |                      |       |                    |  |  |
|               | •                                                                       |                  |                  |                                    |                      |       |                    |  |  |
|               |                                                                         | hits received in | n RX Buffer 1    |                                    |                      |       |                    |  |  |
|               | 0000 = Fliter                                                           | nits received li | n RX Buffer 0    |                                    |                      |       |                    |  |  |
| bit 11-8      | F2BP<3:0>: RX Buffer Mask for Filter 2 bits (same values as bits 15-12) |                  |                  |                                    |                      |       |                    |  |  |
| bit 7-4       | F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bits 15-12) |                  |                  |                                    |                      |       |                    |  |  |
| bit 3-0       | F0BP<3:0>:                                                              | RX Buffer Mas    | k for Filter 0 b | oits (same value                   | es as bits 15-12     | 2)    |                    |  |  |
|               |                                                                         |                  |                  |                                    |                      |       |                    |  |  |

### TABLE 28-2: INSTRUCTION SET OVERVIEW

| Base<br>Instr<br># | Assembly<br>Mnemonic | Assembly Syntax |                | Description                                      | # of<br>Words | # of<br>Cycles <sup>(1)</sup> | Status Flags<br>Affected |
|--------------------|----------------------|-----------------|----------------|--------------------------------------------------|---------------|-------------------------------|--------------------------|
| 1                  | ADD                  | ADD Acc         |                | Add Accumulators                                 | 1             | 1                             | OA,OB,SA,SB              |
|                    | ADD f                |                 | f              | f = f + WREG                                     | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD             | f,WREG         | WREG = f + WREG                                  | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD             | #lit10,Wn      | Wd = lit10 + Wd                                  | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD             | Wb,Ws,Wd       | Wd = Wb + Ws                                     | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD             | Wb,#lit5,Wd    | Wd = Wb + lit5                                   | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADD             | Wso,#Slit4,Acc | 16-bit Signed Add to Accumulator                 | 1             | 1                             | OA,OB,SA,SB              |
| 2                  | ADDC                 | ADDC            | f              | f = f + WREG + (C)                               | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADDC            | f,WREG         | WREG = $f + WREG + (C)$                          | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADDC            | #lit10,Wn      | Wd = lit10 + Wd + (C)                            | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADDC            | Wb,Ws,Wd       | Wd = Wb + Ws + (C)                               | 1             | 1                             | C,DC,N,OV,Z              |
|                    |                      | ADDC            | Wb,#lit5,Wd    | Wd = Wb + lit5 + (C)                             | 1             | 1                             | C,DC,N,OV,Z              |
| 3                  | AND                  | AND             | f              | f = f .AND. WREG                                 | 1             | 1                             | N,Z                      |
|                    |                      | AND             | f,WREG         | WREG = f .AND. WREG                              | 1             | 1                             | N,Z                      |
|                    |                      | AND             | #lit10,Wn      | Wd = lit10 .AND. Wd                              | 1             | 1                             | N,Z                      |
|                    |                      | AND             | Wb,Ws,Wd       | Wd = Wb .AND. Ws                                 | 1             | 1                             | N,Z                      |
|                    |                      | AND             | Wb,#lit5,Wd    | Wd = Wb .AND. lit5                               | 1             | 1                             | N,Z                      |
| 4                  | ASR                  | ASR             | f              | f = Arithmetic Right Shift f                     | 1             | 1                             | C,N,OV,Z                 |
|                    |                      | ASR             | f,WREG         | WREG = Arithmetic Right Shift f                  | 1             | 1                             | C,N,OV,Z                 |
|                    |                      | ASR             | Ws,Wd          | Wd = Arithmetic Right Shift Ws                   | 1             | 1                             | C,N,OV,Z                 |
|                    |                      | ASR             | Wb,Wns,Wnd     | Wnd = Arithmetic Right Shift Wb by Wns           | 1             | 1                             | N,Z                      |
|                    |                      | ASR             | Wb,#lit5,Wnd   | Wnd = Arithmetic Right Shift Wb by lit5          | 1             | 1                             | N,Z                      |
| 5                  | BCLR                 | BCLR            | f,#bit4        | Bit Clear f                                      | 1             | 1                             | None                     |
|                    |                      | BCLR            | Ws,#bit4       | Bit Clear Ws                                     | 1             | 1                             | None                     |
| 6                  | BOOTSWP              | BOOTSWP         |                | Swap the active and inactive program Flash Space | 1             | 2                             | None                     |
| 7                  | BRA                  | BRA             | C,Expr         | Branch if Carry                                  | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | GE, Expr       | Branch if greater than or equal                  | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | GEU, Expr      | Branch if unsigned greater than or equal         | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | GT, Expr       | Branch if greater than                           | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | GTU, Expr      | Branch if unsigned greater than                  | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | LE, Expr       | Branch if less than or equal                     | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | LEU, Expr      | Branch if unsigned less than or equal            | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | LT, Expr       | Branch if less than                              | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | LTU, Expr      | Branch if unsigned less than                     | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | N,Expr         | Branch if Negative                               | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | NC, Expr       | Branch if Not Carry                              | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | NN, Expr       | Branch if Not Negative                           | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | NOV, Expr      | Branch if Not Overflow                           | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | NZ, Expr       | Branch if Not Zero                               | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | OA, Expr       | Branch if Accumulator A overflow                 | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | OB,Expr        | Branch if Accumulator B overflow                 | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | OV,Expr        | Branch if Overflow                               | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | SA, Expr       | Branch if Accumulator A saturated                | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | SB, Expr       | Branch if Accumulator B saturated                | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | Expr           | Branch Unconditionally                           | 1             | 4                             | None                     |
|                    |                      | BRA             | Z, Expr        | Branch if Zero                                   | 1             | 1 (4)                         | None                     |
|                    |                      | BRA             | Wn             | Computed Branch                                  | 1             | 4                             | None                     |
| 8                  | BSET                 | BSET            | f,#bit4        | Bit Set f                                        | 1             | 1                             | None                     |
|                    |                      | BSET            | Ws,#bit4       | Bit Set Ws                                       | 1             | 1                             | None                     |

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

### FIGURE 30-12: SPI1, SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS<sup>(1,2)</sup>



### TABLE 30-32: SPI1, SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS<sup>(5)</sup>

| AC CHARACTERISTICS |                       |                                              | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |      |       |            |                                |  |
|--------------------|-----------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|------------|--------------------------------|--|
| Param.             | Symbol                | Min.                                         | Typ. <sup>(2)</sup>                                                                                                                                                                                                                                                                 | Max. | Units | Conditions |                                |  |
| SP10               | FscP                  | Maximum SCKx Frequency                       | _                                                                                                                                                                                                                                                                                   |      | 15    | MHz        | (Note 3)                       |  |
| SP20               | TscF                  | SCKx Output Fall Time                        | _                                                                                                                                                                                                                                                                                   | _    |       | ns         | See Parameter DO32<br>(Note 4) |  |
| SP21               | TscR                  | SCKx Output Rise Time                        | -                                                                                                                                                                                                                                                                                   | -    | _     | ns         | See Parameter DO31<br>(Note 4) |  |
| SP30               | TdoF                  | SDOx Data Output Fall Time                   | —                                                                                                                                                                                                                                                                                   | —    |       | ns         | See Parameter DO32<br>(Note 4) |  |
| SP31               | TdoR                  | SDOx Data Output Rise Time                   | -                                                                                                                                                                                                                                                                                   | _    | _     | ns         | See Parameter DO31<br>(Note 4) |  |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge    | —                                                                                                                                                                                                                                                                                   | 6    | 20    | ns         |                                |  |
| SP36               | TdiV2scH,<br>TdiV2scL | SDOx Data Output Setup to<br>First SCKx Edge | 30                                                                                                                                                                                                                                                                                  | —    | _     | ns         |                                |  |

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

**3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with a remappable SCK3 pin.

### TABLE 30-57: PGAx MODULE SPECIFICATIONS

| AC/DC CHARACTERISTICS |        |                                       |         | $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ |             |            |                                         |                                                                |  |
|-----------------------|--------|---------------------------------------|---------|-------------------------------------------------------|-------------|------------|-----------------------------------------|----------------------------------------------------------------|--|
| Param<br>No.          | Symbol | Characteristic                        |         | Min.                                                  | Тур.        | Max.       | Units                                   | Comments                                                       |  |
| PA01                  | Vin    | Input Voltage Rang                    | е       | AVss - 0.3                                            | —           | AVDD + 0.3 | V                                       |                                                                |  |
| PA02                  | Vсм    | Common-Mode Inp<br>Voltage Range      | ut      | AVss                                                  | —           | AVDD - 1.6 | V                                       |                                                                |  |
| PA03                  | Vos    | Input Offset Voltage                  | 9       | -10                                                   | —           | 10         | mV                                      |                                                                |  |
| PA04                  | Vos    | Input Offset Voltage with Temperature |         | ±15                                                   | —           | µV/∘C      |                                         |                                                                |  |
| PA05                  | Rin+   | Input Impedance of<br>Positive Input  |         | >1M    7 pF                                           | _           | Ω   pF     |                                         |                                                                |  |
| PA06                  | Rin-   | Input Impedance of<br>Negative Input  |         | _                                                     | 10K    7 pF | _          | Ω   pF                                  |                                                                |  |
| PA07                  | Gerr   | Gain Error                            |         | -2                                                    | —           | 2          | %                                       | Gain = 4x, 8x                                                  |  |
|                       |        |                                       |         | -3                                                    | —           | 3          | %                                       | Gain = 16x                                                     |  |
|                       |        |                                       |         | -4                                                    | —           | 4          | %                                       | Gain = 32x, 64x                                                |  |
| PA08                  | Lerr   | Gain Nonlinearity E                   | _       | —                                                     | 0.5         | %          | % of full scale,<br>Gain = 16x          |                                                                |  |
| PA09                  | IDD    | Current Consumption                   |         |                                                       | 2.0         | _          | mA                                      | Module is enabled with<br>a 2-volt P-P output<br>voltage swing |  |
| PA10a                 | BW     | Small Signal                          | G = 4x  |                                                       | 10          | _          | MHz                                     |                                                                |  |
| PA10b                 |        | Bandwidth (-3 dB)                     | G = 8x  |                                                       | 5           | _          | MHz                                     |                                                                |  |
| PA10c                 |        | G = 16x<br>G = 32x                    |         | _                                                     | 2.5         | —          | MHz                                     |                                                                |  |
| PA10d                 |        |                                       |         |                                                       | 1.25        | —          | MHz                                     |                                                                |  |
| PA10e                 |        |                                       | G = 64x |                                                       | 0.625       | —          | MHz                                     |                                                                |  |
| PA11                  | OST    | Output Settling Tim<br>of Final Value | _       | 0.4                                                   | —           | μs         | Gain = 16x, 100 mV<br>input step change |                                                                |  |
| PA12                  | SR     | Output Slew Rate                      |         | 40                                                    | —           | V/µs       | Gain = 16x                              |                                                                |  |
| PA13                  | TGSEL  | Gain Selection Tim                    | _       | 1                                                     | —           | μs         |                                         |                                                                |  |
| PA14                  | TON    | Module Turn On/Set                    | _       | —                                                     | 10          | μs         |                                         |                                                                |  |

**Note 1:** The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.